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Electroceuticals is an emerging field that combines the technology in conductive materials
with their ability to interface with biological systems. The development of highly conductive
electrodes to monitor human health in real-time while simultaneously delivering stimulation
promises to revolutionize medical science. Aspects to consider during development
include the desired shape, electrode material properties, number of active sites,
carriers used, and methods of deployment and activation. Novel organic-conductor
based electrode compositions offer properties unattainable with conventional metal
electrodes. Emerging innovative deployment strategies communicate directly with
target tissues while minimizing damage to the surrounding biological environment.
Here we highlight the recent reported technology on platinized graphene fibers
(sutrode), a high performance electrode, capable of recording electrophysiological
signals from small autonomic nerves, which could bring us closer to the ultimate goal:
modulating the activity of individual organs with high selectivity and precision for a
therapeutic medical outcome. An in-depth understanding of electrode materials and
methods of fabrication and deployment can provide unprecedented opportunities for
electroceutical research.
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INTRODUCTION

Electrical signals or biopotentials are fundamental to maintaining equilibrium in biological systems.
Their functions range from regulating ionic interchange on voltage dependent channels in cell
membranes, to electrical processes that control cellular and humoral communication between
organs. Diseases or disorders often disrupt this equilibrium either due to environmental stimuli
(epigenetic) or internal conditions (genetic or cellular). Electroceuticals operate on the principle of
applying standardized electrical currents through a neural interface, artificially modifying the
function of strategic targets to achieve balance.

The use of bioelectrical interfaces in medicine improves the quality of life of individuals affected
by chronic diseases, debilitating disorders of the brain, spine, limbs, and sensory organs through
direct interfacing with the nervous system or organs. The use of electrical devices to modulate organ
function dates from the last century (1958) with the development of cardiac pacemakers. These
body-implantable sensors have so far been able to monitor imbalances associated with disease states,
as exemplified by the implantable glucose biosensor for diabetic patients, which can now provide
continuous data for up to 180 days (Heo and Kim 2019; Boscari et al., 2022). This emerging field is
currently replacing pharmacological treatments for patients that suffer from debilitating conditions
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and are unresponsive to conventional drug treatments. For
example, vagal nerve stimulation (VNS) has been used to treat
drug-resistant epilepsy in more than 100,000 patients and is
generally well-tolerated (Fisher et al., 2021). VNS has also
shown positive effects in the treatment of rheumatoid arthritis
(Koopman et al., 2016) and Crohn’s disease in early human trials
(Bonaz et al., 2016).

Central and peripheral nervous systems are prime targets for
electroceuticals, as their modulation not only affects a
compartmentalized cellular circuit in an organ or tissue, but
also humoral modulation of elements that underlie different
disorders, such as modulation of cytokines and interleukins
during inflammatory reflex by stimulating the vagus or splenic
nerves. Sensor research has made great progress in addressing
major challenges that promise to revolutionize medical science
and make the field possible. These sensors can now monitor
neurophysiological signals entering and exiting specific organs
(Merrill et al., 2011; Yao et al., 2020; Sharma et al., 2021). Precise
positioning of these sensors in nerves at organ entry points,
provides information via inter-organ communication which can
be analyzed, in order to provide information about organ
malfunction during a disease state, and inform on possible
interventions (Im and Seo 2016; Trung and Lee 2016; Weber
et al., 2020). This use of electrical stimulation has become known
as electroceuticals or bioelectronic medicines–a potential
alternative to the traditional approach used to treat disease
with pharmaceuticals.

This field of electroceuticals is propelled through the
development of innovative and sensitive electrodes. The
requirements for this type of electrodes differ from those
implanted for monitoring chronic diseases. Composition and
structure must enable them to make intimate contact with
delicate, sometimes hard to access nerves. This places
additional demands on the physical properties of the
implanted electrode, requiring thin, soft, flexible, yet strong
materials for intimate contact with the soft tissue. These may
need to operate over extended periods of years, but can also be
effective for some conditions within a few weeks in producing
valuable organ function information. If we consider that the
introduction of the sensors (actually any foreign object) into the
human body triggers a cascade of immune and inflammation
processes, we can gain some insights into the performance of
implantable electrodes, based on the severity of the tissue
response, and altered activity over time. Upon insertion,
physical trauma and protein adsorption trigger inflammation,
and fibrotic encapsulation (Anderson et al., 2008; Lotti et al.,
2017; O’Malley et al., 2017; Veiseh and Vegas 2019). This results
in increased impedance at the electrode-tissue interface, which
compromises signal fidelity and increases power consumption
and eventually failure of the device. These biological responses are
influenced by the following properties of the sensing material.

Electrode Composition
Electrode chemical composition determines performance.
Platinum and platinum-iridium are conventional implantable
electrode materials due to their good electrical conductivity
and stability. However, high charge injection over time leads

to Platinum dissolution, and the production of chemical radicals
that affect the micro-environmental interphase electrode-tissue,
increasing the foreign body response (Kumsa et al., 2017; Harris
et al., 2018). Current electrode chemistry has strengths and
limitations, and several criteria are needed to be considered
when defining electrode chemical compositions, since it will
impact the resultant signal-to-noise ratio while recording, and
the availability of a wide water window (potential window) that
avoids electrolysis during stimulation (Cogan 2008; Jalili et al.,
2017). The material also needs to be highly processable and
adaptable to different manufacturing options, allowing it to be
formed into specific structures and integrated within the overall
system (Won et al., 2020).

For electrodes implants, platinum and platinum-iridium are
the gold standards for electrode materials because of their high
conductivity and stability most prevalent in the market (Wellman
et al., 2018). However, due to the low electroactive surface area,
the signal-to-noise ratio during signal recording is limited. For
neuromodulation, safely injecting electrical charge into relatively
small nerve targets through miniature electrodes is a challenge
Therefore, novel electrode materials with low impedance for
sensitive signal recording and high charge injection capacity
(CIC) for neural stimulation are highly desirable. Relatively
large electrodes (i.e., >20 μm diameter) are known to
exacerbate initial insertion tissue injury, and damage
surrounding tissue by chronic local strain fields induced by
micromotion (Spencer et al., 2017; Sharafkhani et al., 2022).
Reduced electrode size minimizes the risk of insertion injury
(Chen et al., 2017), and small needle electrodes (i.e., <8 µm OD)
avoid foreign body response and disruptive local neuro-glial
communication, thereby limiting the release of pro-
inflammatory cytokines (Chen et al., 2017). To this end, new
materials and microfabrication have enabled the development of
a novel sixteen-channel amorphous silicon carbide-based sensor
with a 23 µm width, 10 µm thick shank and four ultramicro-sized
electrodes (8 × 25 µm2) per shank for intraneural interrogation.
This intraneural electrode provides enhanced spatial resolution to
target small nerve fibers in the rat vagus nerve when compared to
conventional electrodes with a large geometric surface area
(Ghazavi et al., 2020).

The use of novel materials offers new opportunities to
fabricate small, sensitive electrodes with high CIC. Electrodes
based on organic conductors, such as graphene or carbon fibres,
are favoured for their electrochemical stability (Zhou and Angelo
2013; Wang et al., 2019; Gonzalez-Gonzalez et al., 2021), and
reduced foreign body response (Nayagam et al., 2011). As one of
the most widely used nanomaterials, graphene has excellent
physical and chemical properties and can interact with other
biological molecules, such as DNA, enzymes, proteins or peptides
through noncovalent adsorption such as π–π stacking, hydrogen
bonds, or electrostatic interactions, as well as thorough covalent
bindings between free amine proteins and the carboxylic groups
of graphene oxide (Li et al., 2016). These interactions will have a
subsequent effect on the ability to effect electron transfer and/or
to store charge at the electrode solution interface.

Graphene-based materials have been widely used in
regenerative medicine (Shin et al., 2016) and tissue engineering
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due to their excellent mechanical strength and electrical
conductivity (Weaver and Cui 2015; Bourrier et al., 2019;
Laurencin and Daneshmandi 2020; Devi et al., 2021). A free-
standing graphene fibre microelectrode (50 µm OD), has been
shown to effectively stimulate retinal ganglion cells in vitro (Apollo
et al., 2015). In addition, these highly flexible graphene-fiber
microelectrodes can perform high-frequency deep brain
stimulation (DBS) on the subthalamic nucleus, effectively
reducing movement disorders in Parkinson’s diseased rats
(Zhao et al., 2020).

Recently, a novel graphene-based fiber–called a “sutrode”, was
developed by adding a platinum layer to enhance current collection
ability (Figures 1A,B; (Wang et al., 2019). This novel electrode
material provides ultrahigh performance by combining the
mechanical properties of a suture with the properties of an
electrode. The electrode structure has low impedance and high
CIC (10 mC cm−2), which is significantly higher than traditional
noble metal and conductive polymer based electrodes (Wang et al.,
2019). The diameter of the graphene fiber can be as low as 20 μm,
which can effectively reduce the foreign body response (Pancrazio
et al., 2017). Electrode arrays fabricated using these fibers are allow
to communicate directly with individual neurons and achieve

stable single unit recording from the cortex with a high signal-
to-noise ratio (SNR) of 9.2 dB (Wang et al., 2019). In addition, this
ultra-flexible suture-like electrode can interface with multiple
splenic neurovascular plexus (SNVP) and enable selective neural
stimulation (Figures 1C,D) (Gonzalez-Gonzalez et al., 2021).

Conducting polymers are also important for
microelectrode fabrication in bioelectronic medicines
(Balint et al., 2014; Mirabedini et al., 2016; Harris and
Wallace 2018; Zhang et al., 2018). Materials such as
polypyrrole provide an organic backbone that facilitates
intimate interactions with neural cells (Ateh et al., 2006;
Moulton and Walace. 2012). This degree of intimacy can
be further enhanced by incorporating biologically active
molecules as dopants, as illustrated by the enhanced
neurite outgrowth and degree of neural branching in vitro
(Liu et al., 2009; Liu et al., 2011; Zhang et al., 2018). Such
organic electrodes have also proven effective in stimulating
protocols used to increase the number of neurites emanating
from cortical neurons. In fact, electrodes made of polypyrrole
doped with dodecylbenzenesulfonic acid were shown to
effectively increase with neuregulin type 1 knockout
(model of schizophrenia) (Zhang et al., 2018).

FIGURE 1 | (A) structure of graphene microfiber electrode -sutrode, (B) SEM image of sutrode tied into a knot, (C1) Sutrode placed on biceps (blue arrows), (C2)
Stimulation of the tibial nerve fascicle with hook electrodes and recording with the sutrode (blue arrow), (D) recording of graded evoked compound nerve action
potentials, (E1) Graphene fiber encased in sucrose microneedle, (E2) sutrode after the sucrose microneedles are dissolved, (E3) sucrose microneedle coated sutrode
inserted into feline visual cortex, (F1) neural activity recorded within 20 s of implantation, confirming sucrose dissolution, and (F2) magnified image of action potential
recorded with sutrode. Adapted with permission from (Apollo et al., 2015; Wang et al., 2019; Gonzalez-Gonzalez et al., 2021).
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Electrode Carriers
Biocompatible, flexible and stable materials, such as
polydimethylsiloxane (PDMS), have been widely used to
fabricate soft implantable devices. The excellent electrical
insulation properties of PDMS or other materials such as
parylene C can be used to isolate current collector wires
and connectors from the external environment (Stieglitz
et al., 2005).

The duration/degradation of the insulating material needs to
be carefully considered when designing electronic implants. It
may be necessary to control the degradation of the electrode and
carrier materials within a specified time frame. For example, a
wireless bioabsorbable electrode was developed to promote nerve
regeneration and functional recovery in rodent models (Koo
et al., 2018). Through careful selection of electrodes and
carrier materials, coupled with appropriate electrode design,
bioabsorption begins shortly after implantation. This poly
(lactic-co-glycolic acid) (PLGA) and Mg-based electrode
dissolves completely in the body after 25 days, avoiding the
need to remove the electrode in a second operation, and also
reducing foreign body response. Before complete absorption, the
device can deliver 100–300 mV stimulation to surrounding nerve
tissue, exceeding the threshold voltage for promoting nerve
regeneration immediately after surgical implantation. Unlike
bioabsorbable electrodes, cochlear implants need to be
implanted in the body for decades. Surprisingly, biodegradable
polymers can also play an important role in this type of electrode
design. Biodegradable polymers such as poly (L-lactide) and poly
(4-hydroxybutyrate) (P (4HB)) have been used to coat cochlear
implants (Ceschi et al., 2014). As the polymer degrades, these
modified cochlear implants have the potential to deliver drugs
and growth factors directly to the inner ear after cochlear
implantation (Tan et al., 2020).

Deployment
The choice of methods available for electrode deployment and
the appropriate materials for electrode fabrication is defined
depending on the location of the target tissue. In order to
achieve better positioning and higher fidelity, electrodes need
to be rigid enough for easy handling and penetration when
needed, yet soft and flexible to minimize foreign body reaction
and consequent increases in interfacial impedance. However,
inserting soft electrodes into soft tissue is a significant challenge.
Some have proposed magnetic insertion of 25 µm Pt-Fe
microelectrodes into rat brain, which recorded for 31 days
without significant changes in impedance (Dryg et al., 2015).
Yim et al. developed a handheld device that can further facilitate
the clinical application of magnetic insertion of microelectrodes
(Yim et al., 2017). Others have proposed strategies to
temporarily increase the stiffness and/or sharpness of
implantable electrodes, including using soluble biocompatible
coatings, such as silk coated titanium/iridium (Ti/Ir) electrodes
(Tien et al., 2013), gelatin coated gold electrodes (Agorelius
et al., 2015) or degradable polymer (Poly vinyl acetate) coated
Ti/Au (Capadona et al., 2012). Polylactic acid (PLA)/PLGA and
polycaprolactone (PCL) coatings on Si CMOS (complementary
metal–oxide–semiconductor) electrodes (Hwang et al., 2014)

have also been used. Others have simply used freezing of the
electrode (Pd) in liquid N2 immediately before insertion (Xie
et al., 2015). Recently, a sucrose microneedle was designed to
deliver soft graphene-fiber electrodes into deep (i.e., 8 mm)
brain target locations (Figures 1E,F) (Apollo et al., 2015;
Apollo et al., 2018). The sucrose-coated graphene-fiber
electrodes are stiff enough for insertion and become flexible
as the sucrose dissolves. It was observed that the insertion force
was lower in comparison to that needed for a stainless-steel
hypodermic needle. This approach facilitates the use of soft and
flexible graphene fibers to record sustainable neural
communication for up to 21 days (Apollo et al., 2018). The
need for stiffness that varies over time is eliminated by adding a
layer of platinum to the graphene fibers. This metallization step
provides the rigidity required to insert graphene fiber into the
cerebral cortex, while maintaining sufficient flexibility to tie an
overhand knot (Wang et al., 2019).

Alternatively, electrodes can be fabricated in-situ, such as
polymerized conductive polymer poly (3,4-
ethylenedioxythiophene; PEDOT) electrodes in nerve cells
(Richardson-Burns et al., 2007) and in the rat hippocampus
(Ouyang et al., 2014). More recently, a flowable two-part
conductive polymer was injected through a needle and syringe
into the space adjacent to neuroanatomical targets, the
injectrode® with high electrochemical performance and
outstanding sensitivity (Woodington et al., 2021). These
strategies enable the efficient integration of electrodes with the
in vivo environment, particularly for superficial targets.

Bioactive Electrodes
The assembly protocols used to create organic electrode
structures provide a way to integrate bioactive motifs into the
electrode structure. In the case of nanostructured carbons,
bioactive binder molecules such as chitosan (Buaki-Sogó et al.,
2021), alginate (Cirillo et al., 2021) and hyaluronic acid (Zheng
et al., 2019) may be included. As mentioned above, biological
macromolecules can be integrated into conducting polymers at
the time of synthesis.

Smaller molecules such as drugs or growth factors can also
be introduced into these organic electrode structures. For
example, enhanced cell attachment density and neurite
outgrowth were observed on laminin coated diamond
electrodes (Sikder et al., 2021). Using an immobilized
neural adhesion protein (L1) improves neural cell adhesion
and controls inflammation response when using silicon
electrodes, and improves chronic electrophysiologic
recording performance in vivo (Woeppel and Cui 2021).
Meanwhile, dexamethasone has been loaded into
polypyrrole (Leprince et al., 2010) or graphene oxide
(Weaver et al., 2014) electrodes to counter inflammation
upon implantation. Brain-derived neurotrophic factor
(BDNF) (Thompson et al., 2010) and neurotrophin-3 (NT-
3) (Thompson et al., 2011) were incorporated into
polypyrrole-based electrodes to improve nerve regeneration.
These bioactive motifs can then be released exactly at the point
they are needed in order to modulate the electrode-tissue
interface.

Frontiers in Sensors | www.frontiersin.org April 2022 | Volume 3 | Article 8738624

Liu et al. Electrodes for Electroceuticals

https://www.frontiersin.org/journals/sensors
www.frontiersin.org
https://www.frontiersin.org/journals/sensors#articles


Advanced Fabrication Methods
Beginning with single-wire microelectrodes used to record
electrical activity from nerves in the 1950s, various neural
electrodes with different geometries and configurations have
been developed. Multiple electrode arrays may be fabricated by
assembling wire electrodes together into bundles. In 1970 Wise
et al. reported the first micro-electromechanical systems (MEMS)
based multielectrode-microprobe for biopotential recording
(Wise et al., 1970). Following this pioneering work, a new field
called neural-MEMS was created (Hajjhassan et al., 2008;
Seymour et al., 2017). With the development of MEMS
fabrication technology, silicon-based microprobes were
fabricated by combing soft lithography, transfer-printing, and
3D packaging technologies. The miniaturization of neural probes
has enabled the realisation of multi-electrode arrays (MEAs) for
neural recording and stimulation (Seymour et al., 2017).

The development of hybrid neural electrodes has recently
attracted attention. This involves the combination of electrical
activity with bioactive motifs. For example, functional polymer
fibers were integrated into poly (acrylamide)-alginate hydrogel to
achieve stable electrophysiological activity recording for up to
6 months (Park et al., 2021). 3D printing also offers a way to
fabricate hybrid neural implants (Ni et al., 2019). These novel
fabrication methods can further facilitate the development of
electroceutical electrodes.

CONCLUSIONS AND FUTURE
PROSPECTIVE

The organic electrode compositions described above can be used
to fabricate high-performance electrode systems. These
electrodes, for instance, can be expanded to release multiple
biological components using simple coatings with multiple
molecules with differential release profiles. For example, the
release of anti-inflammatory drugs immediately after
implantation could be followed by the release of biofactors
that minimise scarring and others that promote growth of
appropriate tissue around the electrodes.

3D printing is an established fabrication technology that
allows the production of tissue-compatible electrodes.
Electrodes, structural materials, and bioactive materials (drugs,
growth factors, and even living cells) can be integrated using 3D
printing and can be further developed to strategically distribute
molecules and cells in implantable devices. Eventually, such
methods can be developed into 4D printing systems, adding
the dimension of changes in composition or response as a
factor of time.

Ultimately, the combination of sensing and stimulation
electrodes can be integrated as closed-loop systems will
dramatically improve the performance of electroceutical
devices (Lee et al., 2020). As we learn more about
electrophysiological-based diagnostics, we will be able to
develop more accurate and targeted systems that can
automatically modulate organ function in response to internal
or external stimuli. This will require rapid interpretation of large
volumes of data and undoubtedly the machine learning tidal wave
we are currently riding will have an impact here.

The continued development of novel power sources, such as
implantable/biodegradable power sources (Jia et al., 2016; Jia
et al., 2017) and wirelessly systems (Hernandez-Reynoso et al.,
2019), offers numerous advantages over traditional wired and
batterie powered systems. This area has been somewhat neglected
but we expect to see great advances here in coming years.

Finally, it is important to consider that the miniature and
electrical systems being developed will face regulatory and
perhaps ethical questions not faced in the development of
more traditional medical approaches to treating disease.
Therefore, early integration of such issues is imperative for the
effective development of electroceuticals medical devices and
their impact on human health.
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