

WHAT CAN HORMONES TELL US ABOUT WILDLIFE HEALTH?

Jennifer Terry^{1*}, Alyssa Hartzheim², Lorin A. Neuman-Lee¹ and Amy R. Pearce³

- ¹Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
- ² Departments of Molecular Biosciences and Clinical Sciences, North Carolina State University College of Veterinary Sciences, Raleigh, NC, United States
- ³Department of Psychology, Indiana University Indianapolis, Indianapolis, IN, United States

YOUNG REVIEWERS:

TANUJ AGE: 8

THAKSITA AGE: 9 Since animals cannot directly talk to humans, scientists, veterinarians, and conservationists may use hormones to learn important things about animal health. Hormones are chemical messengers that are critical to life functions for animals and humans. These tiny messengers are produced in the body and released into the bloodstream. Hormones are found not only in blood, but also in traces animals leave behind, like fur, feces (poop), and feathers. In our human-influenced world, understanding how wild animals are affected by changes in their environments through measuring their hormones will aid in developing effective conservation strategies.

HOW ARE THE ANIMALS DOING?

Climate change, human-wildlife interactions, and loss of habitat are altering our world. Such changes also impact animals and influence their behavior, population sizes, and physical health [1]. These changes can ultimately lead to the extinction of animals [1]. To understand how to help animals, scientists and veterinarians need to understand what is going on inside their bodies. However, wild animals cannot directly tell us how they are doing, and getting them to the veterinarian is often difficult. Instead, scientists can use traces left behind by animals to understand their health. These traces, like hair, blood, poop, and even earwax, contain chemicals, such as **hormones**, that help us understand animals, even when they cannot tell us what is going on with them.

THE BLOODSTREAM WORKS AS A HIGHWAY

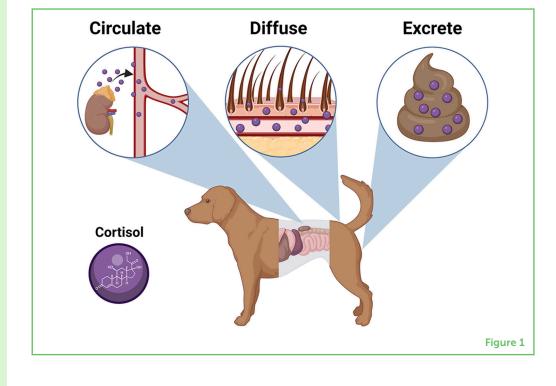
The circulatory system, led by the heart, pumps blood throughout the body. Blood contains many things, like oxygen-carrying red blood cells and disease-fighting white blood cells. These cells allow organs to function and help the immune system to fight off potential illness. Blood also contains hormones—chemical messengers released from organs and glands into the bloodstream. The bloodstream acts like a highway for hormones, allowing them to travel to other parts of the body (Figure 1). Once they have reached their intended destinations, hormones then interact with cells, tissues, and organs if those structures have a specific receptor for that hormone. Simply put, the hormone acts as a key and the receptor acts as a lock; only the right key can fit! Hormones bind to receptors, and this action causes a cascade of changes. Effects of hormones vary by situation but can affect the whole body through the release of other hormones and changes in which proteins the body's cells make. Once hormones bind to their targets, hormones are broken down into metabolites and removed from the body.

Hormones are critical to life functions. For example, the hormone melatonin helps regulate the body's internal clock; cortisol and corticosterone help with energy use and can indicate responses to stress; and progesterone is associated with pregnancy [1, 2]. Much like Goldilocks and the three bears, hormone levels need to be "just right"—too much or too little hormone may keep the body from functioning properly. Because hormones cause a cascade of changes in the body, consequences of high or low hormone levels may include increased susceptibility to illness or failure to reproduce [2]. To determine if hormone levels are too low, too high, or just right, scientists and veterinarians must also look at other symptoms, like diseases or changes in behavior.

HORMONE

A molecule produced by a cell or gland and released into the bloodstream, acting as a chemical messenger and causing changes in the body.

CIRCULATORY SYSTEM


The system that moves blood throughout the body.

METABOLITE

The leftover product of a hormone after it is broken down in the body.

Figure 1

Some hormones are released from glands into the blood stream. For example, cortisol is released from the adrenal glands on top of the kidneys. Cortisol is important for the body's normal functions, but too much or too little cortisol can be unhealthy. Hormones may be deposited into keratinized structures such as hair by passive diffusion, and released in excretions such as feces (Image created using BioRender).

HYPOTHYROIDISM

Condition that occurs when not enough thyroid hormone is produced in the body.

KERATINIZED MATERIALS

Body structures that contain a substance called keratin, which is part of nails, hair, scales, and feathers.

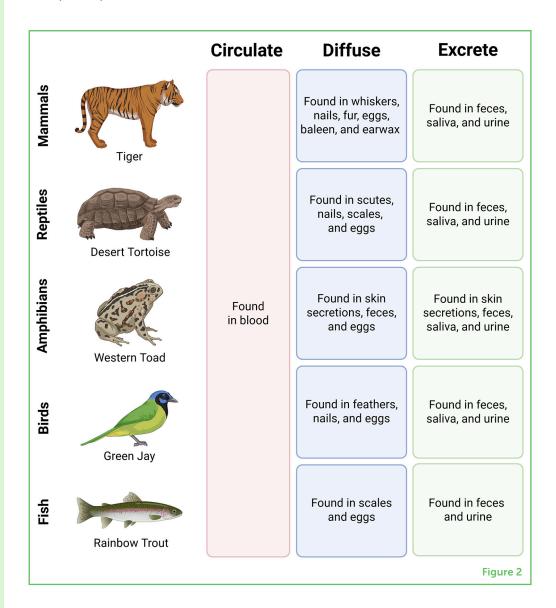
PASSIVE DIFFUSION

The movement of a substance, like a hormone, across cells or tissues without the need of energy, a special transporter, or regulation.

EXCRETIONS

Substances produced to eliminate wastes from the body, such as feces (poop), urine (pee), or sweat.

HOW CAN WE FIND HORMONES?


A doctor or veterinarian may do bloodwork on their patients to check hormone levels as part of a health exam. For example, if you are feeling unusually tired, your doctor may look at your thyroid hormone levels to see if your thyroid is functioning properly. **Hypothyroidism** occurs when the thyroid gland does not produce enough thyroid hormones. Hypothyroidism can also occur in animals, like a pet dog! Hormone testing from blood work can provide evidence of hormone problems and allow doctors and veterinarians to give patients the proper treatment.

However, scientists can also find hormones in other things that animals leave behind. This is particularly helpful if animals are rare or difficult to locate, if not enough blood can be safely collected, or if animals are very sensitive to human contact. Hormones can be found in keratinized materials like nails and hair [3]. As these structures grow, hormones are deposited in them from the nearby blood supply by passive diffusion (Figure 1) [3]. Hormones in their metabolite form can also be passed into excretions like feces (poop), urine (pee), and saliva (spit). For critters like frogs, scientists can even use the water they live in to measure hormones from the animal. Egg-laying moms also deposit hormones into their eggs, which can reveal a lot about both mom and baby. Scientists can use the same hormone analysis methods, regardless of whether the sample is blood, feces, or feathers. These different kinds of samples provide specific "snapshots" of hormone levels (Figure 2). For example, a blood sample represents hormones at the exact second of blood collection, a poop sample

represents hormone levels within the last hours or days, and a nail sample represents hormone levels within weeks or months.

Figure 2

Non-blood sources of hormones may vary by animal. Keratinized materials and excretions can be collected from live animals or from existing museum specimens. For example, baleen (found in the mouth and helps with eating) and earwax can be collected from whale specimens in museums. Scutes, or the top layer of shells, can be collected from turtles. Eggs can be collected from egg-laying mammals like the platypus (Image created using BioRender).

HOW CAN HORMONE KNOWLEDGE HELP US CONSERVE ANIMALS?

When scientists collect samples from animals in the wild, they take these samples into the lab to measure hormone levels. By studying hormone levels, scientists can infer various things about the animal and the effects of its environment (Table 1). Hormone levels can reveal if animals may be affected by certain types of stress in their environments. The type of information gathered varies by animal and sample, but scientists have used this method in several ways to understand animal health. Knowledge of animal health can help scientists and conservationists to plan continuing conservation efforts and can alert scientists that animals may need help [2, 5, 7].

Table 1

Hormones can tell scientists about the general health and stress levels of various animals in need of conservation.

Animal	Sample type	Hormone	Captive vs. Wild	Why
Short-beaked echidna	Fecal	Progesterone	Captive	Tracking progression of pregnancy and health of the mother without needing to constantly take her to the veterinarian [4]
Northern pike, walleye, whitefish, white sucker, rainbow trout	Scale clipping	Cortisol	Wild, Captive	Understanding long-term stress and getting a "normal" measurement of health in a less invasive way [5]
Indian star tortoise	Fecal	Corticosterone	Captive	Determining if there are changes in stress levels between seasonal indoor and outdoor housing, to see if there is a need to change housing [6]
Wyoming toad	Skin swab, Fecal	Corticosterone, cortisol	Captive	Assessing effectiveness of reintroduction efforts and how they are coping with stress [7]
Yellow-eyed penguin	Blood	Corticosterone	Wild	Assessing effect of tourism on stress levels—do tourists need to keep their distance [2]?
Orangutan	Urine	Corticosterone	Wild	Assessing effect of deforestation on development of facial features
White rhino	Fecal	Testosterone, progesterone, corticosterone	Wild	Determining changes in stress and health following horn removal, to see if it is a safe way to prevent poaching [8]

Table 1

While this article discussed how animal traces are used to measure hormones as a way to understand animal health, scientists can also measure other things animals leave behind. For example, animal poop spreads seeds and provides nutrients for other organisms; microbes in tapir poop helped scientists understand forest health; and monarch butterfly wings helped scientists understand if parasites were related to wing deformities.

In summary, human impacts are changing the planet and affecting wildlife. Measuring hormones along with other indicators of individual and population health helps scientists understand how animals are coping in their environments. Hormones can be collected directly from the bloodstream or from the traces that animals leave behind, like scales, feces, and hair. Hormone research has helped improve

the welfare of both wild and captive animals and it gives us information about which animals need our protection and how we can conserve them.

ACKNOWLEDGMENTS

We thank Dr. Virginie Rolland, a Young Reviewer, and the Science Mentor for constructive feedback on previous drafts of this manuscript.

AI TOOL STATEMENT

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

REFERENCES

- 1. Madliger, C. L., Cooke, S. J., Crespi, E. J., Funk, J. L., Hultine, K. R., Hunt, K. E., et al. 2016. Success stories and emerging themes in conservation physiology. *Conserv. Physiol.* 4:1–17. doi: 10.1093/conphys/cov057
- 2. Terry, J. L., Field, E., and Neuman-Lee, L. A. 2023. Assessment of glucocorticoids, sex steroids, and innate immunity in wild red-eared sliders (*Trachemys scripta*). *Gen. Comp. Endocrinol.* 339:114288. doi: 10.1016/j.ygcen.2023.114288
- 3. Fokidis, H.B., and Mack, Z. 2017. A novel method for assessing chronic cortisol concentrations in dogs using the nail as a source. *Domestic Anim. Endocrinol.* 59:53–7. doi: 10.1016/j.domaniend.2016.11.003
- 4. Dutton-Regester, K. J., Roser, A., Meer, H., Russell, F. A., Pyne, M., Renfree, M. B., et al. 2023. Investigating the utility of using fecal hormone metabolites as a reproductive management tool for captive short-beaked echidnas (*Tachyglossus aculeatus*). *Gen. Comp. Endocrinol.* 220:114142. doi: 10.1016/j.ygcen.2022.114142
- 5. Kennedy, E. K. C., and Janz, D. M. 2023. Can scale cortisol concentration be quantified non-lethally in wild fish species? *Conserv. Physiol.* 11:coac081. doi: 10.1093/conphys/coac081
- 6. Hartzheim, A., Terry, J., Field, E., Poo, S., and Neuman-Lee, L. 2023. Immune and stress physiology of two captively-housed tortoise species. *J. Exp. Zool. A Ecol. Integr. Physiol.* 339:220–33. doi: 10.1002/jez.2674
- 7. Santymire, R. M., Sacerdote-Velat, A. B., Gygli, A., Keinath, D. A., Poo, S., Hinkson, K. M., et al. 2021. Using dermal glucocorticoids to determine the effects of disease and environment on the critically endangered Wyoming toad. *Conserv. Physiol.* 9:coab093. doi: 10.1093/conphys/coab093

8. Penny, S. G., White, R. L., MacTavish, L., Scott, D. M., and Pernetta, A. P. 2020. Negligible hormonal response following dehorning in free-ranging white rhinoceros (*Ceratotherrium simum*). *Conserv. Physiol.* 8:coaa117. doi: 10.1093/conphys/coaa117

SUBMITTED: 24 July 2024; ACCEPTED: 24 October 2025; ;

PUBLISHED ONLINE: 21 November 2025.

EDITOR: John T. Van Stan, Cleveland State University, United States

SCIENCE MENTORS: Vinuselvi Parisutham

CITATION: Terry J, Hartzheim A, Neuman-Lee LA and Pearce AR (2025) What can Hormones Tell us About Wildlife Health? Front. Young Minds 13:1470007. doi: 10. 3389/frym.2025.1470007

CONFLICT OF INTEREST: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

COPYRIGHT © 2025 Terry, Hartzheim, Neuman-Lee and Pearce. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

YOUNG REVIEWERS

TANUJ, AGE: 8

My name is Tanuj and I do not have a middle name. My favorite show and book is Scooby Doo. My favorite tradition is Halloween. I like to learn about animals. I am in 3rd grade. My favorite drink is icee and my favorite meat is Bacon and my favorite snack is marshmallow. In the future I want to set up a Scooby Doo Ghost Costume store. I like to play card games and Scooby Doo board games.

THAKSITA, AGE: 9

Hi, my name is Thaksita and I am in 4th grade. I am 9 years old. Some of my favorite things are, gymnastics and reading. One fun fact about myself is I love Harry Potter. My favorite character is Hermione.

AUTHORS

JENNIFER TERRY

Jennifer Terry is a Ph.D. candidate in environmental sciences at Arkansas State University—Jonesboro. She earned her M.S. in biology from Arkansas State University and a B.A. in animal behavior from Bucknell University. Jennifer's research examines physiology and population dynamics in freshwater turtles. *jenlaurterry@gmail.com

ALYSSA HARTZHEIM

Alyssa Hartzheim is a medical laboratory technician at the North Carolina State University College of Veterinary Sciences. She earned her M.S. from Arkansas State University and her B.S. in zoology from North Carolina State University. Alyssa's passions delve into turtle biology and animal anatomy.

LORIN A. NEUMAN-LEE

Lorin A. Neuman-Lee is an associate professor of physiology at Arkansas State University—Jonesboro. She earned her Ph.D. in biology from Utah State University, her M.S. in biology from Eastern Illinois University, and a B.S. in both English and biology from Iowa State University. Lorin's research examines physiology, particularly immune function, in reptiles and other vertebrates.

AMY R. PEARCE

Amy R. Pearce is a teaching professor in the Department of Psychology and a STEM Education Innovation and Research Institute Associate at Indiana University Indianapolis. She earned her Ph.D. in neuroscience, plus a certificate in science communication from The Australian National University and her B.S. in psychology from Arkansas State University. Amy teaches neuroscience courses at her university and promotes STEM education through school and community events, including fun things like science comedy and science festivals.