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Pedological characterization
and soil fertility assessment
of the selected rice irrigation
schemes, Tanzania

Said H. Marzouk1*, Hamis J. Tindwa2, Boniface H. J. Massawe2,
Nyambilila A. Amuri2 and Johnson M. Semoka2

1Department of Science, Ministry of Education and Vocational Training, Zanzibar, Tanzania,
2Department of Soil and Geological Sciences, Sokoine University of Agriculture, Morogoro-
Tanzania, Tanzania
Rice (Oryza sativa L.) is the second cereal food crop grown in Tanzania after

maize (Zea mays L.) and covers approximately 18% of the agricultural land. Soil

degradation due to intensive cultivation along with low organic matter input and

nutrient imbalance has led to a decline in rice crop yields. This study was

conducted to characterize, classify, and assess the fertility status of soils in two

rice irrigation schemes of Morogoro region in Tanzania. The data obtained

through this study will contribute significantly to land use planning and will

facilitate the transfer of agro-technology and other development of the regions

with similar ecological conditions. The studied pedons were named MKU-P1 and

MKD-P1 for Mkula and Mkindo irrigation schemes, respectively. A total of seven

composite soil samples (0–20 cm) were collected for soil fertility assessments.

Landform, soil morphological features, parent material, natural vegetation,

drainage, erosion, and laboratory data were used to classify the soils in their

respective order as per the United States Department of Agriculture (USDA) Soil

Taxonomy and the World Reference Base (WRB) soil classification systems.

Results showed that the pedons were sandy clay loam in the topsoil and sandy

clay to clay in the subsoil; soil reaction ranged from medium acid (pH 5.7) to

strongly alkaline (pH 8.6). The topsoil and subsoil nutrients of the studied pedons

including available K+, total N, soil organic matter, and organic carbon are low.

Based on the USDA Soil Taxonomy, MKU-P1 is classified as Inceptisols cumulic

humaquepts and MKD-P1 as Vertisols Fluvaquentic endoaquerts corresponding

to Subaquatic fluvisols (loamic, oxyaquic) and Irragric vertisols (gleyic) in the

WRB, respectively. The pedons were ranked as suitable for rice production.

However, the chemical fertility of the soil is ranked as low fertile associated with

deficient in total N; available P, K+, and Ca2+ with excessive iron and manganese;

and likely to pose toxicity to crops. The application of organic and mineral

amendments in recommended rates and timing for N and P is therefore essential

to increase the nutrient content of these soils and minimize losses. Salinity in the

subsurface pedon MKD-P1 needs to be taken into future consideration.
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1 Introduction

Soil classification and soil fertility assessments are fundamental

disciplines and the basic features of modern agricultural technology

(1, 2), and their vital purpose is to identify and quantify the soils and

their ability to supply nutrients for plant growth and production (3).

In comparison, land suitability assessment may be defined as an

estimate of the land or soil to fit for specific crop production (4). It

involves a wide range of criteria such as climatic factors, soil

characteristics, and landforms to identify land use options and

most suitable management solution for crop production (5, 6) and

provides information related to the major factors of shortage in the

production of a particular crop (7, 8). In quantitative approaches,

several simulation modeling systems are used to evaluate land

suitability and quantify the potential uses of land (9). FAO

guidelines on land evaluation systems (10) and physical land

assessment methods (11) are widely used for land suitability

assessment and are adopted for the present study.

According to FAO (12), rice consumption in Africa is projected

to reach 34.9 million tons by 2025. However, if the production trends

continue to remain constant, the African countries will meet only

two-thirds of the demand and more than 12 million tons will need to

be imported annually corresponding tomore than 5 billion USD (13).

In Tanzania, productivity is estimated at 0.5–2.0 t ha-1 in the uplands

rice production systems and at 4.5–6.0 t ha-1 in the lowland irrigated

rice production system, which is far below the potential of 5 t ha-1 and

10–11 t ha-1 under proper resource endowment (14).

Previous studies carried out in some irrigated schemes of

Tanzania showed that soil fertility degradation is one of the

major threats facing rice production systems (15, 16), which is

associated with the depletion of important nutrients such as

nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and zinc

(Zn) (17, 18). The soils are also very low in organic carbon (OC),

which is attributed to insufficient use of manure (19), topsoil

erosion and leaching (20), and the deterioration of other physical

soil properties (21). Therefore, the efficient management of soil is

essential for ensuring proper rice production in the country (22).

Understanding soil characteristics and managing soil fertility

are important to the sustainable use of soils (23), and they provide

information on the soil type, fertility, and productivity (24–26),

which are vital for livelihoods while maintaining food security and

minimizing the risk of malnutrition (6, 19). Yet, in Tanzania, such

information is still limited to specific zones of interest (27), and

available information remains rather scanty relative to the large size

of the country (28), particularly in lowland rice production systems

(29). This makes farmers use inappropriate soil and water

management options (1) and overdependence on agrochemicals

as a key nutrient management option resulting in severe soil

degradation and environmental pollution (30). Therefore, it is

important to undertake various studies on soils to determine the

appropriate management option for improved crop production

(31). It is for this reason that the present study was conducted to

characterize and classify the soils based on the USDA Soil

Taxonomy and Tier-2 of the World Reference Base (WRB) for

Soil Resources and assess the suitability and fertility status of the

study areas for improved rice production.
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2 Materials and methods

2.1 Description of the study areas

The study was carried out at Mkula and Mkindo irrigated schemes

located in Kilombero and Mvomero districts, which lie between

latitudes 8°14’28.93” S and 6°14’8.221” S and longitudes 36°20’5.71”

E and 38°41’37.4928” E, respectively. The physiography and climate of

the representative study sites are summarized in Table 1. Morogoro

Region has a tropical savanna climate with a bimodal rainfall

distribution pattern, having a dry spell separating the short rains

between October and December and long rains between March and

May (28). The mean annual rainfall and temperature in the Kilombero

valley range from 1,200 to 1,400 mm and between 22°C and 23°C,

respectively (32), and the mean annual rainfall and temperature in

Mvomero range between 716.5 and 1,503.5 mm and 24°C–34°C,

respectively (14). Both sites are characterized by a sandy clay loam

topsoil, and clay contents increase toward the subsoil. Both sites are

located within the agroecological zone E10 in the “Eastern Plateaux

and Mountain Blocks.” The areas are mainly characterized by lowland

irrigated rice production having two crop production patterns per year.

The first pattern starts as long rains between February and June, and

the second pattern is short rains between August and December. The

sites receive sufficient water drained from the forest reservoir on the

eastern side of UdzungwaMountain forMkula and theWami basin for

Mkindo. Figure 1 shows the location of the studied areas and

representative sites of trials depicted on the generalized soil map of

theMorogoro region of Tanzania and Figure 2 show the studied profile

(MKU-P1 and MKD-P1).
2.2 Fieldwork and laboratory methods

A reconnaissance field survey using transect walks and an auger

observation was done in both sites from July to August 2022

(Figure 3). Data on landform, soil morphological features (color,

texture, consistency, structure, porosity, and depth), parent

material, natural vegetation, drainage, slope gradient, elevation,

erosion, and land use were recorded and filled in forms designed

by the National Soil Service, Tanzania, adopted from the FAO

Guidelines for Soil Description (33). The representative study sites

were georeferenced by international coordinates using the Global

Positioning System (GPS) (model GARMIN etrex 20), and, in each

site, one representative soil profile pit was excavated to describe the

characteristics of the soil. Soil color was determined using Munsell

color charts (34). Disturbed soil samples were taken from

designated pedogenic horizons, whereas undisturbed core soil

samples were collected from three sections of the profile (0–5,

45–50, and 95–100 cm) for laboratory analysis. Using a soil auger,

seven composite soil (0–20 cm depth) samples were collected from

four sampling spots. The four subsamples collected from the

sampling spots were mixed and quartered to obtain representative

composite samples of 1 kg for laboratory analysis. In the Mkula

irrigation scheme, the land was divided into three parts: the upper

slope (MKU-U), middle slope (MKU-M), and lower slope (MKU-
frontiersin.org
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L), while at the Mkindo irrigation scheme, the samples were taken at

the upper slope (MKD-U), middle slope (MKD-M), lower slope

(MKD-L), and at the valley (MKD-V).

Soil samples were collected and transported to the Sokoine

University of Agriculture in Tanzania at Soil Laboratory for the
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determination of physical and chemical properties following standard

procedures. Particle size analysis was done by the hydrometer

method after dispersion with 5% sodium hexametaphosphate (35),

Soil bulk density and moisture retention characteristics were done by

drying undisturbed core soil samples at 105°C for 24 h (36). Soil pH
TABLE 1 Physiography and climate of the representative study sites.

District Kilombero District Mvomero District

Village Mkula Village Mkindo Village

Date of survey 27/07/2022 10/08/2022

Location Mkula irrigation scheme Mkindo irrigation scheme

Pedon identification MKU-P1 MKD-P1

Agro-ecological zone Eastern Plateaux and Mountain Blocks Eastern Plateaux and Mountain Blocks

Coordinates 7° 47’ 57.084’’ S
36° 54’ 47.592’’ E

6° 34’ 11.64’’ S
37° 32’ 29.112’’ E

Altitudes (m.a.s.l.) 296 361

Landform Valley Flat land

Slope gradient (%) 3% 2%

Cracks Nd Few cracks (1 cm)

Land use/Vegetation Irrigated rice Irrigated rice

Natural vegetation 55% grasses, 40% herbs, 3% bare ground, 1% trees, 1% shrubs 70% grass, 20% herbs, 10% bare ground

Natural drainage Poorly drained Moderately well drained

Flooding Flooded approximately 3 months per year Flooded approximately 3 months per year

Annual rainfall (mm) 1,200–1,400 716.5–1,503.5

Soil moisture regime (SMR) Udic Udic

Mean annual temperature (°C) 22–23°C 24–34°C

Soil temperature regime (STR) Isohyperthermic Isohyperthermic
FIGURE 1

Location of the studied soil profile depicted on the generalized soil map of Mvomero and Kilombero districts—Tanzania (Source: Tanzania
Government Printer).
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and electrical conductivity were determined potentiometrically in

soil-to-water suspension (1:2.5) and 1 N KCL (37). Soil OC was

determined by the Walkley and Black wet oxidation method (38, 39).

Extractable P was determined by a spectrophotometer (40). Total

nitrogen was analyzed by the micro-Kjeldahl distillationmethod (37).

Cation exchange capacity (CEC) was determined by the neutral

ammonium acetate saturation method (NH4-Ac, pH 7.0) followed

by Kjeldahl distillation (41). Exchangeable bases (K+, Mg2+, Ca2+, and

Na+) were determined by the 1N NH4-Ac (pH 7.0) method. Mg and

Ca were read by the UV-Vis spectrophotometer and K and Na by

flame (42). Extractable micronutrients (Fe, Cu, Zn, and Mn) were

extracted by diethylenetriamine pentaacetic acid (DTPA) and

determined using atomic absorption spectroscopy (AAS) (43).
2.3 Soil classification and land
suitability assessments

The first step in delineating land suitability for crop production

was to identify the relevant climate, soil, and landscape of the areas (4,

5). In this study, field and laboratory data were used to classify and

assess the suitability of the soils for rice production. The soils in each

pedon were classified into their appropriate order, suborder, great

group, and subgroup following the guideline of the USDA Soil

Taxonomy (44) and tier-2 of the FAO World Reference Base for

Soil Resources (45). The suitability assessments of the studied pedons

were done by using simple limitation methods (46). The land

diagnostic property was selected, and the corresponding levels of

generalization were established related to the suitability classes

through gradation matrices (47). Each pedon was assigned to a

suitability class by matching the ecological and soil nutrient

requirements for rice production (Table 2) (46). The group of land

qualities considered for evaluation includes climate (c), topography

(t), drainage characteristics (w), soil physical characteristics (s), and

soil chemical fertility (f). The land suitability was ranked as S11 (96–

100)—no limitation; S12 (86–95)—slight limitation; S2 (61–85)—
Frontiers in Soil Science 04
moderate limitation; S3 (41–60)—severe limitation; N1 (20–40)—

Very severe limitation that can be corrected; N2 (0–19)—very severe

limitation that cannot be corrected. The overall soil suitability for rice

production was assessed through the maximum limitation method

where suitability is taken from the most limiting factor of soil

characteristics (4, 47). The requirements of each kind of land use

are obtained from Osinuga et al. (46) and Sys et al. (11). Table 3 show

factor rating and rating values of soils.
2.4 Soil fertility assessments

Soil fertility was assessed using the soil fertility index (SFI) model

(48–50). This procedure uses a numerical scale ranging between the

highest value of 100 and the lowest value of 0 assigned to a particular

characteristic of soil. If a characteristic was quite good for the

intended crop, the highest rate of 100 was assigned to it, and, when

it met some limitations, a lesser rate was assigned. The rating values

were classified as per Saglam and Dengiz (49) (Table 4).
2.5 Correlation analysis

The relationship between the soil parameters was evaluated

through correlation analyses using SPSS software.
3 Results and discussion

3.1 Soil morphological characteristics

Field survey involves soil observations (auguring and profiles)

including topography; slope; and the nature of the parent materials,

soil horizon depths, color, texture, vegetations, mottles, and soil

biological activities. The key morphological properties of the

profiles are shown in Table 1. The studied pedons show slight
FIGURE 2

Soil profiles excavated at Mkula (MKU-P1) and Mkindo (MKD-P1) villages in Kilombero and Mvomero districts—Tanzania.
frontiersin.org

https://doi.org/10.3389/fsoil.2023.1171849
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Marzouk et al. 10.3389/fsoil.2023.1171849
TABLE 2 Soil suitability assessments classes for rice production.

Land qualities S11
96-100

S12
86-95

S2
61-85

S3
41-60

N1
21-40

N2
0-20

Climate (C) Annual rainfall (mm) 1,200–1,500 1,000–1,200 800–1,000 800 <800 <800

No. of dry months 0–2 2–3 4–5 6–7 >7 >7

Mean annual temp. (°C) >25 22–25 20–22 18–20 <18 <18

Relative humidity (%) >75 70–75 65–70 60–65 <60 <60

Topography (T) Slope gradient (%) 0–2 3–6 7–16 16–25 >25 >25

Wetness (W) Drainage Wd Id Md Pd Vpd Vpd

Flooding F0 F0 F1 F1 F2 F2

Soil physical properties (S) Soil depth (cm) >100 75–100 60–75 50–60 <50 <50

Surface texture C, SCL CL SC, CL SL, L LS S

Gravel at 0–20 cm (%) <2 2–4 5–15 16–30 30–35 >35

Chemical fertility (F) pH (H2O) 7.5–8.0 7.0–7.5 5.5–7.0 5.0–5.5 4.0–5.0 <4.0

OC(%) >5 3–5 2–3 1–2 <1 -

TN (%) >0.5 0.4–0.5 0.2–0.4 0.1–0.2 <0.1 <0.1

Available P (mg/kg) >10 7-10 4–6 2–4 <2 <2

Exchange K (cmol/kg) >0.6 0.4-0.6 0.2–0.4 0.1–0.2 0.05–0.1 <0.05

CEC (cmol/kg) >16 12-16 8–12 5–8 <5 -

BS (%) >75 75 50–75 35–50 <35 <35
F
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Classes: S11 (96-100)—no limitation; S12 (86-95)—Slight limitation; S2 (61-85)—moderate limitation; S3 (41-60)—severe limitation; N1 (20-40)—very severe limitation that can be corrected; N2
(0-19)—very severe limitation that cannot be corrected (11, 46).
TABLE 3 Factor ratings and rating values of soil parameters.

Soil parameter Factor rating

100 80 50 20 10

pH (1:2.5; soil: water) 6.5-7.5 7.6-8.5 5.5-6.4 4.5-5.4 <4.4->8.5

EC (dS m-1) 0-2 2.1-4 4.1-6 6.1-8 >8

SOM (g kg-1) >30 20.1-30 10.1-20 5.1-10 0-5

TN (g kg-1) >3.20 1.71-3.20 0.91-1.70 0.45-0.90 <0.45

P (mg kg-1) >80 25.1-80 8.1-25 2.4-8.0 <2.5

Ca (cmol (+) kg-1) 17.6-50 5.76-17.5 1.19-5.75 >50 <1.19

Mg (cmol (+) kg-1) >12.5 4.1-12.5 1.34-4.0 0.42-1.33 <0.42

K (cmol (+) kg-1) 0.29-0.74 0.75-2.56 0.13-0.28 >2.56 <0.13

Na (cmol (+) kg-1) 0-0.20 0.21-0.30 0.31-0.70 0.71-2.0 >2.0

Zn (mg kg-1) 0.71-2.41 2.4-8.0 0.2-0.7 >8 <0.2

Fe (mg kg-1) 2.1-4.5 1.1-2.0 0.2-1.0 >4.5 <0.2

Mn (mg kg-1) 15-50 4-14 50-170 >170 <4

Cu (mg kg-1) >0.2 <0.2

Soil textural class CL, SCL, SiCL vfSL, L, SiL, Si C, SC, SiC SL, fSL S, LS
Chemical property: EC, electric conductivity; SOM, soil organic matter; TN, total nitrogen; C:N, carbon-to-nitrogen ratio; P, phosphorus; SO4-S, sulfate sulfur; Ca, calcium, Mg, magnesium; K,
potassium; Na, sodium, CEC, cation exchange capacity; ESP, exchangeable sodium percentage; BS, base saturation; Zn, zinc; Fe, iron; Mn, manganese; Cu, copper.’ Textural class: CL, clay loam;
SCL, sandy clay loam; SiCL, silty clay loam; vfSL, very fine sandy loam; L, loam; SiL, silty loam; Si, silt; C, clay; SC, sandy clay; SiC, silty clay; SL, sandy loam; fSL, fine sandy loam; S, sand; LS, loamy
sand. Source: (48–50).
sin.org

https://doi.org/10.3389/fsoil.2023.1171849
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Marzouk et al. 10.3389/fsoil.2023.1171849
variation in drainage patterns, but the MKU-P1 pedon is poorly

drained and very shallow (20 cm), while MKD-P1 is well drained

and very deep (>160 cm). The soils are of friable moist consistency

and are slightly hard to very hard when dry. Soil horizons were quite

distinct in both pedons ranging from smooth clear, smooth diffused

to gradual wavy with smooth horizon topography without any

evidence of the rock outcrop and surface crusting throughout the

profiles. However, few fine cracks were observed in the topsoil (1–

10 cm) of the pedon MKD-P1. The topsoil color of the pedon

MKU-P1 varies from gray (2.5Y5/1) when moist to dark gray

(7.5YR4/1) when dried, and the subsoil color varies from light

yellowish brown (2.5Y6/4) when moist to yellowish brown (10YR5/

6) when dried with a predominance of a few fine to medium-

yellowish mottles indicating the presence of reduced iron-oxide

minerals probably due to the elluviation–illuviation process as a

result of waterlogged conditions (51, 52). In MKD-P1, the topsoil

color varies from dark brown (7.5YR3/2) when moist to very dark

grayish brown (10YR3/2) when dried, and the subsoil varies from

dark gray (5YR4/1) when moist to very dark-grayish brown

(10YR3/2) when dried with very few faint to brownish-gray fine

mottle characteristics of the vertisol soils that dry very rapidly when

water saturation is minimized in the areas. Several researchers also

observed the same trends of a distinct pattern of mottling associated

with alternating conditions of the reduction and oxidation of

sesquioxides of Al and Fe caused by seasonal waterlogging

conditions (18, 23, 53). However, the observed waterlogging

condition and soil structure of the pedons are favorable for the

growth of the rice crops (46). Plant roots and a few earthworms

were found in the studied pedons ranging from numerous fine roots

and few earthworms in the topsoil and few fine roots in the subsoil.
3.2 Soil physical and chemical
characteristics

Soil texture is an important characteristic that influences

agricultural production, affecting crop selection, crop growth, soil

moisture availability, erodibility, root penetration, and the

movement of nutrients and water (54). Generally, the topsoil of

both studied pedons had sandy clay loams and the sand contents

decrease down the profiles, which may be due to the leaching of the

finer particles as a result of an elluviation–illuviation process or

washing out of the surface soil through erosion. The silt contents of

the studied pedons did not show any regularity with depth and are

low in all profiles compared to sand and clay. The pedon MKU-P1

has higher sand contents compared to MKD-P1. This result is
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consistent with observations by Kalala (18) that pedons were

characterized by higher sand contents and an increase of clay

with depth in the Kilombero valley. However, the subsoil of the

pedon MKD-P1 has higher clay contents compared to MKU-P1.

The silt–clay ratio is an indication of the susceptibility of the soils to

detachment and transport that also depends on other properties like

bulk density, soil organic matter, and climate (54). The silt–clay

ratio of both studied pedons is higher (0.4) in top soils, which falls

within the threshold level of 0.4 implying moderate resistance to

erosion (54). The subsoil levels in all studied pedons fall below the

threshold level of 0.4 (Table 5) indicating more susceptibility to

weathering compared to the topsoil, probably due to the illuviation

of clay contents that increases with depth (1, 23).

Soil bulk density describes the quality of the soils, and its

information is crucial in the determination of soil compaction and

root penetration (55). According to Landon (54), surface soils with bulk

densities ranging from 1.1 to 1.4 Mg m-3 indicate that the soils are less

compact and suitable for agricultural production. The pedon MKU-P1

has a lower bulk density value in the topsoil (0.8 Mg m-3) and varies

from 1.36 to 1.39 Mg m-3 in the subsoil. Also, the pedon MKD-P1 has

lower bulk in the topsoil (1.14Mgm-3) and varies from 1.35 to 1.60Mg

m-3 in the subsoil. In both pedons, bulk density increases with depth

(Table 6) and the values of the topsoil fall below the critical level of

sandy loam for root restriction (1.8Mgm-3) indicating that the soils are

favorable for rice growth (56). Similar trends of increasing bulk density

with depth were observed by Lufega and Msanya (57) working on the

soil units of Morogoro District and Msanya et al. (3) working on the

soil of Dodoma City, Tanzania. The lower bulk density in the topsoil

might be due to the tillage and decomposed organic materials in the

areas. The topsoil total porosity of the study areas ranged from 5.95% to

68.24%. According to Landon (54), the topsoil with a total porosity of

more than 40% is favorable for root penetration. In both pedons, total

porosity decreases with depth, which is inversely correlated with bulk

density. This indicates less compaction in the surface soils compared to

the subsoil, which may be attributed to higher organic matter contents

and tillage. According to Lipiec and Hatano (58), soil porosity and pore

size distributions are important determinants of water, nutrients, and

gaseous exchanges within and throughout the root zone.

Soil reaction (pH) is a very important chemical characteristic

that may be used as a guide in assessing the suitability of soils for

various stages of crop production (56). The pH of the study areas

ranged from moderately acidic (5.75) to moderately alkaline (8.69).

The MKU-P1 pedon has moderate acidity (5.7) in the topsoil, which

increases the profile to slightly acidic (6.1–6.2). On the other hand,

the topsoil of MKD-P1 has slight acidity (6.0), which also increases

on moving the subsoil to moderately alkaline (8.1–8.6). The low pH

(acidic) in the topsoil might be due to the leaching of some basic

cations toward the subsoil leaving H+ in the topsoil or the nature of

the parent materials and the contribution of Fe3+ oxide reduction to

H+ consumption, which is far greater than the reduction of Mn4+-

Mn3+ oxides and SO42- during the submerging (59). Guo et al. (60)

reported that soil pH in paddy soil undergoes periodic changes

during submergence, which is mainly attributed to the soil redox

reactions. In each pedon, the value of pH(H2O) is higher than that of

pH(KCl) (Table 5), an indication of a net negative charge in the

soils (3).
TABLE 4 Classes and values of soil fertility index.

Class Soil fertility index Description

S1 >80 Good fertility

S2 80-51 Moderate fertility

S3 50-20 Marginal fertility

N <20 Poor fertility
Source: (Saglam and Dengiz, 2014).
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Electrical conductivity is a measure of water-soluble salts in the soil

suspension such as Na+, Ca2+, and Mg2+, which may be chlorides,

sulfates, or carbonates; it is an indication of soil salinity (54). The values

of EC in the topsoil of the study areas are very low and ranged between

0.1 and 0.07 dS/m. The topsoil values of exchangeable sodium

percentage ranged between 2.5% and 6.1%, which falls below the

range of sodic soils (less than 15%) (54). In MKU-P1, all values are

below 15% indicating that the salinity effects of the area are negligible.

However, in MKD-P1, the value increases toward the subsoil and

ranges from 20.5% to 21.1%, which is sodic (56). According to Wakeel

(61), soils with ESP ≥ 13 at the exchange sites but with low

concentrations of total soluble salts (EC < 4 dS m–1) are described as

sodic soils, and those with highly soluble salt concentrations of EC ≥ 4

dSm–1 and ESP ≥ 13 are termed saline-sodic soils. Hence the subsoil of

the pedonMKD-P1 is sodic. However, since the topsoil is not sodic, the

soil is suitable for rice production. Conversely, care must be taken to

reduce the amount of sodium in the subsoil that in the futuremight rise

and dominate the topsoil or form a hard layer and cause poor

infiltrations and drainage in the subsoil (27).

Soil OC is one part of the larger global carbon cycle that

involves carbon cycling in the soils and atmosphere. It affects the

physical, chemical, and biological properties of the soil such as

water infiltration, water-holding capacity, nutrient availability, soil

structure, bulk density, and the activity of soil microorganisms (62).

Generally, soil OC in the study areas ranged from very low (0.53%)

to high (2.60%) (54). The low to high OC could be due to the limited

use of organic manure and the burning of rice straws, which is a

vital organic source of nutrients in the rice cropping systems. The

studied pedon MKU-P1 has higher (2.6%) topsoil OC compared to

MKD-P1, which decreases to very low (0.53%) in the subsoil. In

contrast, the pedon MKD-P1 was moderate (1.73%) in OC in the

topsoil and decreases to low (0.91%) in the subsoil. It was observed

that OC decreased the profile possibly due to the influence of fresh

organic matter such as dead roots on the topsoil. However, the

trend of decrease is not regular in MKDP-1 resulting in higher OC

in the Bg horizon (1.3%) than that of the BssA horizon (1.2%). This

may be due to the clay texture of the lower subsoil compared to the

sandy clay texture, indicating that clay plays an important role in

OC stabilization, particularly in the subsoil (63).

The total nitrogen of the studied pedons ranged from medium

(0.31%) to very low (0.06%) (54, 56). The pedon MKUP-1 is higher

in the total nitrogen of the topsoil compared to MKDP-1, which

varies from medium (0.31%) to very low (0.06%) whereas that of

MKD-P1 varies from low (0.15%) to very low (0.05%). The low

observed nitrogen levels may be attributed to erosion, leaching, and

continued nutrient mining by plants. According to Fageria et al.

(53), in an anaerobic soil environment, the major part of N is lost

through leaching and denitrification. However, the N loss can

be supplemented by the N fertilizer and or manure application.

The C:N ratio is a measure of the relative nitrogen contents of

organic materials, and it is a good indicator of the quality of organic

materials that are very useful tools in the prediction of organic

matter mineralization (26, 64). The topsoil C:N ratio of the study

areas ranged between 8.6 and 11.7, which are below and close to the

guideline value of 10:1 indicating that soils have good-quality

organic matter (54).
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The available P of the study areas ranged from very low (0.95 mg

P/kg) to low 7.8 mg P/kg and falls within S3 and N1 classes indicating

that soils have limited soil P that needs to be corrected for effective

rice production (46). In MKU-P1, the P content of the topsoil is low

(7.8 mg P/kg) and varies to very low (1.4–0.9 mg P kg-1) in the

subsoil. The pedon MKD-P1 has very low P throughout the profile

(Table 7). According to Landon (54), P-values ranging from 5 to 7 mg

P kg-1 are problematic for rice production. The low available P in the

soils of the study areas may be due to low-phosphorus parent

materials or P fixation and the formation of insoluble compounds

of Ca2+ as a result of alkaline soils in the case of the MKD-P1 subsoil

or Al and Fe compounds in acid condition for MKU-P1 and the

topsoil of MKD-P1(65, 66). Uwitonze (24) and Haryuni et al. (67)

reported that P availability to plants is strongly influenced by the pH

of the soils and maximized when the soil pH is between 5.5 and 7.5.

The CEC is a measure of the ability of the soil to hold positively

charged ions and is an important property in overall assessments of

soil fertility (56). According to a rating by Landon (54) the CEC in the

topsoil of the study areas ranged from very low (2.38 cmol(+) kg
-1) to

low (11.4 cmol(+) kg
-1) (Table 8), an indication of poor fertility and

being unsuitable for irrigated agriculture. The values of CEC in

MKU-P1 are very low throughout the profile, while that of MKD-

P1 varies from low in the topsoil (11.4 cmol(+) kg-1) through a

medium (15.82 cmol(+) kg
-1) to high 28.64 cmol(+) kg

-1 in the subsoil.

Generally, the CEC increases with depth in pedon MKD-P1, whereas

in MKU-P1, the increase is less pronounced; this may be due to

higher clay contents in the subsoil of MKD-P1 and higher pH values

(68). The low CEC values, in MKU-P1, may be due to the leaching of

some basic cations. According to McLean (69), leaching leads to

higher H+ in the soils; the H+ replaces the basic cations from the

exchange complex of the soils and built-up exchangeable acidity that

begins to attack the mineral crystal releasing Al3+. As some of the H+

degenerate into the minerals increasing the pH, as a result, hydroxyl-

Al ions are formed, which are chelated by organic matter or

polymerized on the cation exchange sites of the soil minerals.

Additionally, Landon (54) reported that CEC is lowest at the soil

pH of 3.5–4.0 and increases as the pH is increased by liming; the

positive charges retain anions (negatively charged ions) such as

chloride (Cl-) and sulfate (SO4
2-).

The exchangeable cations of the studied pedons ranged from

very low (0.22 cmol (+) kg-1) to medium (4.13 cmol(+) kg-1)

(Table 8). The pedon MKU-P1 is low in Ca2+ throughout the

profile compared to MKD-P1 (56). Exchangeable Mg2+ in both

pedons is high ranging from 0.88 to 3.64 cmol(+) kg
-1 (54). The soil

K+ reserve and its availability to plants are vital in determining the

K-supplying capacity of soils (70). The concentration of K+ in both

topsoils and subsoils was low and ranged from 0.06 to 0.26 cmol(+)
kg-1 in the two pedons (54). Wakeel (61) reported that K+

concentration in soils depends on clay minerals and other

exchangeable cations, especially Ca2+, Mg2+, and Na+. High

concentrations of these cations in irrigated soils lead to K+

desorption, leaching, and even loss from the soil profile. Low K+

in soils might be due to low K+ inherent parent materials and/or

excessive use of N and P fertilizers with insufficient K+ application.

The base saturation percentage (BSP) is defined as the sum of

basic cations (Ca2+, Mg2+, K+, and Na+) over the total cation
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exchange capacity (71). It is an important chemical property in soil

classification and soil fertility assessments that influences soil

structure stability, nutrient availability, soil pH and soil response

to fertilizers, and other soil amendments (25, 72). The values of the

BSP in the topsoil of the study areas are moderate and ranged

between 44.1% and 59.6% (54). According to Hazelton and Murphy

(56), the soils with base saturation below 30% indicated strongly

leached soils and the ones with BSP above 70% indicated very

weakly leached soils. The individual pedon has the following BSP:

The pedon MKU-P1 has a medium BSP throughout the profile that

varies from 59.6% in the topsoil and decreases the profile to 57.7%

(Table 6). Munsell Color (Firm), (2019) (34) reported that soils with

low base saturation levels of <60%may result in very acidic soils and

potentially toxic cations such as Al and Mn. The BSP in the topsoil

of the pedon MKD-P1 is moderate (44.1%) but varies from high

(64.3%) to moderate (44.2%) in the subsoils. The moderate BSP in

both pedons might be due to poor cultivation practices, poor soil

and water conservation, and an inadequate supply of fertilizer. The

higher BSP in the subsoil of the pedon MKD-P1 might be due to the

higher level of sodium concentration since, according to Landon

(54), the base saturation percentage does not distinguish between

different bases and imbalance may cause nutrition problems.

However, based on descriptions picked from Osinuga et al. (46),

all values of the BSP in the studied pedons are classified as suitable

for rice production.

In assessing the soil requirement for plant nutrients, the

relationship that exists between certain ions (Ca2+, Mg2+, and K+)

and their balanced ratio must be determined to ensure proper plant

growth (18). The exchangeable cations in the study areas have

different trends of bases. In MKU-P1, the basic cations follow this
Frontiers in Soil Science 09
trend of Mg > Ca > K > Na, while the trend in MKD-P1 is K+ > Ca2+

> Mg2+ > Na+ (Table 8). The result of the pedon MKU-P1 is

consistent with Kalala (18), working on the soils of the Kilombero

valley, who also observed higher Mg2+ in the soils. In both pedons,

the Ca/TEB ratio is below 0.5 throughout the profiles indicating that

Ca2+ has no effects on the uptake of other cations such as K+ and

Mg2+ (31). The Ca/Mg ratio in the studied pedons ranges from 0.25

to 2.82, and all are within favorable levels (1.2–5.2) for crop

production (1, 23). The Mg2+/K+ ratios in pedons MKU-P1 and

MKD-P1 vary from 0.11 to 0.15 and 2.1 to 5.09, respectively. Based

on the rating by Landon (54), all Mg2+/K+ ratios of the pedon

MKU-P1 are within the favorable level for rice production.

However, the topsoil of the pedon MKD-P1 and the last subsoil is

above the critical level (1–4), implying potential nutrient imbalance

and toxicity, hence causing Mg2+ deficiency due to a higher K level.

According to Landon (54), the minimum level of the K/TEB ratio is

2% to avoid K+ deficiency and above 25%, which is rare to occur; the

soils will have similar effects to high Na. The K/TEB ratio of the

studied pedons ranges from favorable (9.71%) to unfavorable

(55.4%). All values of K/TEB in MKU-P1 fall within the favorable

levels, and those of MKD-P1 fall within the unfavorable levels

(Table 10). This finding indicated that the levels of K in the pedon

MKD-P1 have nutrient imbalance and the K+ level may induce the

deficiency of other cations such as Ca2+ and Mg2+.

The value of Cu of the studied pedons ranged from 1.15 to 5.7

mg kg-1 which is under the sufficient level of 0.2 mg kg-1 for

optimum plant growth (54, 73). The topsoil Zn levels ranged from

0.5 to 0.6 mg kg-1. Based on categorization by Landon (54), both Zn

levels fall within the sufficient range of 0.5 mg kg-1 for rice growth.

However, the studied pedon MKD-P1 has a low level of Cu
TABLE 7 Summary of morphological and diagnostic features of the studied pedons.

Pedons Diagnostic
horizons USDA

Other features: USDA Soil Taxonomy (Soil Survey Staff, 2006) Diagnostic horizons, properties
and materials (WRB, 2006)

MKU-P1 Mollic epipedon;
Cambic horizon

Valley, very shallow, sandy clay loam, slightly to medium acid, udic SMR,
redoximorphic features, many fine mottles, isohyperthemic STR

Mollic horizon, glayic, redoximorphic.

MKD-P1 Mollic epipedon,
vertic horizon

Almost flat, very deep, sandy clay loam to clay, medium acidic to medium basic,
isohyperthemic, and many fine surface cracks, and slickensides.

Vertic, irragric horizon, shrink-swell cracks,
very hard dry consistency.
TABLE 8 Classification of the studied pedons.

Pedons USDA Soil Taxonomy FAO-WRB Soil Classification

Order Suborder Great
group

Subgroup Family Reference
Group- Tier
1

Tier-2 WRB Soil
name

MKU-P1 Inceptisols Aquerts Humaquepts Cumulic
Humaquepts

Flat, very shallow, sandy clay
loam,
slightly to medium
acid, udic SMR,
isohyperthemic STR,
Cumulic Humaquepts

Fluvisols Subaquatic Fluvisols
(loamic, oxyaquic)

MKD-P1 Vertisols Aquerts Endoaquerts Fluvaquentic
endoaquerts

Very deep, moderately alkaline, sodic, udic,
isohyperthemic, Fluvaquentic endoaquerts

Vertisols Irragric vertisols
(glayic)
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throughout the subsoil that was below the detection limit. All values

of Fe (2.75–380.09 mg kg-1) and Mn (10.71–95.26 mg kg-1) were

within the sufficient range for plant growth (23, 54).
3.3 Soil classification

Based on field and laboratory data, the pedons were classified

according to the family level of the USDA Soil Taxonomy and Tier-2 of

the WRB (44, 45). The diagnostic horizons, diagnostic properties, and

other diagnostic materials are shown in Table 7. The soil of the pedons

of MKU-P1 is classified as Inceptisols per the USDA and Fluvisols in

FAO-WRB soil classifications with Mollic epipedon having

redoximorphic features and glayic properties as a result of frequent

irrigation and flooding. The soil of the pedon MKD-P1 is classified as

Vertisols in both USDA and FAO-WRB soil classifications having vertic

horizons with shrink–swell cracks in the upper horizon and very hard

consistency. The details of classifications are shown in Table 8.
3.4 Soil-site suitability for rice production

The suitability of land for rice crop production was assessed based

on climatic and physiochemical properties that represent the fertility

states of the soil (Table 9). The slopes and climatic conditions of the

study areas are rated as highly suitable for rice production (S11) in

terms of rainfall, and temperature while drainage is rated S3 for

MKU-P1 and N for MKD-P1. The textural classes of the topsoil are
Frontiers in Soil Science 10
sandy clay loam and sandy clay, or clay in the subsurface horizons is

rated as S11 in both pedons. The base saturation is rated as S11 for the

pedon MKD-P1 and S2 for MKU-P1. The pedon MKU-P1 is low in

CEC (cmol(+) kg
-1) and low exchangeable K+ that is rated within N1

and S3, while the pedon MKD-P1 is rated within S12 for both CEC

(cmol(+) kg-1) and exchangeable K+. The land included in these

classes of CEC has certain fertility limitations that reduce crop

performances unless appropriate nutrient management is taken

into consideration (47). Using the FAO land suitability evaluation

based on climate and topography the areas were potentially suitable

for rice production (11, 46) with soil fertility limitation factors such as

total N and available P, K+, and Ca2+ that might be due to poor

agricultural practices associated with low organic matter application,

nutrient imbalance, inappropriate water management, and increased

carbon release (6, 74). These results were consistent with other studies

carried out in some rice irrigation schemes in Tanzania (17, 75, 76).

The areas can be ameliorated through the management strategies of

applying inorganic and organic fertilizers with good agricultural

practices (77–79).
3.5 Soil fertility status of the study areas

The textural classes of the studied pedons ranged from sandy clay

for MKU-S1 and MKU-S3, sandy loam for MKU-S2 and MKD-S1,

and sandy clay loam for MKD-S2, MKD-S3, and MKD-S4. Based on

rice requirements, all textural classes are favorable for rice production

(46). The pH of the surface soils of the pedon MKU-P1 is very
TABLE 9 Soil suitability classes of the studied pedons.

Land Qualities MKU-P1 MKD-P1

Climate (C) Annual rainfall (mm) (S11) (S11)

No. of dry months (S2) (S2)

Mean annual temp. (°C) (S11) (S11)

Relative humidity (%) (S11) (S11)

Topography (T) Slope gradient (%) (S11) (S11)

Wetness (W) Drainage (S3) (N1)

Flooding (F0) (F0)

Soil physical properties (S) Soil depth (cm) (S12) (S11)

Surface texture (S11) (S11)

Gravel at 0–20 cm (%) (S11) (S11)

Chemical fertility (F) pH (H2O) (S2) (S11)

OM (%) (S3) (S2)

TN (%) (S2) (S3)

Available P (mg kg-1) (S12) (N1)

Exchange K (cmol(+) kg
-1) (S3) (S12)

CEC (cmol(+) kg
-1) (N1) (S12)

BS (%) (S2) (S11)
fro
S11 (96–100)—no limitation; S12 (86–95)—slight limitation; S2 (61–85)—moderate limitation; S3 (41–60)—severe limitation; N1 (20–40)—very severe limitation that can be corrected; N2 (0–
19)—very severe limitation that cannot be corrected.
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strongly acidic and varies from pH 4.62–4.83 while the pH of MKD-

P1 ranged from very strongly acidic (4.78) to neutral (6.9). Results

indicated that 100% of the surface soils in pedon MKU-P1 and 25%

for MKD-P1 were low in pH falling within the N class indicating low

fertility. The low pH might be due to the leaching of basic cations,
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resulting in a high concentration of hydrogen ions, manganese, and

aluminum on soil colloids (80). Soils with low pH (<5.5) are

potentially great for Mn, Al, and Fe toxicity and the deficiency of

some essential nutrients, hence poor soil fertility (53). The OC of the

surface soils ranged from moderate (1.28%) in the MKD-S2 pedon to
TABLE 10 Chemical and physical properties of the surface soils of the study areas.

Pedons MKU-P1 MKD-P1

Sampling sites MKU-U MKU-M MKU-L MKD-U MKD-M MKD-L MKD-V

Sand % 37.04 19.04 35.04 80.4 60.4 56.4 72.4

Silt % 17.28 9.28 13.28 2.92 6.92 8.92 4.92

Clay% 37.04 19.04 35.04 16.68 32.68 34.68 22.68

Texture class SC SL SC SL SCL SCL SCL

pH(H2O) 4.83 4.80 4.62 4.78 6.92 6.03 5.35

pH(KCl) 4.52 4.48 4.50 4.10 5.79 4.94 4.49

EC 0.06 0.06 0.09 0.057 0.18 0.076 0.364

OC % 1.79 1.35 1.93 1.89 1.28 1.69 2.17

TN% 0.07 0.33 0.24 0.07 0.19 0.19 0.22

Avail. P (mg/kg) 2.45 7.74 0.68 8.38 1.26 2.05 8.80

Na+ 0.08 0.06 0.07 0.01 1.28 0.77 1.21

K+ 0.18 0.15 0.18 0.23 0.13 0.06 0.06

Ca2+ 0.34 0.19 0.34 1.09 3.21 3.30 2.52

Mg2+ 1.25 0.55 1.07 0.41 1.35 1.31 0.77

CEC(cmol/kg) 3.22 1.6 2.76 5.78 10.84 12.78 10.22

BS (%) 57.45 59.37 60.14 99.25 97.95 99.56 93.35

ESP 2.484 3.75 2.536 1.11 11.8 6.004 11.89

Ca/Mg 0.27 0.34 0.31 2.65 2.37 2.52 3.26

Zn 0.95 1.06 0.38 1.03 0.37 0.12 2.37

Cu 6.92 5.86 4.28 0.97 2.62 2.81 1.40

Mn 21.45 49.66 11.56 30.83 56.96 73.29 37.23

Fe 234.05 333.86 251.23 156.16 138.85 180.27 254.92
fron
U, upper; M, middle; L, lower; V, valley.
FIGURE 3

Flowchart of the methodological approach used in the study.
tiersin.org

https://doi.org/10.3389/fsoil.2023.1171849
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Marzouk et al. 10.3389/fsoil.2023.1171849
high (2.17%) in the MKD-S4 pedon (57). In both pedons, OC

increases down the slope, and this may be associated with the

erosion of organic materials from the upper to lower slope. The

low OC in the studied areas might have resulted from poor

management techniques of organic matter by poor farming

practices (81). Kalala (18) observed similar trends of low OC in the

Kilombero valley and related this with increasing soil CEC and

activity of soil microbes. Integrating organic materials can

contribute to replenish fertility levels, thereby enhancing

mineralization and the release of essential plant nutrients (48–50).

Merumba et al. (23) reported that the critical level of N that would

support the growth of the majority of crops in Tanzanian soils is 2.0 g

kg-1. The low nitrogen in the studied pedons could be associated with

low N fertilizer input, erosion, and volatilization due to the anaerobic

environments of the soils (82, 83). The phosphorus of the surface soils

varies from very low (0.68 mg kg-1) in MKU-S3 to low (8.8 mg kg-1)

in MKD-S4. Based on P requirements, 66.6% and 50% of the soils

were classified as poor in fertility (N), and 33.3%–50% were classified

as marginal in fertility (S3) in MKU-P1 and MKD-P1 pedons,

respectively. The low P content in the studied soils might be due to

the low inherent P of the parent rocks and P fixations with Al and Fe

as a result of the low pH of the soils (84). According to Landon (54),

the low P level in soils can be corrected by the application of both

inorganic and organic fertilizers. However, organic matter improves

soil pH and enhances P availability (23). Based on cation exchange

capacity, 100% of the surface soils in both pedons have Mg2+

concentration below the required level for fertile soils that fall

within the N class indicating poor fertility (48–50). The

concentrations of Ca2+ in all soils of the pedons MKU-P1 and only

25% of the MKD-P1 soils ranked within the N class, indicating poor

fertility. The remaining 75% of the soils in MKD-P1 are within the S3

class, suggesting a marginal fertile status. In both pedons, the

exchangeable sodium percentage of the surface soils is less than 13,

indicating that the soils are not sodic (61).

Extractable Zn contents in the soils of the pedon MKU-P1

varied from 0.38 mg kg-1 in MKU-S3 to 1.06 mg kg-1 in MKU-S2,

while that of MKD-P1 soil varies from 0.12 mg kg-1 in MKD-S3 to

2.37 mg kg-1 in MKD-S4 (Table 15). The critical level for Zn

deficiency in the soil is 0.4–0.6 mg kg-1, and values higher than 10–

20 mg kg-1 are regarded as excess (85). The results show that 66.6%

and 50% of soils are ranked as S1, while 33.3% and 50% are ranked

as N in MKU-P1 and MKD-P1 pedons, respectively, indicating

adequate and deficient Zn levels. The surface soils in both sites are

high in extractable Fe (>4.5 mg kg-1), falling within the N classes

(80). The high extractable Fe may be due to the nature of the parent

materials, which are siliceous and ferruginous with low Mg and K

contents (23). According to Hazelton and Murphy (56), Fe

concentration (>400 mg kg-1) is associated with toxicity and its

management is vital to minimize nutrient loss. Management

techniques include the use of organic matter, inorganic fertilizer,

and liming of soils with CaCO3 and or MgCO3 or CaMg(CO3) to

increase pH (23). The extractable Cu of the surface soils ranges from

4.28 to 6.92 mg kg-1 and 0.97 to 2.81 mg kg-1 for MKU-P1 and

MKD-P1, respectively. The concentration of Cu is 0.2 mg kg-1,

which is above the required amount for plant growth (54).

Extractable Mn ranges from 11.56 to 73.29 mg kg-1; according to
Frontiers in Soil Science 12
the rating by Saglam and Dengiz (49), with exception of MKD-S3,

all other soils are sufficient in Mn (15–50 mg kg-1), falling within S1

class of fertile soils. These results are in agreement with Bissah et al.

(86); Dai and Dong (87), and Kouadio et al. (71) who demonstrated

a rapid decline in soil chemical fertility following intensive

cultivation with inappropriate use of organic matter and

suggested that for effective soil fertility improvement plans, the

sole application of a mineral fertilizer is unlikely to succeed.
4 Conclusions and recommendations

The objective of this study was to classify and investigate the

suitability and fertility of two lowland rice irrigation schemes in

Morogoro region, Tanzania. The results of the study revealed that

both studied pedons were ranked as suitable for rice production.

However, some chemical fertility such as total N, available P, OC,

and exchangeable bases were in a state of degradation and less

favorable for rice production. The areas will benefit if proper soil

fertility management practices will be employed with the

following recommendations:
i. The application of the nitrogen fertilizer such as urea in

100 kgN ha-1 in split application to avoid severe nitrogen loss.

ii. The application of the P fertilizer such as diammonium

phosphate, and triple super phosphate at a rate of 30 kg P

ha-1 at a time of rice transplanting.

iii. Avoid burning straws and incorporate them into the soils

together with the application of organic manure to

improve soil OC, which will aid in improving CEC and

soil health.

iv. iv. Improving drainage systems in the areas enhances the

removal of irrigated water and minimizes the salinity stress

that may develop from the subsoil.

v. Crop rotation with legumes improves soil fertility by

nitrogen fixation and minimizes rice diseases.
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