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A holistic view on possible determinants of human health within a poor subsistence
farming community is important to addressing pressing issues surrounding hidden
hunger. This survey study assesses the mineral nutrition of women in rural tribal
communities of Jharkhand, India, and its possible connection with the mineral status of
the soils and the staple crop rice. Associations were explored with inherent and dynamic
life features namely geography; socio-demographics; and agronomic, processing and
cooking practices. A total of 43 soil and rice and 35 human hair samples were collected
from 43 rice fields and their associated households. All samples were analyzed for
micronutrients and toxic elements, which included As, B, Ba, Cd, Cr, Cu, Fe, Mn, Mo,
Ni, Pb, Se, Sr, V and Zn. Soil samples were additionally analyzed for biological and
physical indicators. Kruskal-Wallis ANOVA tests and regularized regressions methods
(ridge and lasso) were performed on qualitative parameters with respect to the soil, rice
and hair mineral content. For soil data, associations existed between (i) livestock
management and Mo and Cd levels in the soil, and (ii) most soil micronutrients and
toxic elements with districts and soil textural groups. For rice, Fe concentrations differed
among variety types (traditional> hybrid> improved), Cu between landscape positions
(midland > lowland), Mn, Ba and Pb among soil textural classes, and Cr, Ba and Pb
among districts. In hair, Cd significantly differed between cooking water sources (well
water > other), Mn between rice cooking methods (absorption > boil and drain), and Fe, Cr
and Ba between the hair-dyed groups. Linear regressions with quantitative variables such
as age, household size, number of years farming, fertilization duration (as proxy for land
size ownership) and hair sampling length (cm) showed that only hair Ni and Cr were
significantly affected by land size ownership, and that the latter mineral is also affected by
hair sampling length. The regularized regressions revealed many interlinkages between
soil and humans through the rice crop intermediate, as well as between socio-
demographics and human health, albeit complex and indirect. To this end, associations
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were in many cases uninterpretable, yet, they present insight into the confounding factors
and possible challenges in the assessment of soil-to-human mineral interlinkages. Future
studies are advised to account for these to pinpoint direct and causational relationships in
the soil-to-human pathway.
Keywords: soil health─human health nexus, mineral interlinkages, micronutrients, nutrient transmission,
subsistence diets, bioavailability, multivariate analysis
INTRODUCTION

Nutritional Interlinkages
Myriad factors define the health of our ecosystems and its
constituents. For instance, the health of our soils depends
directly on a combination of inherent (geological) and
dynamic (both natural and anthropogenic) features (1). The
health of humans, like that of crops, is also defined by both
genetics and interactions with the external environment. Yet,
somewhat uniquely, human health is subject to a complex
network of interactive factors like age, wealth, and lifestyle,
some of which are controllable while others are not. Lifestyle
encompasses many elements, the most notable and indispensable
being diet ─ the hallmark of human nutrition. However, diet and
specifically its mineral composition is in itself subject to many
factors that ultimately affect what ends up being consumed,
absorbed and utilized, be it nutrient or toxic element. Such
factors include food processing methods, cooking methods,
and drinking and cooking water sources, among others (2).

Due to this complexity, the soil to human interlinkages have
rarely been studied and seldom at a household level (3, 4).
Researchers who did study this interlinkage often overlooked the
role of socio-demographic andenvironmental factors, including the
soil’s physical and biological properties that make up a healthy soil.
For example, (5) proved that interlinkages exist among Se in soil,
grain and hair (as a human bioindicator) in Hebei Province, China
to which they attributed the prevalence of Keshan Disease (Se
deficiency) in areas with soils, grains and individuals deficient in Se.
However, they did not factor in the residents’ agronomic,
demographic and lifestyle effects. Similarly, based on studies
conducted in India, Nepal and Bangladesh, (6–8), respectively,
concluded that there exists a strong significant relationship
between Zn content in soil, grain and humans. Yet, they did not
consider the effect of soil biological and physical properties. Similar
relationships were also established by two other studies by (9, 10)
that found high incidence of esophageal cancer in Iran and South
Africa associated with substantially low soil Mo and Zn
concentrations in food grains and hair and nail samples, but they
too overlooked the aforementioned potential external factors.
Lastly, (11, 12) concluded a connection between human health as
evidenced by long life expectancy in the agricultural areas of Jiangsu
and Hubei Provinces, China and the mineral status of the soil,
staples and water of that region. Beyond these studies, not much
research on this topic has been conducted.

Recently, the Soil Health Institute in partnership with the
Friedman School of Nutrition Science and Policy at Tufts
University evaluated literature on the relationships between
org 2
soil health and food nutritional quality (13) and also
concluded that little comprehensive research of this nature has
been conducted. However, assessing the direct effect of soil
health on human nutrition requires approaches different than
those deployed in the past since, as previously explained, the soil-
to-human mineral transmission is not straightforward, and
human nutrition is more complex than the nutritional profile
of crops ingested. Also, spatial distribution of nutrients is
another key feature underscoring resource heterogeneity and
its impact on ecosystem constituents. That is, the micronutrient
and toxicity status of soils, plants and humans is not fixed and
varies more greatly over space than it does over time (14).
Moreover, most global citizens derive their food from varied
geographical areas, sometimes through imports from across
continents. The admixing of foods from varied sources, often
with unknown source locations, thereby prevents explicit
analysis of soil, plant, and human health linkages. For these
reasons and due to the many confounding factors in diets, the
best opportunity for studying the soil-human health linkages
may be in subsistence farming communities like those in
Jharkhand, India where most food consumption involves
locally grown crops. A human survey that accompanies sample
collection is a prime way to gather valid information for the
evaluation of these external factors.

Soil-Crop-Human Nutrition in Jharkhand,
India and its Complexities
Jharkhand is a state in Eastern India that is home to about 40% of
the country’s total mineral resources (15). It ranks first in coal,
second in iron ore, and third in copper ore reserves, among other
important minerals. Conversely, Jharkhand also innately has
physically “exhausted, biologically poor and nutrient deficient
agricultural soils” (16), which are predominantly sandy loam to
loam texture with low pH (4.5-6.5) and low fertility (17). A large
proportion of Jharkhand’s soils are deficient in at least one
essential nutrient, e.g., 66% are P deficient; 18% are K
deficient; 18% are Zn deficient; and 60% are B deficient (17,
Shukla et al., 2018).

On the human health front, Jharkhand is considered one of
India’s most vulnerable and highest health burden states (18).
Intra-household discrimination against women in rural areas
and food consumption disparity often leads them to consume the
leftovers of their husbands and children, leading to a suboptimal
diet in quantity and quality (personal communication). Thirty-
five percent of Jharkhand rural women have below-normal body
mass index (BMI), and in many districts, more than 85% of
women are anemic, marking the highest prevalence in the
July 2022 | Volume 2 | Article 901843
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country (Ministry of Home Affairs 2014, Ministry of Health and
Family Welfare 2016). The maternal mortality ratio of 312 is
higher than the national average of 254 (17). However, even
within Jharkhand, the variation in health status between districts
and even villages is apparent (17; Ministry of Home Affairs 2014;
Ministry of Health and Family Welfare 2016). Due to this
discrepancy between natural-resource-richness and severe
malnutrition and poverty, the State suffers from what is termed
“the resource curse” (19).

Nutrient deficiencies in humans sometimes arise as a result of
the low bioavailability of nutrients in the soil and/or the foods
ingested as a result of the presence of anti-nutrients such as
heavy metals (in soils and plants) or phytate (in plants; 20).
Phytic acid (phytate) is the primary source of phosphorous in
many plant seeds, contributing approximately 70% of total
phosphorus, and plays a role in inhibiting fungal infection in
seeds (21). From a human nutrition standpoint, phytate is
notorious for its anti-nutrient property as it is a strong
chelator, which renders essential dietary nutrients including
minerals (Ca, Zn, Mg, Mn and Fe), proteins and amino acids
unavailable for human absorption and/or utilization.

The issue of the parboiling – the process of soaking, steaming
and drying – of Jharkhand’s staple crop rice is another determinant
of human nutrition. In the early 1900’s, it was discovered that the
consumption of non-parboiled rice was associated with beriberi
disease, a vitamin B1 deficiency (22), and patients who switched
their intake to parboiled rice recovered from it (22). In addition to a
higher concentration of vitamin B1, parboiled rice is noted for its
higher concentrations of macro and micro minerals, including Ca,
Cu, Fe, and Zn. This nutritional richness is a result of the
solubilization of these minerals and their migration from the
aleurone and germ into the starchy endosperm that is eaten (23).
Yet, the retention pattern ofminerals in the endosperm is the result
of many interactions involving the physical location of the mineral
in the grain, its solubility during soaking, its migration ratio as well
as the milling resistance of the parboiled grain (23). The nutritional
benefits of parboiled rice are therefore variable, mostly due to the
lack of uniform commercial and household parboiling methods.

Conversely, rice milling has a negative effect on the total
concentrations of certain mineral nutrients, notably Fe, Zn, Cu
and Mg. Concentration of these nutrients in polished rice can be
75% less than partially milled or brown rice since most nutrients
are found in the outer grain layers that are typically removed
(21). As a result, polished rice makes deficiencies common in
rice-eating communities where it is the major energy source.
Milling also tends to favorably reduce phytate content in rice
since over 80% is concentrated in the outer bran layers (24). This
in turn benefits the minerals’ bioavailability.

Nutrient bioavailability is the amount of a nutrient acquired
through food intake that can be absorbed by the human gut and
utilized by the body. It is the bioavailable amount of
micronutrients in a meal, rather than the total amount, that is
the critical factor for human nutrition (21). Most staples, like
rice, contain relatively low levels of bioavailable Fe and Zn (e.g.,
about 5%), and some studies have suggested strategies to enhance
bioavailability of essential mineral elements including the
Frontiers in Soil Science | www.frontiersin.org 3
reduction of phytate content in grains. This relies on changes
in food preparation practices that include soaking cereals to
allow leaching and degradation of water-soluble phytate (25).
This method was shown to reduce the phytate content in maize
by up to 36% and in brown rice by up to 91% (26, 27). Similarly,
parboiling significantly diminished phytate content in finger
millet (28). Similarly, oat, wheat and rice bran samples treated
by a hydrothermal autoclaving process showed a 94, 95 and 96%
decrease in phytate content, respectively (29).

A myriad of other factors that may affect bioavailability
include the state of natural resources (soil and water); crop
genetics; agronomic practices; food processing, storage and
preparation; consumer demographics (age, medical history,
household size, wealth, farming experience, etc.); and the array
of nutrients ingested at a single time (since the intake of one
nutrient may influence the availability of another; 21). The
objective of this study was to assess the role of environment,
demographics, and social practices with particular emphasis on
agronomic, food processing, dietary and health practices, in soil,
rice, and human mineral health of Jharkhand women-farmers.
MATERIALS AND METHODS

Sampling, Surveying and
Laboratory Analyses
Jharkhand is characterized with a geology that consists mostly of
Archean granites and gneisses, and some schists in the capitol,
Ranchi (30). These parent materials are generally nutrient-poor
but have varying chemical and mineralogical compositions (31–
34). Portions of our study area also include basalt (Hazaribagh
district), laterite and alluvium (Gumla district), and mica
(Giridih district; 35). Alfisols, Entisols and Inceptisols are the
dominant soil orders (SoilGrids250m Version 2.0 (36, 37)
(1:250,000 scale; retrieved from 30). Alfisols account for 72%,
71%, 64%, 62%, and 43% of the total land area of Hazaribagh,
Ranchi, Giridih, Bokaro and Gumla districts, respectively, while
35% ofWest Singhbum are mapped as Entisols (30). Information
is not available for Ramgarh district as it was historically a
subdivision of larger Hazaribagh.

Surface-soil (0 to 15 cmdepth) and subsoil samples (30 to 40 cm
depth) were collected in a previous 2015 study (38) from stratified
randomly selected rice fields that spanned seven districts in
Jharkhand, namely Bokaro, Giridih, Gumla, Hazaribagh,
Ramgarh, Ranchi and West Singhbum (Figure 1). One kg of soil
was collected by combining and thoroughly mixing five soil slices
per depth increment within a radius of 3 m of the position of
interest. GPS coordinates, altitude, village name, and landscape
position data were recorded at each sampling location. Samples
were air dried and shipped toCornell University (Ithaca, NY, USA)
for soil health assessment following the protocol of the
Comprehensive Assessment of Soil Health (CASH) approach
which includes the analysis of physical, biological and chemical
soil properties, including wet aggregate stability (WAS), available
water capacity (AWC), surface (PR<15) and subsurface (PR>45)
July 2022 | Volume 2 | Article 901843
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compaction, total soil organic matter (OM), active carbon (AC),
protein, respiration, pH and a suite of mineral elements (1).

Forty-three sampling sites were revisited in 2018 for rice and
hair sampling. We collected approximately one handful of stored
rice that was grown on the fields from which soil was previously
sampled. We also collected hair samples to serve as a nutrition
bioindicator by cutting a portion of the longest strand of hair
from a female head of household (grandmother or mother, else
eldest daughter/daughter-in-law) who was subsisting on the
fields from which the rice and soil were sampled. The amount
of hair sampled varied among individuals based on what was
permitted (comb remains vs. snippets); eight subjects refused to
give hair samples due to superstitious beliefs. Samples which
totaled 35 hair and 43 rice samples were transported to the
Cornell Nutrient Analysis Laboratory (Ithaca, NY, USA) for
mineral analyses which included As, B, Ba, Cd, Cr, Cu, Fe, Mn,
Mo, Ni, Pb, Se, Sr, V and Zn [described in full in Rekik and van
Es (16)].
Frontiers in Soil Science | www.frontiersin.org 4
Participantswere also asked to answer a series of survey questions
about their rice growing, processing and cooking practices as well as
their dietary, health and nutritional routines in the form of a
questionnaire (Table 1). Demographic and socioeconomic
information was also collected. All participants consented to their
participation, and approval to conduct this study was obtained from
the Cornell University Institutional Review Board and the local
Ethical Committee of Ekjut in Jharkhand, India.

Soil minerals were extracted using a Mehlich-III solution
whereas rice and hair samples were digested using nitric and
perchloric acids following the methods described in Rekik and
van Es (16). Minerals from all media were subsequently quantified
by Inductively Coupled Plasma Optical Emission Spectroscopy
(ICP–OES, Varian 730-ES, Mulgrave, Victoria, Australia).

Spatial and Statistical Analyses
Industrial facilities, including mines and large-scale plants, were
located using satellite-based real imagery (Google Earth Pro v.
FIGURE 1 | Map of Jharkhand, India with district boundaries and soil sampling sites (15). Permission received from Elsevier.
TABLE 1 | Variables assessed at each of the soil, rice and human levels using Kruskal-Wallis one-way ANOVA and regularized regression.

Soil Rice Human
Qualitative Quantitative

Type of livestock
Texture
Landscape position
Source of irrigation
District
Distance to nearest industrial facilities

Rice variety
Landscape position
Soil texture
Crops grown
Sources of irrigation
Parboiling
Milling
Storage
District
Distance to nearest industrial facilities

Rice variety
Sources of cooking water
Rice cooking method
Hair condition
Pregnant/lactating
Government vs. private fortified salt
Landscape position
Soil texture
District

Age
Household size
Years farming
Fertilization duration (proxy for land wealth)
Hair sampling length
Distance to nearest industrial facilities
Variable selection based on both experts’ opinion and literature suggestions (mentioned in introduction).
July 2022 | Volume 2 | Article 901843
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7.3) – a method used by the Ministry of Mines of India to track
illegal mining (39). We identified 73 industrial facilities
surrounding our sample households across Jharkhand. The
“Near” spatial analysis function on ArcGIS Pro Software (v.
2.4.1) was used to compute the distance to the nearest facility for
each sampling location. The distribution of the nearest distances
from sample households ─ ranging from 850 m to 51 km ─ were
severely right-skewed and required a log10 transformation.

Due to the small sample size and the slight deviations from
normality, Kruskal-Wallis one-way Analysis of Variance
(ANOVA) ─ a non-parametric test ─ was conducted on the
soil, rice and hair mineral concentrations as a function of the
surveyed geographic, demographic, agronomic and processing
categorical variables, which were selected based on a
combination of experts’ opinion and consulted literature
(Table 1). Furthermore, a multiple linear regression model was
constructed to assess the continuous factors that may be
influencing soil, rice and human health. These include age,
household size, years of farming, fertilization duration (a proxy
for land size ownership), hair sampling length and proximity to
industrial facilities. This study portion only focuses on the micro-
minerals (B, Cr, Cu, Fe, Mn, Mo, Ni, Se, V, Zn) and toxic
elements (As, Ba, Cd, Pb, Sr) and the anti-nutrient phytate.

These quantitative and qualitative predictors were also
deployed in ridge and lasso regressions which are data
regularization methods that deal with multicollinearity, i.e.,
non-independence of predictor variables (40). These methods
thus stabilize the estimates of predictors by penalizing large
coefficients, thereby reducing the overall variance. This bias-
variance tradeoff method results in underestimated effects where
a higher penalty term l is associated with higher underestimated
coefficients. In this study, the data were standardized and the best
penalty terms l (0 ─ ∞) were identified through a series of 10-
fold cross-validations repeated five times. Model comparisons
were conducted between the ridge and lasso approaches based on
their RMSEs for the chosen penalty term (or when marginal
decreases in RMSE started to taper off), and model output was
interpreted. This was undertaken for the three nutritionally
important health indicators Zn, Fe and Ca and the toxic
elements Pb and Cd, and their top five predictors are reported.
At this stage, six detected outliers (hair Zn ~ [2000 ppm]; hair Cu
~ [210 ppm]; hair Sr ~ [80 ppm]; soil Zn ~ [40 ppm]; soil S ~
[5000 ppm]; and soil P ~ [40 ppm]) were removed. Microsoft
Excel (v. 2016) and the R-Project for Statistical Computing (v.
3.6.2.; packages “glmnet” and “caret”) were used for data
preparation and statistical analyses.
RESULTS AND DISCUSSIONS

Survey Results
The mean age of the study participants was 37 years, with about
half in the mid-30s to mid-40s age range. The average household
size was seven members, and the average number of years
farming was 24. Since land ownership is considered a sensitive
topic for the rural people of Jharkhand who are threatened by
Frontiers in Soil Science | www.frontiersin.org 5
illegal land grabbing and transfers (17), participants were asked
about the amount of time needed to fertilize all their fields as an
implicit indicator of how much land they own. Upon
categorizing them, 45% of our sample have marginal (up to 1
ha), 14% small (1 to 2 ha), 25%medium (2 to 4 ha) and 12% large
(above 4 ha) landholding sizes, a similar distribution to Hossain
et al. (41). As for rice production, 86% of respondents grow only
rice, while the remaining five grow rice and other crops, notably
greens, legumes and pulses. Approximately 60% grow only one
rice variety, while the rest grow two or more rice varieties.
Approximately 45% grow hybrid (modern) rice, 30% improved
rice, and the remaining 25% traditional varieties. Four
respondents do not use any macronutrient fertilizers, two use
only diammonium phosphate (DAP) while the rest use both
DAP and urea in their paddy cultivation. None used
micronutrient fertilizer. As for organic amendments, all but
three households applied either one or a combination of cow
(Bos taurus) or goat (Capra aegagrus hircus) manure. All
respondents stated that they allow livestock to roam in their
fields after harvest, including cattle (Bos taurus), goat (Capra
aegagrus hircus), oxen (Bos taurus), buffalo (Bubalus bubalis),
chicken (Gallus gallus domesticus), pig (Sus), and sheep (Ovis
aries). All respondents collect rice straw after harvest, and all but
three feed it to their livestock. Of those, all but one collect the
manure defecated by their livestock and apply it to their fields,
thus recycling some nutrients. Some additionally use it
for painting walls, flooring, or cooking. Of the 15 that use it
for cooking, all but one spread the burnt ashes on the field. As for
rice consumption, more than 80% of our respondents consume
rice at a rate of more than once a day, while the rest consume it
once a day. All respondents consume foods from outside sources
at a rate of 3-to-5 kg per week, predominantly including
vegetables (onions, tomatoes, potatoes and leafy greens),
pulses, and sometimes rice whenever the household stock runs
out. All but seven of the participants consume Public
Distribution System (PDS) foods, which typically comprises
PDS rice and cooking oil. All participants consume at least one
type of fortified salt: 14 (33%) use the government (PDS) double
fortified salt (iodine and iron) while the majority (67%) prefer
another type of fortified salt, typically one containing only iodine.
In parboiling rice, there are three distinct methods adopted by
our sample: 12 (28%) of respondents boil the rice, 23 (53%)
steam it, while the eight remaining (19%) do a combination of
both. To cook rice, 27 respondents (63%) use well water while 8
(18%) use handpump water. Two respondents use municipal tap
water and another two use river water. The rest use a
combination of the former methods. Rice-cooking involves two
methods adopted equally in our sample: the boil and drain
method, which entails draining the excess starchy and
nutrient-rich water after boiling the rice, and the absorption
method where the rice entirely soaks in the water that it is cooked
in. Twenty-one (49%) of our respondents use the boil and drain
method, while the remaining 22 (51%) use the absorption
method. As for human health, the average hair length of our
participants is 73 cm. Of the 41 that responded to the question on
hair cleansing products used, 9 (22%) said they used soap, 24
July 2022 | Volume 2 | Article 901843
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(59%) shampoo and 2 mud (5%). The rest used a combination of
them. Twenty-four (56%) respondents do not have their hair
colored, while the remaining 19 (44%) do. At the time of the
study, six of our participants were either pregnant or lactating,
and six suffered from at least one incidence of diarrhea in the
last year.

Social, Environmental and Geographic
Differences and Their Relation to
Mineral Status
Soil
Results from the the Kruskal-Wallis one-way ANOVA test of soil
mineral concentrations as a function of the surveyed geographic,
demographic, agronomic and processing categorical variables
showed that soil Mo and Cd significantly differed among livestock
groups ‘ cow’, ‘cow+other’ and ‘other’ (p=0.04 and p= 0.02,
respectively; Figure 2), with the highest median concentrations
found in the “other” group. This phenomenon may be due to
differences in manure composition of the different animal species.
Specifically, poultry manure is known to have higher concentrations
of both Mo (42) and Cd (43) than cattle, pigs, horses and sheep,
with a ten-fold difference in the case of Mo. Alternatively, this result
may be confounded by the feed source by which cattle mostly graze
locally, while chickens or pigs are fed from external feed sources.
Livestock management did not significantly differ among districts
(data not shown).

Further, soil micronutrients B, Cr, Mo and Zn and soil toxins
As, Ba and Cd were significantly different among the districts,
with the highest medians found in Hazaribagh district (p= 0.02,
p=0.01, p<0.01 and p=0.03, p<0.01, p=0.04 and p<0.01,
respectively; Figure 3). Hazaribagh has disproportionately
higher concentrations of most of the studied minerals. These
differences are likely due to inherent soil differences including
mineral composition and texture (mostly medium-textured).
Hazaribagh is known for its mineral richness as evidenced by
the existence of many mines, especially with coal and limestone
(15). Figure 4 illustrates the number of industrial mining
facilities that were identified surrounding the sampled
Frontiers in Soil Science | www.frontiersin.org 6
households. In general, we infer two main drivers of soil
mineral concentration differences in our sample: one is
inherent parent material differences, and another is
anthropogenic, notably livestock management.

Among textural groups, all soil micronutrients except Mn are
significantly different, with the highest median concentrations
found in medium-textured soils (Figure S1). The higher
concentrations in medium-textured soils relative to the fine
could be a manifestation of the ease of extraction of minerals
in medium-textured soils compared to fine ones, the latter which
are known to bind minerals stronger to their surfaces, rendering
them relatively unavailable (44). On the other hand, coarse-
textured soils have low nutrient retention and are subject to
nutrient leaching. This relationship was also seen for soil toxic
elements As, Ba, Cd and Sr except Pb, with the finer-textured
soils having significantly higher concentrations than the coarse
ones (Figure 5). In general, real differences in chemical
composition across textural groups are a manifestation of
geographical differences, i.e., district-level parent material
(p=0.04, data not shown). Soil minerals did not appear to vary
significantly by landscape position (middle vs. lowland), by
source of irrigation or by log-distance to mines (data not
shown). This was despite common knowledge that, in general,
topography or soil movement from upslope to downslope is
coupled with the downward movement of finer soil particles and
their sorb constituents including micronutrients (45, 46). This
result also did not capture that different water sources have
different mineral composition (47), nor that the mining industry
is a source of pollutants in soil (48). However, these relationships
depend on context-specific factors and hence were not detected
in our study.

Rice
The Kruskal-Wallis one-way ANOVA test of rice mineral
concentrations as a function of the surveyed geographic,
demographic, agronomic and processing categorical variables
showed that rice Fe concentrations were significantly different
among rice variety types (p = 0.03; Figure 6), with the highest
FIGURE 2 | Soil Mo and Cd distribution among livestock groups allowed on plots in fallow season. NS, not significant; * significant at the 0.05 significance level.
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concentrations in traditional varieties followed by hybrids and
then improved/modern varieties, which did not significantly vary
across districts. This underscores the extent to which current
food systems with their high-yielding varieties of staple crops
may inadvertently disfavor nutrient contents, which would
arguably exacerbate malnutrition (49).
Frontiers in Soil Science | www.frontiersin.org 7
Between landscape positions, rice Cu concentrations in the
middle position were significantly higher than in the lowland (p=
0.03; Figure 7). Cu concentrations and availability are known to
decrease in flooded rice soils (50). As such, this finding may be a
result of soil redox (Eh) effects driven by differences in local soil
hydrology, where concentration and mobilization of Cu is low
FIGURE 3 | Soil mineral distribution across the seven districts in Jharkhand.
FIGURE 4 | Point locations of households in our study area and surrounding industrial facilities.
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under reducing conditions while aerobic soils favor the release of
Cu (51, 52). However, it is unclear why this same trend was not
observed at the soil level. It may be due to the standardized
laboratory procedure of processing and drying the soil samples to
a specific temperature, which may not reflect field conditions in
relation to mineral dynamics driven by redox.

Among textural classes, rice minerals Ba, Pb and Mn were
statistically different (p= 0.00; p= 0.04 and p= 0.02, respectively;
Frontiers in Soil Science | www.frontiersin.org 8
Figure 8). The medium-textured soils have the highest median
Mn and Ba concentrations, while the coarse and fine have the
highest median Pb concentrations. Given that this is in
disagreement with soil mineral differences across textural classes
(Figure S1), the relationships between rice mineral concentrations
and soil texture are not analogous to those between soil mineral
concentrations and soil texture. Conversely, high Cr and Ba
concentrations in rice in Hazaribagh (p= 0.04 and p= 0.02,
FIGURE 5 | Soil toxin distribution among textural group. NS: not significant; * significant at the 0.05 significance level; ** significant at the 0.01 significance level; ***
significant at the 0.001 significance level.
FIGURE 6 | Rice Fe concentrations in hybrid, improved and traditional rice varieties. NS: not significant; * significant at the 0.05 significance level; ** significant at the
0.01 significance level; *** significant at the 0.001 significance level.
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respectively; Figure 9) correspond with high Cr and Ba
concentrations in soil (Figure 3). Rice Pb was significantly
different among districts with the lowest median concentrations
found in Hazaribagh and the highest in Giridih (p<0.01; ).

Rice Cr, Fe, Mn, Mo and phytate concentrations were linearly
related to household distance to industrial facilities, specifically
concentrations of Cr, Fe, Mn and phytate increased while Mo
decreased with increasing distance (p<0.05; data not shown),
which mostly argues against industrial contamination of rice.
Finally, we could not detect any significant differences in
minerals among the agronomic and processing methods,
including crops grown, sources of irrigation, parboiling
method, rice milling and storage (data not shown).

Hair
The Kruskal-Wallis one-way ANOVA test of hair mineral
concentrations as a function of the surveyed geographic,
demographic, agronomic and processing categorical variables
showed that hair Cu and Zn were significantly different among
Frontiers in Soil Science | www.frontiersin.org 9
rice variety groups with the highest median concentration being in
the “improved” group, but this was driven by one outlier sample at
[Zn] =1941.03 and [Cu] = 209.65 ppm (Figure S2). Hair toxic
elements were also not significantly different among the groups
(data not shown). Higher levels of Cd in hair were associated with
cooking water fromwells compared to other sources, which on the
average was significant (p<0.01; Figure S3). There were no
significant differences in these patterns among districts, but the
presence of other confounding factors is possible.

In terms of rice cooking method, hair Mn was found to be
significantly higher for the absorption group than the boil-and-
drain group (p= 0.02; Figure S4), with no significant differences
in this cooking practice among districts (data not shown). This is
likely because the absorption cooking method retains more
water-soluble vitamins, minerals, and starches in the rice
compared to the boil-and-drain method (53).

Between the dyed versus non-dyed hair groups, Fe and Cr
median concentrations are significantly higher in the non-dyed
groups (p= 0.05 and p= 0.02, respectively; Figure S5), whereas Ba
FIGURE 8 | Rice Ba, Pb and Mn concentrations by textural class. NS, not significant; * significant at the 0.05 significance level; ** significant at the 0.01 significance level.
FIGURE 7 | Rice Cu concentrations by landscape position.
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concentrations were higher in the dyed group. (This practice does
not appear to vary across districts). Other studies have suggested
differences in hair mineral concentrations between dyed versus
non-dyed samples (54, 55), and as such these variables must be
accounted for when assessing human health. Finally, we found no
significant differences in hair minerals associated with districts,
pregnancy/lactation, PDS vs. private fortified salt, between
landscape positions or among textural classes (data not shown).

Using a linear regression model, factors like age, household size,
years farming, fertilization duration, cut length and distance to
industrial facilities did not significantly affect hair micronutrients Fe,
Zn, Mn, Cu, V, nor toxins Cd, Pb, Ba and Sr. However, for hair Ni
and Cr, fertilization duration (signifying land wealth) and number
of years farming positively affect their concentrations (0.06 and 0.03
ppm increase in concentration, respectively, for every unit increase
in the predictor variable (p= 0.02 for both; R2

adj = 0:18 and 0.32,
respectively). Hair cutting length additionally affected hair Cr
concentration with a 0.01 estimate (p<0.01). These results suggest
that a woman’s socioeconomic status, her level of farming
experience and the hair sample length are significant factors in
the concentration of some minerals in human hair.

Regularized Regressions
Comparing the two regularized models (ridge vs. lasso) of the soil
predictors on the human health outcome variables revealed that
ridge regression yielded the best model for human Zn, Fe, Cd and
Pb, while lasso regression yielded the best model for human Ca
Frontiers in Soil Science | www.frontiersin.org 10
(Table 2). To interpret the results, one must be cognizant that the
magnitude of the effects generated by these regressions are
diminished due to the bias-variance tradeoff discussed earlier.
In an effort to explore the nature of these relationships, it may be
more meaningful to interpret the signs of the relationships rather
than their strength. In this regard, it was revealed that human Zn
is most positively influenced by soil Fe; negatively influenced by
soil Na, soil subsurface hardness (PR>45), and K; and positively
influenced by Cd, in descending order of magnitude (Table 2).
From a soil health perspective, this suggests that increasing soil
subsurface compaction reduces human Zn level, possibly due to
limited root growth, impeding the adequate uptake of Zn by
plants, which translates to diminished supply to human
consumers. Conversely, results from hair Fe regression reveal
that human Fe is positively influenced by PR<15 and negatively
influenced by soil K, Al, OM and Clay, in descending order of
magnitude. The negative effect of both OM and clay appears
counterintuitive considering that higher organic matter and clay
contents is associated with higher Fe availability to plants (56,
57), so this negative relation could stem from the plant─human
level. The relationship with surface compaction may be
associated with soil puddling for flooding, which creates
anaerobic conditions that mobilize Fe in the soil as it is
reduced from Fe3 + to Fe2 + (58–60). For hair Ca, WAS was
the strongest positive driver followed by protein, suggesting that
better soil structure is an important determinant of human Ca
concentrations, and that protein content in the soil – a measure
of organic N – positively contributes to human Ca nutrition.
Other mineral-mineral effects, including those of P, Cr and Sr,
which are negative, could result from mineral interactions along
the food chain beyond the scope of this study (61). Moreover,
PR<15 was the strongest positive driver of hair Pb directly
followed by OM ─ the strongest negative driver of hair Pb
(Table 2). These results suggest that higher soil surface
compaction increases human Pb toxicity possibly because it
limits rooting to soil closer to the surface where it may be
more concentrated. Higher soil OM is associated with lower
human Pb concentrations, possibly through surface binding
forces that renders Pb less available for uptake. Yet human Cd
was shown to be positively influenced by AC ─ the labile portion
of soil OM that is dynamic and important for mineral exchanges.
It is difficult to explain this phenomenon, especially since such a
relation has not been reported previously in the literature.

Rice P and Pb appear to be strong predictors of human hair
mineral content. Rice P is the strongest and second strongest
(negative) predictor of hair Zn and Fe, respectively, suggesting
that higher macro-mineral contents in rice lead to lower micro-
mineral concentration in humans. This antagonistic relationship
is likely at the plant level due to the tradeoff between macro and
micro minerals. Rice Pb on the other hand appeared to be the
strongest (positive) predictor of hair Fe, Cd and Pb. These results
suggest that human toxins Cd and Pb are highly associated with
one another and that toxins at the plant level translate to the
same and related toxins at the human level, including Fe.

Among the factorial predictors, hair grooming variables as
well as agronomic ones consistently show up as important
FIGURE 9 | Rice mineral distribution across the seven districts in Jharkhand.
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predictors of all studied hair mineral contents (Table 2).
Specifically, shampoo hair detergent appears to be the
strongest (positive), third strongest (positive) and third
strongest (negative) factor affecting hair Zn, Ca and Pb,
respectively, whereas shampoo+soap hair detergent is the
second strongest (positive) predictor of hair Pb. Artificial hair
dye additionally is an important factor with human hair mineral
concentrations, and specifically the strongest (negative) and
second strongest (negative) of hair Fe and Cd, respectively.
These results corroborate that these practices exogenously alter
the composition of hair and are therefore confounding factors in
studies of human nutrition and toxic exposure via hair analysis.

In terms of agronomic and other practices, rice variety type
appears to be an important predictor of human hair mineral
content. Namely, improved rice varieties is the second strongest
(positive) predictor of hair Zn while traditional varieties is the
strongest (negative) predictor of hairCa. Further, the boil anddrain
rice cookingmethod appears to be a strong negative factorwithhair
essential mineral Fe and a strong positive predictor of hair Cd, and
rice storage, irrespective of container material, appears to be the
Frontiers in Soil Science | www.frontiersin.org 11
second, third and fourth negative predictor of hair Ca, Cd and Pb,
respectively. Lastly, diarrhea incidence – an eventmarked by severe
nutrient losses coupled with susceptibility to toxicity – is the
strongest (positive) driver of human Cd and Pb toxicity.

In general, however, the predictors form limited consistent
patterns across the five different hair minerals and theoretical
interpretations were not well confirmed.
CONCLUSIONS

This is a cross-sectional observational study on the effects of the
geographic, environmental and socio-demographic factors as
well as rice agronomic, processing, and cooking practices on
the micro-mineral nutritional and toxicological status of women
in the rural tribal villages of Jharkhand. We chose these
subsistence farming communities because diets are primarily
based on locally produced food stuffs with less potential for
confounding effects from admixed foods from outside the study
area. We found that minerals at all three levels ─soil, rice and
TABLE 2 | The top five predictors in descending order of magnitude (1─5) of human hair Zn, Fe, Ca, Pb and Cd based on the best model comparison between the
ridge and lasso regularized regression methods (data without outliers); l signifies the penalty term where higher values indicate more underestimated coefficients.

Hair Zn Hair Fe Hair Ca Hair Cd Hair Pb

SOIL
Best model Ridge Ridge Lasso Ridge Ridge
l 10 10 0.07 10 20
RMSE 0.89* 1.00 0.82 0.89 0.74
R2 0.70 0.79 0.77 0.79 0.80
Variables Selected/Coefficients
1 Fe 0.04 K -0.05 P -0.46 PR<15 0.06 Se 0.03
2 Na -0.03 Al -0.03 Cr -0.44 OM -0.03 Cu 0.02
3 PR>45 -0.03 PR<15 0.03 WAS 0.27 AC 0.03 Zn 0.02
4 K -0.03 OM -0.03 Sr -0.26 Ba -0.03 AC 0.02
5 Cd 0.02 Clay -0.03 Protein 0.16 Pb -0.03 pH 0.02
RICE
Best model Lasso Lasso Ridge Lasso Lasso
l 0.2 0.14 0.5 0.20 0.15
RMSE 0.91 0.89 0.99 0.72 0.64
R2 0.51 0.43 0.40 0.41 0.45
Variables Selected/Coefficients
1 P -0.23 Pb 0.21 Mg 0.21 Pb 0.33 Pb 0.47
2 Cr -0.10 P -0.09 Phytate -0.20 Cu -0.08 Mo -0.07
3 Ba 0.09 Na 0.05 S 0.19 Mo -0.07
4 S -0.06 Cu -0.18
5 K -0.17 Cd 0.15
OTHER
Best model Lasso Ridge Lasso Lasso Ridge
l 0.25 13 0.22 0.13 10
RMSE 0.99 0.92 0.89 0.97 0.75
R2 0.53 0.47 0.63 0.48 0.53
Variables Selected/Coefficients
1 Hair detergent:

Shampoo
0.47 Dyed Hair: Yes -0.06 Rice Variety Type:

Traditional
-0.17 Diarrhea

occurence: Yes
1.43 Diarrhea occurence:

Yes
0.13

2 Rice Variety Type:
Improved

0.20 Cow or Goat Manure
Applied: Yes

0.05 Rice storage: Bins -0.12 Dyed Hair: Yes -0.21 Hair detergent:
Soap&Shampoo

0.09

3 Pulses outsourced:
Yes

0.14 Livestock: cow+other 0.04 Hair Detergent:
Shampoo

0.04 Rice storage:
Sacks

-0.21 Hair detergent:
Shampoo

-0.06

4 Rice cooking method:
boil&drain

-0.04 Quantity per
application

0.01 Rice storage: Sacks -0.05

5 Rice consumption
frequency: >1/day

-0.04 Rice cooking method:
boil&drain

0.05
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hair─ differed significantly among categorical variables and are
the result of a combination of natural and anthropogenic effects.
These include geographical (differences in parent material,
textural classes, etc.) and agronomic effects (livestock
management) for soil-related variables; geographical,
environmental (distance to industrial facilities) and agronomic
(rice variety grown) effects for rice variables; and food
preparation (rice cooking method, water sourced for cooking)
and personal (farming experience, land wealth, grooming
practices) effects for human hair. The regularized regression
methods showed that many interlinkages exist between soil
and humans through the rice crop intermediate, as well as
between socio-demographics and human health, albeit complex
and indirect. But in fact, it was difficult to establish consistent
connections between soil health, food quality, and human health,
even in a subsistence farming environment where most food is
sourced locally. Significant effects of variables could in a few cases
be causationally explained, but in other cases may have been the
result of the multiple comparison problem because a multitude
of variables were analyzed simultaneously. It may very well be
that the underlying significant differences among groups are a
fact of these attributes, and our results are therefore in line with
other studies that were challenged to identify soil and human
health connections. For the sake of future research, the current
study’s shortcomings included a somewhat limited sample size
(n=43), rice not sampled directly from the plots at harvest time to
avoid admixing, and rice not being assessed from a
bioavailability standpoint.
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