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Wetland soil stocks are important global repositories of carbon (C) but are difficult to

quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal

discontinuity. Merging scales of soil-survey spatial extents with wetland-specific

point-based data offers an explicit, empirical and updatable improvement for

regional and continental scale soil C stock assessments. Agency-collected and

community-contributed soil datasets were compared for representativeness and bias,

with the goal of producing a harmonized national map of wetland soil C stocks with

error quantification for wetland areas of the conterminous United States (CONUS)

identified by the USGS National Landcover Change Dataset. This allowed an empirical

predictive model of SOC density to be applied across the entire CONUS using

relational %OC distribution alone. A broken-stick quantile-regression model identified

%OC with its relatively high analytical confidence as a key predictor of SOC density

in soil segments; soils <6% OC (hereafter, mineral wetland soils, 85% of the dataset)

had a strong linear relationship of %OC to SOC density (RMSE = 0.0059, ∼4%

mean RMSE) and soils >6% OC (organic wetland soils, 15% of the dataset) had

virtually no predictive relationship of %OC to SOC density (RMSE = 0.0348 g C

cm−3, ∼56% mean RMSE). Disaggregation by vegetation type or region did not

alter the breakpoint significantly (6% OC) and did not improve model accuracies

for inland and tidal wetlands. Similarly, SOC stocks in tidal wetlands were related

to %OC, but without a mappable product for disaggregation to improve accuracy

by soil class, region or depth. Our layered harmonized CONUS wetland soil maps

revised wetland SOC stock estimates downward by 24% (9.5 vs. 12.5Pg C) with the

overestimation being entirely an issue of inland organic wetland soils (35% lower than

SSURGO-derived SOC stocks). Further, SSURGO underestimated soil carbon stocks

at depth, as modeled wetland SOC stocks for organic-rich soils showed significant
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preservation downcore in the NWCA dataset (<3% loss between 0 and 30 cm and 30

and 100 cm depths) in contrast to mineral-rich soils (37% downcore stock loss). Future

CONUS wetland soil C assessments will benefit from focused attention on improved

organic wetland soil measurements, land history, and spatial representativeness.

Keywords: soil organic carbon, soil carbon density, wetland, organic matter, soil profile, soil carbon

stock vulnerability

INTRODUCTION

Wetland soils represent approximately one third of soil organic
carbon (SOC) stored globally [∼500 Pg C, (1)], and thus

one quarter of total carbon stored in terrestrial ecosystems,
despite covering only 3% of global land area (∼5–10M km2).

Documentation of wetland soil carbon stocks is important for
global carbon cycling projections, especially given the potential
for wetland loss (2). Approximately 53% of the original wetland

area of the conterminous US (CONUS) has been lost due
to agricultural drainage, urban and industrial development,
environmental degradation, etc. (3, 4). Carbon dioxide, methane,
and nitrous oxide can be significant contributors to greenhouse
gas emissions fromwetlands (5) especially from disturbances that
liberate previously stabilized carbon e.g. (6–10).

Despite the importance and vulnerability of terrestrial wetland
carbon as a resource, confidence in wetland SOC profiles and
stocks remains low due to inconsistencies among data quality and
representativeness. For example, in the comprehensive Second
State of the Carbon Cycle Report (11, 12) CONUS estimates of
wetland soil carbon stocks range from 8.9 to 14.1 Pg respectively
e.g. (13–15). Herein, we assess the distributions and uncertainties
in national scale-products to produce a harmonized CONUS
map of wetland SOC stocks. We do this using percent organic
carbon by weight (%OC) alone, because it is a widely measured,
analytically confident parameter with strong predictive value for
a large majority of soil samples e.g. (16).

Understanding the distribution of SOC density among
wetland types and across soil depths provides a framework
to assess SOC vulnerability to disturbances. Many CONUS
field-based datasets are available, including federally funded
collections (e.g., U.S. Department of Agriculture’s National
Cooperative Soil Survey (NCSS) Soil Survey Geographic
Database (SSURGO), U.S. Environmental Protection Agency
(EPA) National Wetland Condition Assessment (NWCA),
U.S. Forest Service Forest Inventory and Analysis (USFS
FIA), National Science Foundation (NSF) National Ecological
Observatory Network (NEON), and scientific community-
contributed data [e.g., NSF Coastal Carbon Research
Coordination Network (CCRCN), International Soil Carbon
Network (ISCN)]. Each has strengths and weaknesses regarding
sampling regime, soil depth profile, analytes, metadata,
and representativeness (17), and there can be substantial
disagreements when comparing soil data across cores and
survey databases e.g. (18, 19), including methodology and
purpose e.g. (20), assumptions made when imputing continuous
spatial distributions from individual samples or layers [e.g.,

gSSURGO and Soilgrids 250m, (21)], and sampling strategies
and measurement representativeness for upscaling (22).
Overestimated bulk density is a common bias among global
organic soil measurements, especially in wetlands (23). While dry
bulk density measurements are necessary to predict SOC density
(g cm−3) from soil %OC by weight, a fundamental limitation
of this approach at national scales is the underrepresentation of
field-relevant wetland (or hydric) soil measurements, leading to
an apparent overestimation in bulk density measurements e.g.
(24), often due to spatial extrapolations across discontinuous
soil types, especially at depth due to difficulty of bulk density
sampling at depth in wetlands (25). In this analysis, the
EPA NWCA data set was used exclusively because (1) the
sampling design was statistically representative of wetland
spatial variability and (2) core collections across all CONUS
wetlands optimized accuracy of measurements (26). We
compared this wetland-specific database to the more spatially
extensive measurements of %OC in the USDA SSURGO field
survey data base to optimize data harmonization across the
entire CONUS. Other databases were not included in model
development due to biased dataset structure, lack of spatial and
depth representativeness, and concerns of method variability
and accuracy.

Harmonizing multiple datasets to combine strengths and
identify biases improves our understanding of SOC stocks in
CONUS wetlands. A spatially explicit landscape survey, such
as the USDA NCSS database (27), improves accurate upscaling
and assessment of spatial patterns to identify constraints on
soil properties. A national scale, spatially representative, point-
based dataset targeted on wetland soils, such as the EPA National
Wetland Condition Assessment (28) pays unique attention
to wetland sampling needs and allows verification of spatial
and downcore patterns across representative conditions. Used
together, with wetlands identified by the USGS National Land
Cover Database Homer et al. (29), they allow generation of a
three-dimensional representation of modeled SOC density at
10 cm depth increments to 1m for inland wetlands, creating a
more accurate and spatially representative product.

Our approach leverages the commonality of organic carbon
content (%OC) measurements in wetland soils and the strong
predictive relationship of %OC on SOC density (16). In
particular, we used NWCA’s regionally stratified %OC dataset
in two ways: (1) to validate its representativeness of %OC data
in SSURGO and (2) to develop a predictive SOC density model
for mean and standard deviations of soil carbon stocks using
%OC alone. As the NWCA data were found representative
at regional scales (14), this empirical model was applied to
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SSURGO %OC data at 10 cm increments to predict SOC density
in a layered, spatially explicit map. We describe below the
final model approach, which found two model domains (“soil
classes”): one where SOC density increases with %OC and one
where SOC is constant while %OC increases. We refer to these
classes as “mineral” and “organic” soil types, respectively. The
only parsimonious disaggregation were geographic (inland vs.
coastal) and regional (14). We then use this approach to generate
layered mapped products with quantified precision, limited bias,
and improved spatial representativeness in distributions of SOC
stocks to 1m depth for inland and tidal wetlands of the CONUS.
As a result, these map products, at the scale of 30m pixels
and 10 cm depth increments, illustrate spatial and downcore
patterns in wetland soil carbon stocks that (1) improve regional
assessments and (2) illuminate needs in future assessments of
wetland carbon vulnerability.

METHODS

There are three main components of the methodology used for
this approach to map generation (Figure 1). The first component
is toward representativeness, validating the spatial, and statistical
distribution of SSURGO wetland %OC data through comparison
with the NWCA %OC data at by region, depth, and landcover.
The second component reduces bias by developing an accurate
model at appropriate levels of disaggregation to predict SOC
density from gSSURGO data on %OC for wetland landcovers
at regional scales. The third component is an assessment,
performed by analyzing harmonized maps in comparison with
single sourced map products, such as EPA NWCA (14), NCSS
gSSURGO (13) and Soilgrids 250m (21). Figure 1 contains
a flowchart with an overview of the methodology in this
assessment. Detailed discussions of statistical decisions [e.g. R
Core Team, (30)] are described in Supplemental Text 1.1.

METHODS, STEP ONE:
REPRESENTATIVENESS OF WETLAND
DATA

Inland Wetland Data Sets
The EPA National Wetland Condition Assessment (NWCA)
is a recurring wetland-specific and spatially-representative
assessment of soil, plant and water characteristics, to support
wetland resource trends (26). In 2011, field crews visited 967
wetland sites, probabilistically selected using USFWS NWI
classes, across the CONUS, in partnership with states and tribes
(Figure 2). Soil pits up to 120 cm deep were excavated at each
wetland site to obtain soil samples across a soil profile which
were later analyzed for physical and chemical attributes, such
as total and inorganic carbon as well as bulk density samples
(14, 28, 31). We examined the data for errors and duplication,
omitting data-points not in the original probabilistic sampling
design (e.g., revisitation) as well as a small number of sites
recommended for removal by the database creator due to
quality control. All bulk density values (ranging from 0.02 to
1.99 g cm−3) were retained, but any %OC values above 58%

were removed (26 samples), to avoid errors associated with
calculations >100% organic matter. The remaining 794 total
sites, with 529 of those being inland sites, were divided into
ecologically-based regions that represented four collapsed EPA
Level 3 Ecoregions: Coastal Plains (CPL), Eastern Mountains
and Upper Midwest (EMU), Interior Plains (IPL), West (W)
regions, as well as into woody and emergent herbaceous
wetland types (NLCD classes 90 and 95). Data from the 529
inland NWCA sites were extracted and subsampled with R
into equal depth increments (10 cm) in order to statistically
and spatially compare distributions with non-imputed data
of SSURGO.

The United States Department of Agriculture Natural
Resources Conservation Service (USDA-NRCS) conducts the
National Cooperative Soil Survey (NCSS) and compiles this soil
information in the Soil Survey Geographic Database (SSURGO),
a comprehensive database that is also available in a gridded
format (gSSURGO) as a raster with related attribute tables. To
facilitate comparison of the SSURGO data with the NWCA data,
data were extracted from hydric soils in SSURGO in 10 depth
layers, each of which used the top 1 cm to represent the 10 cm
in the depth layer. The data, as 30m × 30m rasters, were
overlaid with the Nahlik and Fennessy (14) regional boundaries
and the NLCD 2011 30 × 30m pixel landcover map (29) to
create landcover and regional classes. Rasters were summarized
in frequency tables with 464 bins in 0.125%OC increments.
Because NLCD spatial data are informed by the US FWSNational
Wetland Inventory (NWI) landcover maps, wetland area was
similar to NWI-distributions of CONUS wetland area (Table 1).
Only true samples (non-imputed) representing site-specific soil
measurements in SSURGO’s database that landed within an
NLCD wetland area were analyzed.

Within coastal lands under tidal influence, the National
Science Foundation (NSF)-funded Coastal Carbon Research
Coordination Network (https://serc.si.edu/coastalCarbon)
provides a community contributed, open-access, global
repository with depth-specific coastal wetland soil carbon data
from all tidal settings, ranging from freshwater tidal forests to
intertidal herbaceous wetlands to subtidal seagrass beds. Raw soil
data for CONUS tidal wetlands were downloaded and cleaned
to represent only “emergent” vegetation classes (removal of
submerged aquatic vegetation and un-vegetated wetland settings,
such as mudflats and unconsolidated shore, which did not meet
our wetland definition). These emergent intertidal elevation soil
cores (n = 1,359), were then characterized by relative elevation
classes [e.g., high intertidal marsh vs. low intertidal marsh (32)]
and across 13 Level III EPA ecoregions. A recent publication by
Holmquist et al. (24) indicated a mean CONUS SOC density
value of 0.027 g C cm−3 among tidal wetland sites and downcore
to 1m, and thus our analysis tested additional disaggregation
options, by relative elevation and ecoregion.

Demarcating and Merging Inland and Tidal
Wetland Datasets
Inland and tidal wetlands were demarcated using their landscape
position and location above or below a physically-derived
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FIGURE 1 | A flowchart visualizing the three-step approach for data harmonization between survey (I.E. SSURGO) and point-based soil datasets (i.e., NWCA) for

assessment of (1) representativeness, (2) bias, and (3) resulting data.
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Coastal Plains (CPL)

Eastern Mountains and Upper Midwest (EMU)

Interior Plains (IPL)

West (W)

Tidal (TDL)

Lorem ipsum

Lorem ipsum

Inland Probability Sites

Tidal Probability Sites

FIGURE 2 | Wetland soil regions (as collapsed by data similarity from EPA Level 3 ecoregions) and distribution of NWCA soil core samples (14).

TABLE 1 | Area and count distributions for assessing representation of data in NLCD-based extraction of SSURGO and NWCA data sets for all Inland values, for the

Coastal Plains Region (CPL), for the Eastern Mountains and Upper Midwest Region (EMU), for the Interior Plains Region (IPL), and for The West Region (W).

Region SSURGO

raster pixels

% Of Inland

samples

% of region

samples

NWCA

samples

% Of inland

samples

% of region

samples

Inland 4.28 × 109 3267

Herbaceous 8.09 × 108 18.90 1345 41.17

Woody 3.47 × 109 81.10 1922 58.83

CPL 2.19 × 109 51.18 1283 39.27

Herbaceous 2.47 × 108 11.29 339 26.42

Woody 1.94 × 109 88.71 944 73.58

EMU 1.30 × 109 30.48 768 23.51

Herbaceous 1.97 × 108 15.11 305 39.71

Woody 1.11 × 109 84.89 463 60.29

IPL 5.57 × 108 13.01 562 17.20

Herbaceous 2.63 × 108 47.30 356 63.35

Woody 2.93 × 108 52.70 206 36.65

W 2.28 × 108 5.33 654 20.02

Herbaceous 1.01 × 108 44.29 345 52.75

Woody 1.27 × 108 55.71 309 47.25
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probabilistic boundary of tidal hydrology (>1% probability of
being below the Mean High High Water Spring Tide, MHHWS
(33), available for download from the NASA Carbon Monitoring
System at: https://daac.ornl.gov/CMS/guides/Uncertainty_US_
Coastal_GHG.html.

Wetland landscape classifications were taken from the USGS
National Landcover Change Database (available at https://www.
mrlc.gov/data/nlcd-2011-land-cover-conus) and the NOAA
Coastal Change Analysis Program (34) products for inland and
tidal wetlands, respectively. Rather than use the USFWSNational
Wetland Inventory, we chose the LANDSAT-derived USGS and
NOAA products due to their consistent timeframe, their ability
to be used with repeated measures (∼every 5 years), and their
binary wetland landcover classification (woody v. herbaceous
vegetation). CCAP provides salinity classes for estuarine (>5
‰) and palustrine [<5 ‰; (34); (29)] tidal wetlands. CONUS
wetland extent between 5 year iterations of NLCD and CCAP
were cross-checked with NWI wetland extent. There were no
significant deviations beyond small, expected (∼2%) increases
in CONUS wetland extent classified as “tidal” when using a
physical boundary rather than the NWI tidal hydrology classes
(35). These wetland locations, from NLCD 2011 (inland) and
CCAP 2010/2011 (tidal), provided the spatial 30m resolution
mapped extents upon which 10 cm soil layers were projected and
analyzed spatially and statistically.

Validating Inland Data Through
Representativeness Across SSURGO and
NWCA Data
Percent OC distributions from SSURGO and NWCA were
compared in each depth increment (n= 10), vegetation category
(n = 2), and region (n = 4) to determine similarity and gaps
in data distributions at the CONUS scale. Samples were not
assessed based on soil texture due to variable classifications (dry
vs. wet-sieved, grainsize, etc), and our goal to model SOC density
with a single confident and widely measured parameter, to avoid
risks of overfitting or bias e.g. (36). As an initial assessment,
the mean %OC values for each combined region and vegetation
type were plotted against one another (Figure 3) and found to
have similar means and standard deviations within regions. The
%OC values for each 10 cm increment found in SSURGO were
correlated with %OC in NWCA with no significant bias, and
nearly a 1:1 relationship between mean values (slope = 0.96,
Pearson R= 0.94).

Artifacts of field assessments used in SSURGO, such as a
large spike in data density at 37.625% OC (corresponding to
roughly 65% organic matter) in the EMU region data, were
smoothed by averaging adjacent bins. Distributions were also
compared for select quantiles (5, 25, 50, 75, 95%). When assessed
by depth, the downcore decrease in data density was apparent but
remained an insignificant term for disaggregation. Distributions
%OC in both SSURGO and NWCA data were found to be
lognormal, with a mode of 2% OC across the full range of values
(0–58% OC).

The equivalency of %OC data distributions between SSURGO
and NWCA was consistent at the regional scale, and was less

powerful for vegetation classes, implying a limited ability to
harmonize datasets at the scale of vegetation types (woody vs.
herbaceous). Notable diversions from the confidence in this
correlation are in the vegetation classes in EMU (Figure 3,
shown in yellow and gold), whereby SSURGO and NWCA
%OCs were similar for EMU overall (means of 17 and 17.5%
OC) but diverged in their representation of herbaceous and
woody wetlands (NLCD landcover classes 90 and 95). Further,
herbaceous wetlands in EMU represented 40% of NWCA
samples but only 15% of SSURGO samples (Table 1), further
suggesting difficulty in reliably characterizing vegetation classes
in NLCD-delineated SSURGO data. We therefore suggest that
extrapolating NLCD relationships to SSURGO spatially explicit
distributions was appropriate for regions, but not defensible for
NLCD landcover (vegetation type) subclasses.

STEP TWO: MODEL FITTING

Inland Data
We suggest three reasons to model SOC density from %OC
alone. One, %OC, a weight for weight measurement, is a
common and relatively confident soil metric that is either
directly measured or calculated as fraction of the organic matter
(28). Two, multiple pedotransfer functions e.g. (16, 23) indicate
%OC as the dominant driver of bulk density. Three, both
the NWCA distribution of %OC and SOC density followed
a lognormal distribution (Supplemental Figures 3.1A,B). A
logarithmic regression (Equation 1) supported a predictive
relationship such that %OC in a soil sample could provide a
relatively confident (R2 = 0.59) prediction of SOC density for the
NWCA dataset (Equation 1):

SOC g OC cm−3
= 0.18 g cm−3

+ 0.013 g cm−3
∗

log (%OC), R2 = 0.59 (1)

The heteroskedastic distribution shown in
Supplemental Figures 3.2C–E was also supported by Levene’s
tests, which indicate that the mathematical assumptions used
by a least squares regression were not met by these data sets
(Supplemental Text 1.1). Statistical relationships in the data
distribution were assessed to determine the optimal breakpoint
for a linear increase section (hereafter “mineral” section) and the
constant section (hereafter “organic” section). Several statistical
methods (Table 2) were compared to assess sensitivity to model
assumptions. First, a quantile regression was established by using
a quantile segmented regression (using quantreg, segmented,
and multikink R packages). A least squares regression (stats,
segmented) was performed for the data below the break point
with no significant change in mineral slope or the organic value.
Finally, these regressions were compared against a least- squares
segmented regression on the log transformed data, with similar
results. A least squared linear approach across the entire dataset
led to poor model performance (Supplemental Figure 3.2B),
leading to a consensus for breakpoints ∼6% OC as a predictive
metric of soil C stock. Breakpoints were also assessed for
disaggregated classes but were not shown to differ significantly
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FIGURE 3 | Correlation of means of wetland soil %OC values in USDA’s SSURGO2016 and EPA’s NWCA 2011 datasets. Error bars represent 2 standard deviations.

Regions (n = 4) were assessed for 3 categories (all wetlands, only herbaceous wetlands, or only woody wetlands), and 4 inland regions: Coastal Plains (CPL), Eastern

Mountains and Upper Midwest (EMU), Interior Plains (IPL), and West (W).

TABLE 2 | Model coefficients for each segmented model technique.

Mineral slope

g C cm−3

%OC−1

Organic value

g C cm−3

Break

point %OC

Original quantile 0.0092 0.0566 6.1796

Revised mean 0.0091 0.0564 6.1796

MK multi-kink package mean 0.0092 0.0565 6.1542

Log transformed 0.0079 0.0549 5.6261

Least squares 0.0072 0.0708 9.7630

in model performance for individual regions or landcover types
(Supplemental Figures 3.3A–F and Supplemental Table 2.1).

The inland data were divided into depths for the purposes
of determining the effect of sample depth on the relationship
between %OC and SOC density. Small sample sizes at depth
(<50% of soil cores had data available below 50 cm depth;
Supplemental Table 2.2) negatively affected the reliability of the
regression. No trend was found for changes for break point
location, mineral section slope, or organic steady state value when
each depth was used individually.

Because disaggregation did not alter or improve any further
model performance, a single break point was used to produce a
final set of models that constrained two different portions of the
distribution (Figure 4). Segmented modeling of SOC density (g
C cm−3) generated RMSEs of 0.0059 for mineral soils and 0.0348
for organic soils, nominally 4 and 56% of predicted values. For
the range of NWCA values available for SOC density, ∼77% of
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FIGURE 4 | SOC density v % OC for Inland Wetlands from NWCA 2011. Broken stick model and uncertainty shown as in Equations 2, 3. Color is used to indicate the

sample depth. Modeled SOC grows linearly with %OC until 6%OC then is constant. Seventy six percent of the data points correspond to Equation 2 (Mineral) and

24% of the data points correspond to Equation 3 (Organic).

organic-soil values and 79% of mineral-soil values were described
using this methodology. While the range of residuals around the
mineral distribution was somewhat evenly distributed, for the
organic soils there were approximately twice as many samples
above as below the modeled mean (15 vs. 8%). The mineral
and organic section residuals from the broken stick model show
an approximately normal distribution for mineral section and a
curve similar to a normal distribution for the majority of organic
soil residuals with a right tail where the few unusually high
positive values lie (Supplemental Figures 3.1C,D).

In the final model, the mineral section SOC density increased
linearly with increasing %OC and was modeled as follows in
Equation 2. The equation is written such that the slope is in units
consistent with bulk density measurements and is shown to be
multiplied by the %OC times 0.01 (fraction of OC).

SOCming OC cm−3
= 0.9 g cm−3

∗ 0.01 ∗% OC

±0.006g cm−3
∗ %OC when%OC < 6,R2 = 0.91 (2)

In the final model, the organic section SOC density did not
increase with increasing %OC and was modeled as follows,
obtained from the SOC at the break point

SOCorgg OC cm−3
=0.06g cm−3

±0.03 g cm−3when %OC≥6(3)

A break point of 6% OC was thus used to determine statistical
distributions within each soil grouping (mineral and organic)

for both the SSURGO and NWCA data. The decision to use a
single significant figure affected <1% of data in this distribution.
Further, this decision simplified a bulk density estimate of
0.9 g cm−3 within the mineral section, which is similar to the
mean of bulk densities reported as mineral soils in Nahlik
and Fennessy (14) (0.98 g cm−3). We feel this is appropriate
given the precision of the bulk density and %OC measurements
provided. Given the similar spatial and statistical representation
of SSURGO and NWCA’s %OC data, we applied the spatially
representative NWCA-derived model (Equations 2, 3) to the
spatially extensive gSSURGO map of %OC to create a map
of SOC density distributions at 30m spatial resolution and in
10 cm depth intervals. This break point establishes that 76% of
NWCA samples can be categorized as “mineral soils” and are
well-characterized by this model.

Tidal Data
After testing multiple breakpoints for tidal wetland %OC
and SOC density data from the NSF-CCRCN dataset, our
results ultimately supported the conclusions of Holmquist et al.
(24), which includes the highest confidence estimate currently
available for tidal wetland soils: a mean SOC density of 27 ±

13 kg C m−3. Despite the normal distribution of the CCRCN
tidal wetland data (Supplemental Figure 3.1E), tidal wetland
data showed a similar breakpoint to inland data for %OC;
Holmquist et al. (24) least squares breakpoint of 13.4%OM
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(organic matter) to predict SOC density was similar to the 6%OC
breakpoint identified in our analysis of inland wetlands when
%OM is converted to %OC (∼45% of OM estimated to be OC,
by weight). The potential for tidal wetland disaggregation by
organic andmineral soil types thus exists; however the gSSURGO
product does not currently provide a confident base map of %OC
for the tidal wetland soils (24), and thus cannot support the
harmonization approach used for inland soils.

Similar to Holmquist et al. (24), tests of disaggregation
by vegetation type, by climate zone, by depth, and by
salinity class, showed no statistical differences among
variables that might result in improved accuracy or reduced
bias in our estimates of tidal wetland SOC density across
CONUS (Supplemental Figure 3.4B). In addition, the spatial
disaggregation of relevant cores was tested by two new spatial
categorizations, specifically (a) relative elevation within a tidal
framework [Z∗, (32); n = 4 elevation classes] and (b) EPA Level
3 Ecoregion (n = 13 with data). Relative elevation class (based
on Z∗) had no effect on the mean SOC density, nor on the profile
of SOC density to 1m depth. The only Ecoregion that emerged
as slightly different than the CONUS mean was Ecoregion 34
(Galveston Bay, Texas), where SOC densities were slightly but
not significantly lower than the CONUS mean [(37) 22.2 ±

10.3 kg C m−3]. Our CONUS mean SOC density value was
slightly but not significantly lower than the Holmquist et al. (24)
data (26.4 ± 13 kg C m−3), likely because our 2019-extracted
data set included additional data points (including Ecoregion 34;
Supplemental Table 2.3).

Further supporting a lack of benefit in disaggregating
tidal wetland soil data, a downcore regression
(Supplemental Figure 3.4A) indicated a nearly 1:1 relationship
(slope = 0.94, R2 = 0.92 for emergent cores) between the SOC
density in the top 20 cm of a core (0–20 cm) and the lower 80 cm
(20–100 cm) deeper section of the core. This relationship was
consistent across ecoregion and relative elevation classes with
all regressions approaching 1:1 and R2 values > 0.9. While tidal
wetland SOC density variability was high among the CCRCN
dataset (Supplemental Figure 3.4B, it had low variability within
cores, such that neither depth, nor Ecoregion (n=15) nor relative
elevation was a significant predictor of SOC stocks for any
depth increment.

Merging Datasets
Data compilation was specific to inland and tidal wetlands, as
demarcated by the probabilistic tidal boundary (35). Data for
all NLCD (2011)-classified inland wetlands were extracted from
each of 10 gSSURGO raster maps that represented soil cores in
10 cm increments (30m resolution, n = 10 maps comprising 0–
100 cm depth). Each pixel was assigned a range of minimum
likely, mean, and maximum likely SOC density values using the
model (mean ± 1 SD). Rasters for all CCAP (2011)—classified
tidal wetlands were assigned values for the minimum likely,
mean, and maximum likely SOC density values from Holmquist
et al. [(24), mean ± 1 SD]. Tidal and inland wetland maps were
merged for the mapped assessment. The full CONUS rasters
(inland and tidal wetlands) for each 10cm depth zone were

TABLE 3 | Ratio of areas between the SSURGO %OC or SOC wetland data and

NLCD/CCAP wetland extent for different regions: Coastal Plains (CPL), Eastern

Mountains Upper Midwest (EMU), Interior Plains (IPL), Tidal, and West (W).

Region NLCD-CCAP:

Model extent

NLCD-CCAP:

SSURGO SOC

extent

CPL 1.05 1.06

EMU 1.06 1.07

IPL 1.05 1.06

Tidal 1.00 1.12

W 1.26 1.27

merged to create three depth-specific maps: (a) shallow SOC
stock map for the top 30 cm, (b) a deep SOC stock map for 30–
100 cm, (c) a full first 100 cm SOC stockmap to create rasters. For
each of these raster maps, we created a map for (a) mean values,
(b) likely minimal values (mean −1 SD) and (c) likely maximal
values (mean+ 1 SD) for CONUS SOC density. These nine maps
(three representative depths and three statistics) were analyzed
on the basis of landcover (n= 2, woody vs. herbaceous), soil type
(n = 2, “organic” vs. “mineral”), and regional position (n = 5,
CPL, EMU, IPL, W, and Tidal).

STEP THREE: ASSESSMENT OF MERGED
MAP

Results of the raster analyses were assessed using R based on
either landcover and soil class (n = 4: herbaceous mineral,
herbaceous organic, woody mineral, woody organic) and region
(n = 5: CPL, EMU, IPL, W, Tidal). This allowed for comparison
between the modeled SOC stock values and mass SOC values
determined by SSURGO alone to 1m depth (13). To further
support comparison with landscape-specific stock estimates (12,
14), areas were scaled arithmetically for each region to account
for the small percent of wetland area not covered in the
gSSURGO data set (Table 3), thus slightly revising upward the
acreages reported in Table 1 to account for areas with NLCD-
described wetlands that do not contain data in the SSURGO
data set. Overall, a 6% difference in total CONUS wetland
area was observed, although a 26% difference in the West
region suggests significant underrepresentation of wetland extent
within gSSURGO.

Figure 4 illustrates the relative distribution of inland and tidal
wetlands for the U.S. with four classes by landcover and soil
type within the four inland regions of the U.S. Independent
assessments are described further below in regard to carbon
accounting and vulnerability. The harmonized final products
illustrated the relative importance of wetland soil carbon stocks
at regional scales, with implications for overall carbon accounting
and vulnerability in inland wetlands.

RESULTS

We estimate a CONUS stock across all inland and tidal wetlands
of 9,468 Tg C. This estimate combines a tidal wetland estimate
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TABLE 4 | Soil organic carbon (SOC) stock by region Coastal Plains (CPL), Eastern Mountains and Upper Midwest (EMU), Interior Plains (IPL), and West (W), and by class (herbaceous, woody, organic, and mineral) for

the first meter of soils.

Category Area

(km2)

Mean stock

MOD

(kg m−2)

Mean stock

MIN

(kg m−2)

Mean stock

MAX

(kg m−2)

Mean Stock

SSURGO

(kg m−2)

Total

stock MOD

(Tg)

Total

stock MIN

(Tg)

Total

stock MAX

(Tg)

Total

Stock

SSURGO

(Tg)

Stock

difference

(Tg)

%

Difference

CPL 201,292 12.92 5.78 20.09 17.60 2,601 1,163 4,044 3,547 945 27

EMU 140,611 32.95 15.92 49.98 39.85 4,633 2,239 7,028 5,630 997 17

IPL 53,555 14.82 6.35 23.30 18.62 794 340 1,248 1,002 208 20

W 29,918 12.00 5.16 18.85 11.48 359 155 564 346 −13 −4

Tidal 40,045 27.00 14.00 40.00 49.68 1,081 561 1,602 1,989 908 46

Herb Min 72,240 14.63 6.33 22.98 14.53 1,057 457 1,641 1,026 −31 −1

Herb Org 13,960 60.00 30.00 90.01 89.13 838 419 1,273 1,383 546 33

Wood Min 288,509 11.97 5.20 18.71 12.16 3,452 1,500 5,396 3,489 37 2

Wood Org 50,667 60.00 30.00 90.00 88.38 3,040 1,520 4,574 4,626 1,586 32

Herbaceous 86,200 21.98 10.16 33.81 27.95 1,895 876 2,914 2,409 514 21

Woody 339,175 19.14 8.90 29.39 23.93 6,492 3,020 9,970 8,115 1,623 20

Mineral 360,748 12.50 5.43 19.51 12.52 4,509 1,958 7,037 4,515 6 0

Organic 64,627 60.00 30.00 90.48 92.98 3,878 1,939 5,847 6,009 2,131 35

Inland total 425,375 19.72 9.16 30.29 24.74 8,387 3,896 12,884 10,524 2,137 20

CONUS total 465,420 20.34 9.58 31.12 26.89 9,468 4,457 14,486 12,513 3,045 24

Classes refer to inland soils only.
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of 1,081 Tg with the inland estimate of 8,387 Tg of soil organic
carbon (SOC) in the first meter of inland wetland soils. A wide
range of estimates constrain 68% of the data (4,457–14,586
Tg), and the majority of variability is apparent for organic
wetland soils (mean = 60 ± 30 kg m−3, Table 4). Regionally,
the EMU represents the largest stocks, at 49% of the entire
CONUS SOC stock, largely due to its dominance of organic
soil wetlands. Whereas, 43% of all CONUS wetlands are in the
CPL region, these wetlands are dominantly “mineral” wetlands,
and thus the mean SOC stock in CPL is roughly 39% the
mean SOC stock in EMU (12.9 vs. 33.0 kg C m−3). The IPL
regional average also tends toward mineral soil types (14.8 kg C
m−3), as does the West (12.0 kg C m−3). Tidal wetlands tend
toward an organic soil type (27.0 kg Cm−3), although technically
averaging below the minimal organic soil distribution (30.0 kg
C m−3).

This harmonized spatial dataset revises published estimates of
CONUS wetland soil C stocks downwards. For inland soils to 1m
depth specifically, SSURGO mass-based estimates of 10,524 Tg
SOC are 20% higher than our estimate of 8,387 Tg SOC, although
still below our modeled maximum likely value (12,884 Tg SOC).
Detailed regional analysis of SSURGO-estimates indicates ∼25–
26% higher mean stocks in at least 2 regions, CPL (17.6 kg Cm−3)
and EMU (39.9 kg C m−3), which together represent 73% of all
CONUS wetland acreage. These regional overestimates appear to
be influenced by a bulk density bias that is specific to organic
soils. When stocks were analyzed for mineral soils alone, our
modeled data matched SSURGOmean estimates exactly (12.5 vs.
12.5 kg C m−3). The SSURGO estimates, however, showed 32–
33% higher stock values for organic soils than our harmonized
data (93.0 vs. 60.0 kg C m−3), and were larger than our maximal
projection of 90 kg C m−3. Because most differences were seen
in organic soils, which accounted for 15% of all wetland area and
46% of all SOC by mass, the spatial distribution of bias is specific
to the relative abundance of organic soils within a region.

The most significant deviation of our product vs. SSURGO-
based estimates e.g. (12, 13) was the revision of the inland
CONUS wetland soil carbon stock downward by ∼24% (8,387
vs. 10,524), primarily due to bias-corrections in the organic
soil horizons. Figure 6 illustrates the distribution of variability
among regions and among wetland soil types, with SSURGO
(in red) over-predicting total and mean soil stocks in organic
wetland soils, regardless of landcover class. Mineral soils were
relatively well-constrained, with our average mineral soil carbon
stock of 12.50 kg m−3 being similar to SSURGO’s value of
12.48 kg m−3. To test another SSURGO-informed product
provided by the World Soil Information Service1 WoSIS (19),
independent comparison with WoSIS means were performed
for a single SoilGrid250 tile in Wisconsin, USA (−99.745 to
−86.745 longitude, 40.120–42.120 latitude). Due to its strong
mineral soil signature compared to more organic regions (38),
and due to modulation of WoSIS data by incorporation of
International and Soil Reference and Information Center (ISRIC)
point-based soil samples as well, the SoilGrid250 mean of

1World Soil Information Service SoilGrid 250 2.0, soilgrids.org. Accessed at

https://www.isric.org/explore/wosis.

0.013 g C cm−3 was very similar to our harmonized model
mean estimate of 0.01 g cm−3 (Supplemental Table 2.5). For
another CONUS scale comparison, our harmonized model
CONUS stock of 9.5 Pg generated was lower than a CONUS
assessment by Nahlik and Fennessy [(14), 11.52 Pg]. Because
we relied on the same NWCA soil core data, the primary
difference in accounting was in spatial upscaling, whereby
Nahlik and Fennessy (14) uses a ratio of NWI classes for
their upscaling rather than a spatially-explicit manner as
enabled by gSSURGO. Given the regional variation in datasets
downcore data representativeness, especially in the Western
region (Supplemental Table 2.5), improved representation of
more mineral-rich wetlands in the SSURGO-survey may have
driven our lower CONUS scale estimate. Regional variation
in SOC stocks was significant and may be why the upscaling
variability illustrated the importance of Eastern Mountains and
Upper Midwest region (EMU) with the greatest total SOC
stock and the greatest mean wetland SOC stock values by
region, due to a higher percentage of organic soils. West
and Interior Plains (e.g., prairie pothole) wetlands have a
similar mean SOC stock as Coastal Plains wetlands, but a
much lower regional stock due to a smaller wetland area in
those regions.

NWCA and SSURGO data were assessed for patterns in
sample representation to further determine if there are issues
with representativeness downcore on a regional basis. Not only
are there very few deep samples in western regions, SSURGO bias
may also underestimate soil core data at depth due to imputation
across soil pedons (mineral layers extrapolated spatially at depth
due to limited sampling; Supplementary Table 2.5).

Figure 7 illustrates the relative distribution of soil stocks
by depth and by region. Stock assessments at 0–100 cm
were compared with 0–30 cm (shallow) and 30–100 cm (deep)
segments to aid in comparison with other studies of soil
profiles (Supplemental Table 2.6). Shallow stocks had different
predictability of deep stocks depending on their soil class, organic
vs. mineral. Figures 5A–C illustrate whole core SOC stocks
(mean and total) as a compilation of shallow (0–30 cm) and deep
(30–100 cm) core increments, by region and in comparison, they
illustrate different downcore patterns were observed by soil class.
Whereas shallow soils classified as mineral (<6% OC) showed
evidence of declining stocks with depth (mean of shallow soils
3.23% OC, mean of deep soils 1.99% OC), shallow organic soils
(>6% OC) largely maintained their stock value downcore. More
than 2/3 (n = 81) of the 120 NWCA cores classified as organic
in the shallow section remained at >6% OC through all depths
downcore; the remaining 39 cores varied but had an average of
5.26% OC. Thus, soils with modeled organic SOC densities of
0.060 g C cm−3 in the surface (0–30 cm) have a mean modeled
organic SOC density of 0.055 g C cm−3 in the deep soils (30–
100 cm), a decrease of <10% and well within the SOC density
model error (0.030 g C cm−3). In contrast, soils not classified as
consistently organic in the top 30 cm had a significant stock loss
downcore, from a mean of 0.029–0.018 g C cm−3 from shallow
(0–30 cm) to deep (30–100 cm) soil stocks, a decrease of 37%,
and well outside the SOC density model error of ∼10%. We
note that variability also increased downcore due to lower sample
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counts (Supplemental Table 2.6), but the differences in profiles
were persistent by soil class in the NWCA data. This difference in
consistency of stock downcore was not evident in the SSURGO-
derived dataset, which implied a 33% loss of stock across all
cores, regardless of classification. This perceived downcore loss
in the SSURGO-%OC data may be an artifact of the way data are
interpolated at depth in the gSSURGO system. This is not the case
for the data analyzed to validate the %OC in SSURGOwhich only
included hydric soils and not interpolated data.

DISCUSSION

Disaggregating wetland soil classes as either “mineral” or
“organic” improves accounting approaches that harmonize
across survey and point data. We found that SSURGO mineral
soil types dominated CONUS wetland C stocks, but that
SSURGO calculations were likely overestimating organic soil
densities (mean 93.0 kg C). We found that SSURGO also
potentially underestimated organic soil presence at depth, due
to projected stock losses at percentages more commonly seen in
mineral soil cores. Given the unique sampling needs for accuracy,
precision and representativeness in discontinuous wetlands,
wetland-specific datasets (EPA’s NWCA, NSF’s CCRCN, etc)
are necessary constraints on upscaled soil stock assessments.
We suggest that improved mapping and sample collection
from poorly represented wetland types and conditions (e.g.,
disturbed or compacted wetlands) will improve confidence in
future soil C stock estimates and help quantify wetland soil
management opportunities e.g. (39). We discuss here three
significant observations from this harmonized assessment on
(1) wetland soil carbon stocks, (2) soil carbon profiles, and (3)
simplified C stock modeling based on %OC alone.

Soil Organic Carbon Stock Mean Values by
Mineral and Organic Class
Our empirically-derived breakpoint for classification of wetland
organic soil stocks (6%) is lower than standard characterization
of organic soil properties [∼10%, e.g. (4, 40)] due to the
initial regression around the median rather than the mean.
Our proposed empirical disaggregation is derived to optimize
precision in the accounting by reducing RMSE about all wetland
soil types, not to re-characterize organic soil classes in general.
Despite their low relative area at the CONUS scale, these
organic-soils have a high impact on overall wetland carbon-
stock assessments. The single most effective way to improve
confidence in the wetland carbon stock values is in improving
soil sample representativeness and identifying disaggregation
opportunities that are mappable (e.g., hydrogeomorphic setting,
past disturbance, etc). Further, this new distribution more
adequately addresses the empirical representation observed in
the NWCA dataset, and due to the quantile regression, extreme
values do not play an outsized role in determining the mapped
mean value.

FIGURE 5 | Map of CONUS Inland and Tidal wetland locations and types with

regions shown in greyscale: West (W), Interior Plains (IPL), Eastern Mountains

and Upper Midwest (EMU), Coastal Plains (CPL), Tidal. Modeled soil organic

carbon stocks for the first meter, 0–30 and 30–100 cm heat map for wetland

soils shown in yellow to red.
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FIGURE 6 | A Comparison of Modeled Values and SSURGO Values across the regions (Coastal Plains, Eastern Mountains and Upper Midwest, Interior Plains, and

West) and classes (Herbaceous or Woody and Mineral or Organic) for total or mean soil organic carbon stock.

Soil Organic Carbon Distributions as a
Framework to Assess Carbon Stock
Vulnerability
These harmonized data provide a new view of CONUS wetland
soil carbon resources, including three significant findings for
wetland carbon vulnerability analysis in organic soils. First,
organic wetland soil stocks were similar across 10 cm layers of
the 0–1m profile (Figure 5) illustrating significant soil carbon
preservation mechanisms with depth below the soil surface,
and consistency with the observed pattern in tidal wetlands
(24). The only soil profiles with observed decreases in soil C
density were within the mineral soil category (<6% OC), as sites
with surface organic soil layers showed no significant down-
core patterns of decreasing SOC density. This suggests that
any downcore patterns of SOC density observed in gSSURGO’s
mapped organic soils are potentially biased by imputed upland
influences at the pedon level e.g. (24). This relatively consistent
downcore SOC density pattern in wetlands with organic soils
suggests that their SOC stocks at depth are highly vulnerable to
increases in microbial activity due to temperature, priming or
hydrologic alteration.

Second, these organic soil stocks show a wide range of SOC
densities which were not predictable from mappable wetland
classes tested. Despite all tested sources of disaggregation (region,
vegetation, depth) OC densities were similar in their median
asymptote at 0.0566 gC cm−3, although the range about this
asymptote was large (min 0.01 to max of 0.21, Figure 4). The

large range of density variability is likely due to landscape
influence, such as historical drainage or groundwater-to-surface

water connectivity, two currently unmapped characteristics.
Whereas, mineral soil C densities were relatively well-predicted
by the %OC reported, organic soil estimates for CONUS may be

improved by informed maps of land use history and changes in

hydrologic setting, as well as more sensitive sampling approaches
to improve their model representation.

Third, median and mean values for C density in organic

wetland soils were lower in our analysis than reported with
gSSURGO data, and some of the products to which SSURGO

has contributed (e.g., WoSIS, etc.). Soil C stocks in organic-rich
wetlands were clearly not well-constrained by %OC (Figure 3),
necessitating better assessments of wetland soil bulk density

both within the US, and likely globally. The unique settings
and sampling needs for wetland soil characterization suggest
that targeted sampling (EPA NWCA) or community contributed
datasets (CCRCN, ISCN) of wetland soils provide critical

observations necessary for modeling wetland soil carbon stocks
and vulnerability. This is especially apparent in the EMU woody
organic soils, which represent 2.3 Pg of the entire 9.4 Pg of
CONUS in our analysis, but 3.2 Pg in the SSURGO-based

stock analysis (Table 4). Our clear representation of uncertainty
encompasses other estimates [13.5 Pg C (12), 11.5 Pg C, (14); 8.9
Pg, (13)], but identifies an overestimation bias due to the need for

better bulk density representation in organic soil wetland settings
(Supplemental Table 2.5).
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FIGURE 7 | Mean and total stock in CONUS wetlands by depth zone (0–30 vs. 30–100 cm) and by region: Coastal Plains (CPL), Eastern Mountains and Upper

Midwest (EMU), Interior Plains (IPL), West (W), and Tidal.

Any biases and limitations are further extrapolated when
spatial products at continental scales are ingested into gridded
global products. WoSIS, for example, poorly represents organic
soils, despite its voluminous ingestion of spatial data layers (20).
Wetland soils, as discontinuous components on the landscape,
are poorly represented by spatial interpolation between samples
and will benefit from greater attention to subsurface and
historic processes.

There are many benefits to modeling SOC density based on
%OC alone which can be applied to other global datasets. One
of these is that the relationship between SOC and %OC was
consistent across wetland types in CONUS, both inland and tidal.
The model accuracy and range were similar regardless of which
region they are found. Because of this empirical approach, it
is possible to use the same model development techniques for
soils in other regions with survey and wetland-specific samples
of %OC—whether measured directly or modeled from percent
organic matter (%OM). Field sampling of %OM through loss-
on-ignition (41) is a common approach worldwide and does
not require special extraction and transportation the way bulk
density measurements do. This quantile-basedmodel also has the
advantage of a more robust methodology that is less sensitive to

the unusually high or low values that are inevitable with field
data, and bias fully parametric techniques such as a segmented
linear least squares model. Additionally, the NWCA data set
used for this model development is periodically updated (2016
data currently being shared, and 2021 data collection being
planned). Our approach can be updated to reflect changes
in %OC values, improved bulk density collections, changes
in sea level and coastal wetland locations, and changes to
mappable features of wetland location, landcover, and extent.
This method also allows researchers to split soils into categories
of varied confidence: highly predictablemineral soils with a linear
growth of SOC density with %OC (mineral section, %OC<6)
and less predictable organic soils with difficult to characterize
and highly variable bulk densities above the mineral: organic
cutoff (%OC > 6).

CONCLUSION

CONUS wetland soils were mapped at 30m resolution in
layers for each 10 cm depth increment down to 100 cm. The
most parsimonious model split CONUS wetlands into only
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two geographic zones: “inland” wetlands and “tidal” (coastal)
wetlands based on physical location associated with a spatial
inland/tidal boundary identified by Holmquist et al. (35).
Mineral and organic soil types were clearly isolated by a broken
stick model for “mineral” and “organic” soil carbon stocks.
Spatial disaggregation by landcover, region, salinity and relative
elevation (in tidal portions) was found to be unhelpful in
addressing accuracy or precision. Our harmonized CONUS
wetland soil map, with mean and standard error distributions,
was found to replicate results commonly observed in mineral-
rich wetland soils, but our analysis illuminates at least three
significant findings for organic wetland soil carbon stock
monitoring. First, SOC stocks for organic-rich soils (>6% OC
by weight) were similar downcore in the 0–100 cm profile,
illustrating similar preservation mechanisms with depth below
the soil surface, and thus limited physical stabilization for
protection from microbial activity associated with temperature,
priming, or hydrologic disturbance. Second, these SOC stocks
show a wide range of SOC densities which were not predictable
by region or vegetation type, thus identifying a need for a
mappable characterization to improve accuracy by a more
functional disaggregation. Third, mean values for SOC density
in organic wetland soils were 35% lower in our analysis than
reported with SSURGO-based estimates. Whereas, SOC stocks in
mineral-rich wetlands were relatively well-constrained by %OC
(an index of organic matter content), SOC stocks in organic-
rich wetlands were not, necessitating better assessments and
characterization of organic-rich soils which represent a high
fraction of wetland SOC stock uncertainty within the CONUS,
and likely globally. The unique settings and sampling needs for
wetland soil characterization suggest that targeted sampling or
community contributed wetland soil datasets can provide critical
observations necessary for assessing wetland SOC stocks and
modeling their vulnerability.
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