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Biological, genetic, and socio-demographic factors are all important in explaining

reproductive behavior, yet these factors are typically studied in isolation. In this

study, we explore an innovative sociogenomic approach, which entails including key

socio-demographic (marriage, education, occupation, religion, cohort) and genetic

factors related to both behavioral [age at first birth (AFB), number of children ever born

(NEB)] and biological fecundity-related outcomes (endometriosis, age at menopause and

menarche, polycystic ovary syndrome, azoospermia, testicular dysgenesis syndrome)

to explain childlessness. We examine the association of all sets of factors with

childlessness as well as the interplay between them. We derive polygenic scores (PGS)

from recent genome-wide association studies (GWAS) and apply these in the Health

and Retirement Study (N = 10,686) and Wisconsin Longitudinal Study (N = 8,284).

Both socio-demographic and genetic factors were associated with childlessness. Whilst

socio-demographic factors explain 19–46% in childlessness, the current PGS explains

<1% of the variance, and only PGSs from large GWASs are related to childlessness. Our

findings also indicate that genetic and socio-demographic factors are not independent,

with PGSs for AFB and NEB related to education and age at marriage. The explained

variance by polygenic scores on childlessness is limited since it is largely a behavioral

trait, with genetic explanations expected to increase somewhat in the future with

better-powered GWASs. As genotyping of individuals in social science surveys becomes

more prevalent, the method described in this study can be applied to other outcomes.
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INTRODUCTION

Childlessness has increased in many Western countries, from
10% in the 1970s to currently 15% in the US (Frejka, 2017).
Childlessness can have far reaching consequences, including
changing the age composition of the population and lower well-
being among the involuntary childless (Sleebos, 2003; Hansen
et al., 2009).

Three parallel strands of research have examined
reproductive behavior. Firstly, the social sciences examined
socio-demographic factors such as educational attainment,
occupational behavior, religiosity, marital status, and birth
cohort (Balbo et al., 2013). Secondly, medical research has
focused on fecundity, infertility or the biological ability
to conceive such as sperm defects and ovulatory, cervical,

fallopian tube and uterine problems (Blundell, 2007). Thirdly,

a growing body of research focuses on the genetics of

fertility outcomes, such as age at first birth (AFB), number
of children born (NEB) and childlessness, with twin and
family studies showing that genetics may explain up to
50% of the variation in AFB, NEB and childlessness (Mills
and Tropf, 2015; Tropf et al., 2015; Verweij et al., 2017).
Recent Genome-wide Association Study (GWAS) discoveries
have isolated genetic markers for reproductive behavior
such as the timing and number of children (Barban et al.,
2016) and more biologically based infertility traits related
to sperm defects or the timing of menopause (Painter et al.,
2011; Day et al., 2015), allowing us for the first time to
include an individual’s genetic propensity as predictors in our
statistical models.

Until now, these three strands of research have existed in
isolation (Mills and Tropf, 2015), largely due to absence of
data, training or realization of the importance of adopting
a combined sociogenomic approach. The result is a lack
of understanding of the relationship between biological,
genetic and socio-demographic factors in association with
childlessness. We also do not know whether estimates based
solely on socio-demographic factors are biased due to their
correlation with an individual’s genetic propensity (Tropf
and Mandemakers, 2017) or if genetic propensities interact
with socio-demographic factors to be more influential in
particular groups. Using known socio-demographic measures
and results from recent GWAS discoveries, we apply a novel
design in which polygenic scores (PGSs) are created for
a variety of behavioral and infertility-related reproductive
outcomes. Due to the novelty of our design, we use two
independent datasets to replicate our results, namely the two
US-based Health and Retirement Study (HRS, N = 10,686)
and the Wisconsin Longitudinal Study (WLS, N = 8,284).
Both include individuals born between 1920 and 1960, where
childlessness rose from 6% among women born in 1935 to
16% around 1950 (Human Fertility Database, 2017) (see
Figure SM1). We first introduce our conceptual model, followed
by an explanation of the data and methods, main results
and implications for future research related to childlessness
and beyond.

Conceptual Model and Expectations
Figure 1 provides an overview of our conceptual model.
Unfortunately, we are not able to distinguish between voluntary
and involuntary childlessness, so all childless individuals are
combined into one group. We first assess the relationship of
(1) socio-demographic factors, (2) genetic factors related to
biological reproductive traits (e.g., menarche, sperm defects),
and (3) genetic factors related to reproductive behavior (timing,
number of children) with childlessness. We acknowledge that
this trichotomy is not entirely mutually exclusive, given that
some of the socio-demographic factors have been shown to
have at least a partial genetic basis (e.g., educational attainment,
religiosity). Furthermore, pathways through which the PGSs
relate to childlessness might operate via the socio-environment.
However, we use this clustering since it reflects the divisions and
representations in the literature.

The central socio-demographic factors that we study are
education, work, religion, marriage, and birth year (Balbo et al.,
2013). Previous studies showed that higher education and full-
time work are associated with higher chances of childlessness
among women, but not among men (Keizer et al., 2008; Balbo
et al., 2013; Tropf and Mandemakers, 2017). More religious
individuals are less likely to remain childless (Frejka andWestoff,
2008). Furthermore, in the US most childbearing happened
within marriage and therefore men and women who got married
younger are less likely to remain childless (Ventura and Bachrach,
2000). Birth year is also important, as childlessness is more
prevalent among individuals born in 1960 (15%) than in 1940
(8%) (Human Fertility Database, 2019).

We include PGS for biological reproductive traits on which
GWAS studies have been conducted. For women, ovulatory,
cervical, fallopian tube, and uterine problems are most likely to
cause infertility (Blundell, 2007) and therefore we include genetic
scores for polycystic ovary syndrome (PCOS) (Hayes et al.,
2015) (which mainly cause ovulatory problems), endometriosis
(Painter et al., 2011) (which influences the ovaries and fallopian
tubes), age at menarche (Day et al., 2017), and age at menopause
(Day et al., 2015) (which determine women’s reproductive
life span). For men, sperm defects are the most likely cause
for infertility, therefore we include PGSs for azoospermia
(a condition in which the semen contains no sperm) and
oligiozoospermia (low sperm count) (Aston and Carrell, 2009)
and testicular dysgenesis syndrome (TDS) (Dalgaard et al., 2012).

We also include genetic scores for reproductive behavior,
namely the age at first birth (AFB) and number of children
ever born (NEB) (Barban et al., 2016). These genetic scores
likely capture both social pathways leading to childlessness,
such as desires for a certain family size and educational
attainment, but also biological pathways, such as sperm defects
or ovulatory functioning.

We further study the interaction between these socio-
demographic and genetic factors. We hypothesize a birth cohort
by genetic score interaction based on studies that demonstrate
that there are differences in the relationship between genes and
reproductive outcomes over time (Kohler et al., 2002; Briley et al.,
2015; Tropf et al., 2015, 2017). We also hypothesize that genetic
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FIGURE 1 | Conceptual model on the pathways from the three sets of factors leading to (both voluntary and involuntary) childlessness. The arrows from the three sets

of factors (socio-demographic, genetic reproductive behavior, genetic biological reproductive traits) to childlessness represent the expected main effects. The dashed

lines represent the expected interaction between PGSs and socio-demographic factors. The double-sided arrows represent the expected correlations and the

single-headed arrows the flow of causality. PCOS, polycystic ovary syndrome; TDS, testicular dysgenesis syndrome.

factors are more important for men and women who get married,
and thus start attempts to have children, at higher ages, because
the biological ability to conceive decreases with age, especially for
women (Menken et al., 1986).

Finally, we assess genetic (G-G) and gene by socio-
demographic (G-E) correlations and mediation. We expect a
shared genetic basis reflected in correlations between the genetic
scores for the biological reproductive traits and genetic scores for
reproductive behavior (G-G correlation) (Barban et al., 2016), as
well as between education and age at marriage with the genetic
scores for age at first birth and number of children born(G-
E correlation) (Briley et al., 2017). We examine if the effects
of genetic scores for reproductive behavior are mediated by
socio-demographic factors and genetic scores for the biological
reproductive traits. Due to biological differences between men
and women, we likewise examine sex differences (Verweij et al.,
2017), and also explore differences by ethnic groups (Ware et al.,
2017).

METHODS AND MATERIALS

Data, Genotyping, and Samples
We use two broadly comparable datasets from the US,
namely the Health and Retirement Survey and the Wisconsin
Longitudinal Study.

Health and Retirement Survey (HRS)
TheHRS is a nationally representative sample of men andwomen
born between ∼1920 and 1960 living in the US. This survey
started in 1992 with a sample of men and women aged 51–61

and their partners, interviewed every 2 years. Extra cohorts have
been added to create a representative sample of Americans over
50 years of age (Sonnega et al., 2014), resulting in over 27,000
respondents in 2010 (Health Retirement Study, 2017).

In 2006, the HRS started genotyping respondents, with data
from 15,445 individuals currently available. In 2006, half of
the entire living sample was asked to provide saliva samples
for genotyping, of which 83% gave saliva, in 2008 the other
half of the sample was asked of which 84% gave saliva and in
2010 half of the newly added HRS sample was asked of which
80% gave saliva (Weir, 2013; HRS, 2017). Genotyping of the
2006–2008 samples was done by the Illumina HumanOmni-2.5
Quad BeadChip, with coverage of ∼2.5 million single nucleotide
polymorphisms (SNPs). Genotyping of the 2010 sample was done
with the Illumina HumanOmni2.5-8v1 BeadChip (HRS, 2017).
This chip covers common, rare, and exonic SNP content from
the 1,000 Genomes Project. Based on self-reported ethnicity
we selected only the white non-Hispanic sample (N = 10,686),
and we conducted separate analyses on the black non-Hispanic
sample (N = 2,433) (we removed theHispanic sample and people
with other ethnicities).

Wisconsin Longitudinal Study (WLS)
The WLS is a random sample of one third of all men and women
who graduated fromWisconsin high schools in 1957 (N = 10,317
graduates), and one of their siblings (N = 8,734 siblings). It is
broadly representative of white, non-Hispanic Americans who
at least finished high school (Herd et al., 2014). Respondents
filled in questionnaires across six waves (1957, 1964, 1975, 1993,
2004, 2011).
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Between 2007 and 2011, 9,012 of the WLS respondents were
genotyped. From the total of 10,317 graduates in the sample 5,967
gave DNA and consent, 2,394 refused, 1,657 already deceased
and 298 were not found (68.9% of the living samples gave DNA)
(WLS, 2011). From the siblings, 3,440 gave DNA and consent,
1,415 refused, 1,514 already deceased, and 2,412 were not found
(42.7% living respondents gave DNA). Genotyping was done
using the Illumina HumanOmniExpress-24-v1-1 BeadChip that
includes 713,014 SNPs (Herd, 2016). The SNPs on this chip
were optimized to tag content from all three HapMap phases,
which combine both rare as common genetic variation (Altshuler
et al., 2010). We select only those individuals who provided
information about their number of children after they finished
their reproductive period (age 45 for women or 50 for men),
resulting in 8,284 individuals.

In both samples, there were no individuals with missing call
rates of over 2%. In the HRS we removed all genetically related
individuals, for this we used the kinship coefficient table that
is provided by HRS which is based on SNP similarity between
individuals, removing individuals with similarity >0.125 (Weir,
2013). In the WLS we used multilevel models to deal with
related individuals. The reason is that the inclusion of related
individuals could result in an inflated significance of the SNP
effects. We did not impute genetic data but only used raw
genotyped information. Further information on quality control
is provided in the quality control reports for both samples (Weir,
2013; Herd, 2016).

Measurements
Childlessness is measured from a direct question regarding the
number of biological children after reaching the end of their
reproductive period.

Birth year of respondent is the birthdate reported in the first
non-missing wave and is standardized [(value-mean)/SD] for
ease of comparison.

Years of education is the number of years of education and is
calculated based of the highest degree (asked at least once after
the age of 30) and is also standardized.

Occupational field is measured in the HRS by job
asking respondents about their job previous to their
current occupation distinguishing between “professionals,”
“managers,” “clerks,” “sales,” “mechanics/production,”
“services,” “operators,” “farming,” and “army.” In the WLS,
it is measured by the first job they had after completing
the highest level of schooling, distinguishing between
“professional/technical,” “administrators/managers,” “sales,”
“clerks,” “manufacturing/construction,” “service,” “farming,”
and “no first job.” In both datasets clerks were used as
reference groups.

Age at first marriage is measured in both datasets using
information from the total number of marriages at each wave,
using the answer at the last interview. It is dichotomized into
never and ever married and for those who had been ever married,
the age of their first marriage, categorized into “before 21,” “21–
25,” “26–30,” “31–35,” “36–40,” and “older than 41” years. In this
time period most childbearing occurred within marriage, from

98% (1940–1960), to 94% in 1970, 90% in 1980, and 80% in 1990
(Ventura and Bachrach, 2000).

Religion in the HRS respondents were asked their religious
preference at each wave: “Protestant,” “Roman Catholic,”
“Jewish,” “something else,” or “non-religious.” The answer from
the first wave with non-missing information was used. In several
waves of the WLS, respondents were asked about their current
religious preference and could choose between 76 religions,
which we collapsed into Roman Catholic, Protestant, other, and
not religious. The answer from the first wave with non-missing
information was used.

Ethnicity in the WLS we used self-reported ethnicity,
removing non-white respondents. In the HRS, respondents were
asked: “Do you consider yourself primarily: ‘White or Caucasian,’
‘Black or African American,’ ‘American Indian,’ or ‘Asian’?”
Respondents were also asked if they identified as Hispanic, and
the Hispanic respondents were removed from the sample. Since
the HRS oversampled black individuals, we were able to create a
white and black sample.

GWASs Used to Create PGSs
We used single nucleotide polymorphisms (SNPs) and their
summary statistics for NEB and AFB, which were obtained
from a recent GWAS that used 251,151 European ancestry
individuals for AFB and 343,072 individuals for NEB (Barban
et al., 2016). For endometriosis a GWAS of 3,194 surgically
confirmed endometriosis cases (of which 1,364 moderate-severe)
and 7,060 controls from Australia and the United Kingdom was
used (Painter et al., 2011). The PCOS GWAS consisted of 984
PCOS cases and 2,946 controls, all of European ancestry (Hayes
et al., 2015). For age at menarche, defined by age at first menstrual
period, we used the GWAS of 329,345 women from European
ancestry (Day et al., 2017). For age at menopause, defined as the
age at which a woman had her last menstrual period, data from
the GWAS that included 69,360 women of European ancestry
were used (Day et al., 2015). Azoospermia and oligozoospremia
data stem from a GWAS of 80 controls, 52 oligozoospermia cases
and 40 azoospermia cases, including white individuals primarily
of northern European descent (Aston andCarrell, 2009). ForTDS
results were used of a GWAS, that included 488 cases and 439
controls fromDenmark (Dalgaard et al., 2012). Of these cases 107
were infertile with sperm count below 15 million per milliliter
(ml) in the semen and testis volume below 15ml, 212 with
testicular germ cell tumors (TGCC), 138 with cryptorchidism,
and 31 with hypospadias.

Creation of PGS
To examine the impact of the genetic factors on childlessness
we created separate PGSs, using GWAS summary statistics by
calculating the sum of all risk alleles, weighted by their reported
effect sizes. A PGS thus can be seen as the summary measure
of the genetic propensity for a trait (Wray et al., 2007). PGSs
were created with the PRSice tool (Euesden et al., 2015) in
PLINK.We use linkage disequilibrium (LD) clumping, for which
an r2 threshold of 0.1 and a distance threshold of 250 kb were
used, indicating that if two SNPs have a squared correlation
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of 0.1 or greater, or a distance of 250 kb or smaller, only one
of the two SNPs is included in the PGS. We included only
genotyped SNPs, as opposed to also using imputed SNPs, because
including imputed SNPs generally does not increase predictive
power (Ware et al., 2017). Different PGSs were created depending
on P-value cutoffs, from using only genomewide significant SNPs
(P ≤ 5 × 10−8) to including all genotyped SNPs (P ≤ 1) (see
Figures SM2–SM5). In our main analyses we included the PGSs
that include all genotyped SNPs, since these scores generally had
the highest explained variance in our samples. See Table SM6

for the number of SNPs included in each PGS. A requirement
for using PGSs is that the GWAS sample is independent of
the sample in which the PGS is applied (Wray et al., 2013).
The HRS sample was included in the GWASs for NEB, AFB
and age at menopause. For that reason for NEB and AFB we
received GWAS summary statistics excluding the HRS sample
from the authors of the GWAS. For age at menopause we used
the MetaSubtract package in R (Nolte, 2017; Nolte et al., 2017) to
subtract the HRS GWAS results from the Meta GWAS results on
age at menopause.

Principal Components
We had to control for population stratification, which is the case
if certain SNPs are more common in certain regional or ancestral
populations, which would result in a false effect of the PGSs on
the outcome if the outcome shows regional/ancestral variation
(Price et al., 2006). We therefore include the first 20 principal
components (PCs) from the genomic relationship matrix for all
individuals using SNPs, which is generally sufficient to capture
regional genetic variation.

For both the HRS and the WLS samples, the PCs are
provided through dbGaP (Weir, 2013; Herd, 2016). The principal
component analysis is performed after pruning based on LD,
including only SNPs with missing call rate <2% (WLS) or <5%
(HRS) and minor allele frequency >5%. A number of SNPs on
certain regions [2q21 (LCT), HLA, 8p23, and 17q21.31 regions]
are removed to avoid PCs to be largely influenced by small sets
of SNPs. For HRS using the first seven PCs should be sufficient
and for theWLS using the first six PCs should be sufficient (Weir,
2013; Herd, 2016).We use the conservative approach and include
all 20 PCs in our analyses.

Statistical Analyses
We apply logistic regression models, adding variables over
four steps: (model 1) PGSs for behavioral genetic reproductive
outcomes (AFB, NEB) with the first 20 PCs; (model 2) PGSs for
biological fecundity-related genetic outcomes (including PCs);
(model 3) socio-demographic factors; and, (model 4) all variables.
To compare the explanatory power of the genetic and socio-
demographic factors, we compare odds ratios (with both PGS and
continuous variables standardized) and use adjusted McFadden’s
pseudo R2 [which is calculated as 1-(log(Lc)-k/log(Lnull)) where
Lc is the likelihood value of the complete model and Lnull is
the likelihood of the null model without covariates and k is
the number of coefficients]. Since siblings are included in the
WLS, we run multilevel models on respondents nested within
households to adjust for non-independence (Snijders and Bosker,
2012).

The interaction between the genetic propensities and
postponement of childbearing were examined by including all
PGSs by age at first marriage interactions. To test whether
genetic influences on fertility became stronger in more recent
birth cohorts, we included a PGS (AFB and NEB) by
birth year interaction. To properly control for confounding
in gene∗socio-demographic interaction models, Keller (2014)
argues that interactions between confounders and genes as well
as confounders and socio-demographics should be included. For
that reason, we include interactions with the first five PCs and
with education, birth year and religion.

To assess whether the effect of AFB and NEB PGSs is
mediated/confounded by education, marriage or reproduction-
related biological traits on the effect of on childlessness,
simply comparing coefficients across models with and without
confounding factors is not feasible, because unobserved
heterogeneity differs between logistic regression models
(Mood, 2010). We therefore apply the Karlson-Holm-Breen
(KHB) method to equalize the scale of the log-odds across
models (Karlson et al., 2012). With these models we can assess
the percentage of confounding due to the PGSs and socio-
demographic factors, after we control for the first 20 genetic
PCs. We furthermore examine correlations between the AFB
and NEB PGSs and education and marriage using Pearson
correlation coefficients, as well as the association between AFB
and NEB PGSs with the biological traits PGSs (while controlling
for the first 20 principal components). In addition, we assess the
LD-score genetic correlations between the reproductive behavior
and the biological traits PGSs to assess the extent to which genes
are shared between the traits (Bulik-sullivan et al., 2015). This
method only requires summary statistics of GWAS results to
estimate the genetic correlation between different traits and
is not biased by sample overlap. We performed the LD-score
correlation analyses in LD Hub (Zheng et al., 2017).

To estimate sex differences, we used the HRS and WLS
samples on both men and women, for which we apply multilevel
models (siblings in the WLS and partners in the HRS sample)
including interactions with sex. To examine differences by ethnic
groups, we run separate analysis on the black HRS sample, as well
as analyses that includes both the black and the white sample,
in which we include interactions with ethnicity. In our analyses
we use self-reported ethnicity. We examined the overlap between
self-reported ethnicity and values on the PCs. A small part of
the individuals indicated to be white but differed from other
white respondents on their PC values. As a robustness check
we removed these individuals from the sample, either based on
visual inspection or Mahalanobis distance, and results remained
largely comparable.

RESULTS

Descriptives
Descriptive statistics of the samples can be found in Table SM1.
In the HRS 10.8% of women and 12.5% of men remained
childless, whereas for the WLS this was 6.6% and 6.3% (these
estimates are in line with the levels of childlessness in the US
in these periods, see Figure SM1). In the HRS, around half of
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the respondents completed high school or less and around 20%
of women finished college or above compared to 29% of men.
In the WLS, around 58% of women finished high school only
compared to 49% of men. Finishing college or more was 25
and 35% for women and men, respectively. Only a very small
percentage in both samples never got married (between 3 and
4%). WLS respondents on average had younger ages at marriage
than the HRS respondents.

PGSs for Reproductive Behavior and Not
Biological Traits Relate to Childlessness
A main finding is that the PGSs for reproductive behavior (AFB
and NEB) are to a small extent related to childlessness, while
for the PGSs related to biological traits (PCOS, Endometriosis,
Menarche and Menopause for women and TDS, Azoospermia,
TGCC, Infertility, Cryptorchidism, and Hypospadias for men)
we did not find an association with childlessness. PGSs favoring
higher NEB were associated with smaller chances of remaining
childless among both sexes, but only significantly in the HRS
(Figure 2 and model 1 of Tables SM2–SM5). PGSs for later AFB
were associated with higher chances of childlessness, especially
among women (Figure 2 and model 1 of Tables SM2–SM5). The
correlation between the AFB and NEB PGSs is relatively high,
−0.17, −0.18, −0.29, and −0.24 in the female HRS, male HRS,
female WLS, and male WLS samples, respectively (see Table 1).
In Figures SM2–SM5 it is shown that when included in the
model separately AFB is significant in all four samples and NEB
in both male and female samples of the HRS. However, if we
include all socio-demographic variables in our models, the effect
sizes of the genetic scores decrease or become insignificant (see
model 4 in Tables SM2–SM5, we elaborate on this further in the
section on gene-socio-demographic correlations).

For the PGSs related to biological fecundity we find only small
and mixed findings (Figure 2 and model 2 of Tables SM2–SM5).
For men, PGSs related to infertility due to low sperm count are
related to lower levels of male childlessness, which we find only
in the WLS sample. We do not find any associations between
the PGSs related to biological fecundity traits that replicate
across samples. This smaller and insignificant associations with
the biological fecundity PGSs is likely attributed to the lower-
powered GWASs they are based on (see Table SM6). The
relationship between the PGSs and childlessness using different
p-value cutoffs are graphically displayed in Figures SM2–SM5,
showing that in most cases the p-value cutoff of 1 resulted in the
highest odds ratios and smallest confidence intervals.

Effect of Socio-Demographic Factors as
Expected
Individuals from more recent birth cohorts, those who married
older or did not marry and were not religious (in the WLS)
were more likely to remain childless (see Figures 2, 3 and model
3 of Tables SM2–SM5). Among women, those higher educated
remained childless more often in contrast to lower childlessness
for those who never worked (i.e., no reported first occupation) or
were employed in the service sector. Education and occupation
did not influence childlessness in men.

Variance Explained by PGSs
The effect sizes for the PGSs were modest: an increase of
1 SD in the AFB PGS increased the odds of remaining
childless with 1.127, 1.226, 1.087, and 1.127 in the female
HRS, female WLS, male HRS, and male WLS, respectively.
However, in the models in which the socio-demographic
factors were included these effects reduced to 1.026, 1.147,
1.105, and 0.977. This is relatively small compared to some
socio-demographic factors, such as education, where a 1 SD
increase in years of education resulted in an increase in the
odds of remaining childless of 1.24, 1.53 in the female HRS
and WLS samples, respectively. For those who married after
age 36, the odds of remaining childless are 4.6, 10.8, 8.8,
and 44.8 times higher than those who wed before the age
21, in the four samples, respectively. Examining the adjusted
McFadden R2, the goodness of fit in the models with only
genetic factors is markedly lower and even negative (<0.001)
than models with socio-demographic factors (between 0.19
and 0.46).

PGS for AFB Especially Relevant Among
Women Who Married at Higher Ages
We find suggestive evidence that PGSs for AFB are especially
related to childlessness among women who married at
higher ages (gene∗socio-demographic interaction) (Figure 4,
Tables SM10, SM11). Genes related to AFB do not seem to
relate to childlessness among women who married before
30, but have a positive association for those who married
after 30. We are only able to detect these relationships in
the HRS data, where more respondents marry at later ages,
although the interaction between AFB and age at marriage
has a similar direction in the WLS sample (Figure SM6).
We expected that the PGSs for AFB and NEB would show
a stronger association with childlessness during the second
demographic transition, but we did not find these interaction
effects (Table SM10).

Gene-Socio-Demographic Correlations in
the Expected Direction and Mixed Results
for the Genetic Correlations
The PGSs related to reproductive behavior (higher AFB, lower
NEB) are related to higher education and a higher age at first
marriage or never marrying (Table 1), which is in line with our
expectations. We find this in both the HRS and the WLS sample
and among men and women. The LD score correlation between
education and AFB and NEB is even higher. In females, we
also see a positive correlation between the AFB PGS with PCOS
PGS but an unexpected negative correlation between the AFB
PGS with endometriosis PGS (Table 1). PGSs for higher age at
menarche and higher age of menopause are related to higher
AFB PGS (Table 1). The results from the correlation between
the genetic scores are comparable to the results based on LD-
score regression (Table 1); almost all of the correlations are in
the same direction, although the LD-score regression estimates
are higher in most cases. For men, the results are almost all
insignificant, it only seems to be the case that genes positively
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FIGURE 2 | Effects of polygenic risk scores and socio-demographic factors on remaining childless, OR with 95% confidence intervals presented. The effect of

marriage is displayed separately in Figure 3, since these effects are very large. See Tables SM2–SM5 for the complete regression tables. Estimates are based on

three separate models; model 1 with PGSs for AFB and NEB and 20 PC’s (red estimates), model 2 with PGS for biological reproductive traits and 20 PC’s (blue

estimates), and model 3 with socio-demographics (black estimates).
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TABLE 1 | Correlations between genetic and socio-demographic factors, and genetic correlations, based on PGSs in the HRS and WLS samples and based on LD-score

regressions (LDSC).

HRS women WLS women LDSC

r SE p r SE p r SE p

AFB PGS

Education years 0.143 0.016 0.000 0.122 0.0161 0.000 0.72 0.021 0.000

Age marriage 0.005 0.002 0.007 0.035 0.0038 0.000

Ever married −0.028 0.065 0.655 −0.167 0.0795 0.050

NEB PGS −0.17 0.009 0.000 −0.29 0.0154 0.000 −0.66 0.033 0.000

PCOS PGS 0.067 0.024 0.006 0.011 0.0222 0.628 0.26 0.086 0.003

Endometriosis PGS 0.027 0.081 0.893 −0.084 0.0370 0.024 −0.09 0.076 0.218

Menarche PGS 0.101 0.016 0.000 0.089 0.0155 0.000 0.25 0.047 0.000

Menopause PGS 0.035 0.012 0.004 0.059 0.0172 0.001 0.20 0.052 0.000

HRS men WLS men

Education years 0.143 0.016 0.000 0.088 0.014 0.000

Age marriage 0.005 0.002 0.007 0.019 0.003 0.000

Ever married −0.028 0.065 0.665 −0.132 0.077 0.085

NEB PGS −0.18 0.011 0.000 −0.24 0.014 0.000

TDS PGS 0.019 0.013 0.117 0.016 0.015 0.283

Azoospermia PGS −0.021 0.015 0.161 −0.008 0.015 0.601

TGCC PGS 0.056 0.020 0.004 0.032 0.016 0.044

Infertility PGS −0.018 0.029 0.542 −0.007 0.018 0.690

Cryptorchidism PGS 0.032 0.021 0.110 −0.008 0.016 0.603

Hypospadias PGS 0.006 0.016 0.635 0.009 0.015 0.573

NEB PGS

HRS women WLS women LDSC

r SE p r SE p r SE p

Education years −0.046 0.013 0.000 −0.034 0.016 0.033 −0.263 0.031 0.000

Age marriage 0.000 0.001 0.912 −0.017 0.004 0.000

Ever married 0.071 0.052 0.168 0.006 0.077 0.940

PCOS PGS −0.032 0.017 0.064 −0.028 0.021 0.171 −0.29 0.103 0.006

Endometriosis PGS 0.06 0.059 0.276 −0.047 0.034 0.173 −0.04 0.093 0.705

Menarche PGS −0.007 0.012 0.599 −0.014 0.014 0.323 −0.01 0.054 0.884

Menopause PGS 0.012 0.009 0.213 0.00 0.016 0.966 −0.15 0.065 0.024

HRS men WLS men

Education years −0.046 0.013 0.000 −0.006 0.013 0.681

Age marriage 0.000 0.001 0.912 −0.009 0.003 0.008

Ever married 0.071 0.052 0.168 0.194 0.073 0.008

TDS PGS −0.009 0.009 0.346 0.007 0.014 0.614

Azoospermia PGS −0.006 0.011 0.539 0.002 0.014 0.887

TGCC PGS −0.025 0.015 0.113 0.00 0.015 0.997

Infertility PGS −0.004 0.022 0.912 0.031 0.016 0.052

Cryptorchidism PGS 0.006 0.016 0.709 0.004 0.015 0.812

Hypospadias PGS −0.008 0.012 0.625 0.014 0.014 0.319

r, correlation; SE, standard error; p, p-value; PGS, polygenic risk score; NEB, number of children ever born; AFB, age at first birth; PCOS, polycystic ovary syndrome; TDS, testicular
dysgenesis syndrome; TGCC, testicular germ cell tumors. All genetic correlations based on PGSs are controlled for the first 20 PCs. +LD score genetic correlation between AFB
and NEB and the male biological reproductive traits are not calculated, because the GWASs on which these are based do not meet the sample size criteria required for LD score
correlation analysis.
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related to testicular germ cell cancer correlate positively to genes
related to a higher age at first birth.We cannot calculate LD-score
correlations for men due to small sample size and low number
of SNPs.

FIGURE 3 | The effect of age at marriage on remaining childless. The effect of

never being married is excluded from the figures since these effects are very

large (OR 120.268, 471.383, 229.776, and 1,896 in the women HRS, women

WLS, men HRS, and men WLS, respectively). The effects of the later ages at

marriage are not completely displayed in some of the figures because these

effects are large.

Mediation of AFB and NEB PGSs Effects by
Education and Marriage
To further assess the interplay between the PGSs for reproductive
behavior (AFB, NEB), those for the biological traits, and the
socio-demographic factors, we applied a KHBmediation analysis.
Results indicate that the effect sizes of the AFB and NEB PGSs
decrease 25–170% by including education and age at marriage
in the model (Table 2). On the other hand, the effect sizes
do not substantially decrease when including the PGSs for the
biological traits.

Sex Differences in Genetic and
Socio-Demographic Influences
We found some support that particular PGSs differently associate
to childlessness in men and women, although variation was
small. The PGSs associated with later ages at menarche negatively
relate to childlessness in men but positively relate to childlessness
in women (WLS, see Table SM7). The PGS for a later age at
menopause does not relate to childlessness in men but positively
relates to childlessness probabilities in women. In the HRS
we find no differences in the relationship of the PGSs and
therefore the findings from the WLS should be interpreted
with caution. For socio-demographic factors, education only
influenced women but not men, in line with findings from
previous studies. Never being married has an even stronger effect
on childlessness in men than in women.

Weaker Effects in the Black HRS Sample
We performed the same analyses in the sample of black
respondents from the HRS. None of the PGSs have a significant
association with childlessness in this sample, although the
directions of the associations seem to be similar to those in the

FIGURE 4 | Age at first birth PGSs especially relevant among later married women in the HRS sample (results from the model in Table SM10).
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TABLE 2 | Results from the Karlson-Breen-Holm mediation analysis, percentage confounding presented.

HRS women WLS women HRS men WLS men

Confounder % p % p Confounder % p % p

AFB PGS Genetic PCs 12.93 0.335 −4.35 0.518 Genetic PCs −23.19 0.413 3.82 0.637

Education years 43.73 0.000 25.67 0.000 Education years 6.97 0.208 13.21 0.002

Age marriage 44.91 0.000 60.65 0.000 Age marriage 42.28 0.004 50.39 0.001

Educ & Marriage 74.98 0.000 61.49 0.000 Educ and Marriage 83.96 0.000 57.44 0.000

Endometriosis PGS 0.41 0.749 −0.28 0.774 Azoospermia PGS −0.88 0.597 0.1 0.926

Menarche PGS 3.06 0.310 4.53 0.113 TDS PGS −0.35 0.773 0.51 0.547

Menopause PGS 0.84 0.553 −1.1 0.437 TGCC PGS −3.28 0.189 1.12 0.396

PCOS PGS 0.75 0.579 0 0.979 Cryptorchidism PGS −1.07 0.439 −0.08 0.876

All PGSs 4.82 0.187 3.09 0.350 Hypospadias PGS 0.00 0.997 0.02 0.908

All together 82.03 0.000 62.73 0.000 Infertility PGS −0.60 0.589 −0.29 0.809

All PGSs −7.31 0.051 −0.01 0.995

All together 39.19 0.010 52.61 0.001

NEB PGS Genetic PCs −19.33 0.409 2.89 0.948 Genetic PCs −110.75 0.064 10.15 0.589

Education years 6.10 0.179 51 0.005 Education years 1.21 0.392 2.97 0.392

Age marriage 22.89 0.031 141.61 0.005 Age marriage 14.83 0.320 44.24 0.007

Educ & Marriage 25.03 0.023 172.02 0.001 Educ & Marriage 45.43 0.002 51.47 0.000

Endometriosis PGS −0.51 0.416 0.58 0.840 Azoospermia PGS 0.18 0.733 0.01 0.995

Menarche PGS −0.37 0.580 4.71 0.294 TDS PGS −0.23 0.785 −0.4 0.640

Menopause PGS −0.53 0.506 −0.66 0.691 TGCC PGS −1.97 0.263 −0.31 0.739

PCOS PGS 0.54 0.572 0.08 0.974 Cryptorchidism PGS 0.23 0.741 −0.04 0.903

All PGSs −0.27 0.868 4.9 0.418 Hypospadias PGS 0.00 0.997 −0.11 0.874

All together 24.97 0.027 159.56 0.001 Infertility PGS 0.17 0.864 −2.31 0.242

All PGSs −7.31 0.051 −0.01 0.995

All together 16.24 0.294 46.15 0.011

We control for the first 20 principal components (PCs). p, p-value; PGS, polygenic risk scores; NEB, number ever born; AFB, age at first birth; Educ, Education years; PCOS, polycystic
ovary syndrome; TDS, testicular dysgenesis syndrome; TGCC, testicular germ cell tumors. The effect of the NEB genetic score is mediated for more than 100% by the age at marriage
and education. This is because the effect of this score reversed in direction after including marriage. The reversed effect of the NEB PGS is not significant, so this could be interpreted
as complete mediation.

white sample (see Tables SM8, SM9). These differences are not
likely due to sample size differences, since when we run the same
analyses in a random selection of the same sample size in the
white sample, the effects are similar to those described above in
the full sample (results available upon request). However, we did
not find a significant interaction between race and the AFB and
NEB PGSs and the pseudo R2 did not largely differ between the
white and black samples. The effect of marriage and birth year
are significantly weaker in the black male sample compared to
the white male sample.

CONCLUSION AND DISCUSSION

Main Findings
In this paper we apply an innovative and explorative approach
to studying childlessness, in which we include PGS from a
large range of fertility related outcomes in combination with
sociodemographic factors. We find that socio-demographic
factors explain 19–46% in childlessness while the current PGS
explain <1% of the variance, and only PGSs from large GWASs
are related to childlessness. Our findings also indicate that genetic
and socio-demographic factors are not independent, with PGSs

for AFB andNEB related to education and age at marriage. Socio-
demographic factors will always be more important for these
behavioral traits. The predictive power of the PGSs will remain
lower, but as sample sizes for GWAS increase, we know that the
number of loci discovered and predictive power of these scores
will increase (Mills and Rahal, 2019).

Replications
An important strength of this study is the use of two independent
samples (HRS, WLS) for replication. Several findings replicated,
such as the effects of the socio-demographic factors (education,
age at marriage), the association of the PGS for AFB and
NEB with childlessness and how effects are partly mediated by
education and age at marriage. Other findings, however, did not
replicate for substantive reasons related to the sample properties.
Genes related to AFB were only important for women who
married (and thus presumably tried to conceive) at older ages
in the HRS, a finding that did not replicate in the WLS. This
is likely related to the fact that only 3% (n = 140) of women
married over the age of 31 in the WLS, making it underpowered
to detect any effects, whereas this group was 12% (n = 826) in
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the HRS. Given the postponement of unions and childbearing in
more recent cohorts, further tests are required.

Even though we perform a large number of test, we use a
standard significance threshold of 0.05 for significance testing.
We contend that our hypothesis driven tests, in combination
with the replication in the two samples in both men and women
applies sufficient caution against false positives. The replication
of estimating the association of the PGSs with childlessness using
different p-value cutoffs (as displayed in Figures SM2–SM5)
serves as an additional robustness check. Findings that are not
robust are expected to differ in direction and strength by using
different p-value cutoffs. Here we find that AFB and NEB PGSs
show associations in similar directions across p-value cutoff
criteria while this is not the case for all PGSs for biological traits.

Ancestral and Sex Differences
We found smaller and non-significant effects for the PGSs on the
black individuals in the HRS, which shows that it is not advisable
to apply the PGSs used in this study to non-European ancestry
groups. This is due to fact around 90% of the GWASs are derived
from European-ancestry populations (Mills and Rahal, 2019),
including those used here. Due to patterns of human dispersal out
of Africa, population structure and stratification, PGSs derived
from one ancestry group cannot be applied to another. The
greater genetic variation among black individuals calls for a
specific ancestry group GWAS (Tishkoff et al., 2009). PGSs
applied outside of non-European ancestry samples are incorrect
and not reliable (Martin et al., 2017). These ancestral differences
are not to be confused with self-reported race or ethnicity, which
are socially constructed and not biological categories.

Regarding sex differences, we confirmed that education has a
weaker influence on childlessness in men, while being married
is more important for men. There is some evidence that
genes related to certain biological traits (age at menarche and
menopause, male infertility) have opposite effects in men and
in women (in WLS only), in line with findings of genetic sexual
dimorphism of childlessness (Verweij et al., 2017).

Interpretations
The suggestive finding that genetic scores related to a higher
age at first birth are more important for remaining childless
among women who got married at higher ages needs replication
and opens questions for further research. This AFB genetic
score could be indicative of biologically having more difficulties
in conceiving, in which case the interpretation would be that
those who genetically are more likely to experience fecundity
problems, and who postpone childbearing, are most likely to
remain childless. On the other hand, the genetic score related to a
higher age at first birth could also be indicative of having lower
fertility desires, as previous studies found that fertility desires
are partly heritable (Kohler et al., 1999; Miller et al., 2010) and
that people who desire fewer children attempt to have children at
higher ages (Miller et al., 2010). In this case it could be that those
who have lower fertility desires and get married at higher ages are
most likely to remain childless.

Our study showed that both higher education and age at
marriage are correlated with higher PGS for AFB and lower

PGS for NEB, indicating that the PGSs capture genes related
to personal characteristics linked to childlessness (i.e., higher
education, later partnering). It might also be that pleiotropic
genetic effects that influence both childlessness and other
outcomes (education, age at marriage) are at play or that genes
causally related to educational attainment are correlated with
AFB and NEB PGSs due to the large phenotypic relation between
AFB, NEB and education. These findings add to the general idea
that SNPs found in a GWAS might be associated with the trait of
interest indirectly through other outcomes. The same holds for
example for SNPs found for education, as effects within families
are much smaller, indicating that part of the effect of genes
related to education are confounded by family effects (Lee et al.,
2018). The fact that we found that genetic and socio-demographic
factors do not independently influence childlessness, underscores
the importance of simultaneously examining their influences and
adopting a sociogenomic approach.

Looking at genetic correlations, in line with an earlier study
(Barban et al., 2016), we found an overlap in genes related
to reproductive behavior (AFB, NEB) and biological infertility
traits (endometriosis, PCOS). The positive genetic correlation
between age at menarche, menopause and AFB was somewhat
unexpected, but could be interpreted as one set of genes that delay
biological maturation and development, resulting in an overall
biological shift to fertility in later life (Mostafavi et al., 2017). The
finding that a higher genetic risk for endometriosis goes along
with a lower genetic propensity for a later age at first birth is
unexpected, and since we find this only in our WLS sample this
needs replication.

Explanations for Small Effects of the PGSs
It is important to note that genetic factors for reproductive
behavior explained<1% of the variation in childlessness, whereas
twin studies suggested heritability to be between 20 and 50%
(Verweij et al., 2017). The discrepancy between heritability and
association-based studies has been related to the phenomena of
missing (Manolio et al., 2009) and hidden heritability (Witte
et al., 2014) which might be due to, for example, heterogeneity
across the discovery samples (Tropf et al., 2017), the excluding
of rare genetic variants or overestimation in twin studies (Yang
et al., 2015). It may furthermore be methodological, since we add
additional uncertainty by examining a phenotype (childlessness)
different from the one in the GWAS discovery (AFB, NEB,
endometriosis etcetera). That we only include genotyped SNPs
and not imputed SNPs might be another reason, although
previous research showed that this should not lead to a reduction
in explained variance (Ware et al., 2017).

Another reason for the low explained variance is the sample
sizes of GWASs, because as sample sizes are increasing, explained
variance by PGSs is also increasing (Nolte et al., 2017), and
therefore using a similar approach as used in this study will in
the future likely entail stronger results. This is illustrated by for
example research on educational attainment, where in 2013 a
GWASwas conducted among 101,069 individuals, in which three
significant SNPs were found (Rietveld et al., 2013). In 2016, 74
genome wide SNPs were identified when the sample size was
expanded to 293,723 individuals (Okbay et al., 2016). In 2018,
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with a sample size of over a million individuals (N = 1,131,881)
1,271 SNPs were discovered in relation to educational attainment
(Lee et al., 2018). The increase in the number of significant
SNPs that are associated with an outcome also increase the
explained variance by genetic scores, with 2.5–4% explained
variance from the genetic scores from the 2013 GWAS, 6–7%
explained variance from the 2016 GWAS and 11–13% from the
most recent GWAS for educational attainment. Also for fertility
related traits larger GWASs are or will be available, such as for
endometriosis (Sapkota et al., 2017) and in the near future for
AFB and NEB.

Although there have been considerable gains in prediction,
we also note that the predictive power of polygenic scores does
not increase in a linear manner as sample sizes grow. It may be
that after a certain plateau is reached, such as SNP-heritability
representing the actual ceiling of the genetic predisposition of a
trait that can be achieved by GWAS, further increases in sample
sizes may not yield better prediction. Polygenic scores may also
be influenced by confounding factors such as environmental
interactions or parental confounding (Kong et al., 2018). Instead
of increasing sample size, it could be more useful to explore
the biological function of the SNPs and genetic architecture in
more depth.

The GWA studies for biological fecundity traits used the
current study were based on very small samples. This could
explain why we have many insignificant results for the PGSs
for biological fecundity traits. The GWASs on which the results
are based are relatively small, and arguably underpowered to
detect any significant SNP effects (Rietveld et al., 2015). That
we found no observed association of the age at menarche scores
is unlikely to be due to power issues, given that the menarche
PGS is based on a large sample GWAS. This could be related
to the fact that menarche does not have a straightforward
(phenotypic) association with fertility (Guldbrandsen et al.,
2014). Unfortunately, the HRS and WLS did not include
information about the actual biological fecundity traits on
which we created PGSs (such as information on age at
menarche, sperm count or PCOS). This would have been a
valuable contribution to this study and including these traits
will be an interesting venue for future research. At the same
time, this is one of the promising features of sufficiently
powered PGSs in the foreseeable future: even in the absence of
measured phenotypes, PGSs can be used as genetic proxies in
prediction models.

Another reason for the small effects of the PGSs is that our
study does not distinguish between voluntary and involuntary
childlessness, resulting in a heterogeneous phenotype. Would we
be able to distinguish between different types of childlessness,
it would be likely that PGSs for biological fecundity traits
have a stronger effect on involuntary childlessness than on
voluntary childlessness.

Explanation of Null-Finding for the
Interactions
We did not find that PGSs for reproductive behavior have a
stronger association with childlessness in more recent cohorts,

going against theoretical expectations that individual freedom
and thus genetic propensity for individual preferences would
be more important in more recent cohorts (Kohler et al., 2002;
Briley et al., 2015; Tropf et al., 2015). Since GWA studies
are conducted in large samples from a range of birth cohorts
and contexts (Conley, 2017; Tropf et al., 2017), genetic studies
conducted in different countries and birth cohorts only isolate
a small portion of the genetic variants related to the trait,
which are the ones that are, regardless of the environment,
robustly associated with the trait (Tropf et al., 2017). Thus, we
might not be detecting interactions between genes and socio-
demographics, because the genes identified in the GWASs which
form the basis of the genetic scores are rather independent of
the environment.

Summary
To summarize, our results show that genetic and socio-
demographic factors are related to childlessness, and that these
influences are not independent. We show that the explained
variance by PGS at this point is limited. However, the large GWA
studies on a growing number of traits leads us to anticipate that
a sociogenomic approach could inform future research and will
provide useful insights.
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