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l’alimentation, Université Laval, Québec, QC, Canada, 2Department of Plant, Food, and Environmental
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Agri-Food Canada—Québec Research and Development Centre, Québec, QC, Canada
Introduction: The increased adoption of proximal sensors has helped to

generate peat mapping products: they gather data quickly and can detect the

peat-mineral later boundary. A third layer, made of sedimentary peat (limnic

layers, gyttja), can sometimes be found in between them. This material is highly

variable spatially and is associated with degraded soil properties when located

near the surface.

Methods: This study aimed to assess the potential of direct current resistivity

measurements to predict the maximum peat thickness (MPT), defined as the non-

limnic peat thickness, to facilitate soil conservation andmanagement practices at the

field-scale. The results were also compared to a regional map of the MPT from a

previous study used and also tested as a covariate. This study was conducted in a

shallow (MPT = 8-138 cm) cultivated organic soil from Québec, Canada. The MPT

was mapped using the apparent electrical conductivity (ECa) from a Veris Q2800,

and a digital elevation model, with and without a regional MPT map (RM) as a

covariate to downscale it. Three machine-learning algorithms (Cubist, Random

Forest, and Support Vector Regression) were compared to ordinary kriging (OK),

multiple linear regression, and multiple linear regression kriging (MLRK) models.

Results and discussion: The best predictive performance was achieved with OK

(Lin’s CCC = 0.89, RMSE = 13.75 cm), followed by MLRK-RM (CCC = 0.85,

RMSE = 15.7 cm). All models were more accurate than the RM (CCC = 0.65,

RMSE = 29.85 cm), although they underpredicted MPT > 100 cm. Moreover, the

addition of the RM as a covariate led to a lower prediction error and higher accuracy

for all models. Overall, a field-scale approach could better support precision soil

conservation interventions by generatingmore accuratemanagement zones. Future

studies should test multi-sensor fusion and other geophysical sensors to further

improve the model performance and detect deeper boundaries.

KEYWORDS

soil conservation, proximal soil sensing, digital soil mapping, cultivated organic soils,
histosol, downscaling, limnic layer, gyttja
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1 Introduction

Global peat mapping efforts are driven by the need to determine

a peatland’s extent or cover type; generate peat thickness maps to

support C stock calculation; inform on potential GHG emissions;

and support soil conservation practices (1, 2). The latter is a need

often associated with drained and cultivated peatlands. No longer

being in anoxic conditions limiting organic matter decomposition,

they are subject to degradation of soil chemical and physical

properties and soil loss (3–5). Local soil conservation

interventions could help prevent a significant decrease in soil

productivity, and is therefore essential to feeding the growing

population. Many researchers and policymakers are actively

working on peatland conservation to ensure their sustainable use

and to limit their contribution to climate change; for instance,

initiatives have emerged in Canada (6, 7), Europe (8, 9), and

globally (10–12). However, large scale soil conservation practices

can be costly. Hence, forming priority management zones at the

field-scale can be helpful if prior knowledge of soil productivity,

degradation level, and long-term potential exists. These activities

generally require soil sampling, data processing and analyses, and

mapping efforts.

Recently, peat thickness maps were proposed as a tool for

monitoring soil degradation and for defining management zones

(13, 14). This approach also considered the presence of another

organic layer, sometimes found between peaty and mineral layers:

the gyttja or limnic layer. This gelatinous material has been

described in many soil classification systems (15–19) but is

seldom mapped at a regional-scale (20, 21). In an agricultural

context, this layer can pose management problems to the farmer

due to its high salinity, imperviousness, and reduced drainage

capacity when found close to the surface (3, 13). When growing

crops, such as leafy vegetables, potatoes, carrots, and onions, the

issues caused by limnic layers may be problematic, and sometimes

not cultivable, and hence, there is a need to better its spatial

distribution. Therefore, efforts to map organic soils, with the

presence of limnic layers, should either differentiate peaty,

limnic, and mineral layers; or only map the peaty layer. The

maximum peat thickness (MPT), or the non-limnic peat

thickness, was suggested to reflect the real cultivable layer (13).

Beyond the importance of this data for agricultural purposes,

distinguishing between peat and limnic layers could lead to more

accurate carbon (C) stock estimates given their different chemical

nature (21, 22). Finally, knowing the peat thickness with respect to

the boundary with the underlying impervious material (limnic or

mineral layer) is critical for applying accurate drainage

simulations to generate drainage recommendations.

A first attempt to map the MPT at a regional-scale yielded a

model with low accuracy and a poor understanding of the drivers of

the occurence of limnic layers in soils (14). In their study, Deragon

et al. (14) used only remote sensing covariates and trained a model

to predict the depth to the mineral layer, and another model to

predict the limnic layer thickness. Both maps were then combined

to obtain the MPT, resulting in a propagation of errors in the final

map. They recommended a field-scale approach, as accuracy
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improvements was expected with covariates that could better

capture the fine-scale variability and ultimately, the spatial

variability of the limnic layer. The simplest alternative could be

manual sampling; however, it becomes increasingly cost-prohibitive

at the farm scale or for larger extents given the time and labour

required. Moreover, limnic layers can be difficult to detect with

manual probing since the probe offers little resistance to its

insertion (14, 23). Furthermore, cultivated organic soils undergo

constant degradation and soil loss, increasing the need for temporal

monitoring and mapping efforts to update them (24).

Therefore, to reduce the need for manual sampling, field-scale

approaches may leverage technologies, such as proximal sensors.

These instruments are sensitive to differences in the geoelectrical

properties of soil layers. They include apparent electrical

conductivity, apparent dielectric permittivity, and gamma-ray

emissions for instance, and can differentiate peat from mineral

layers given their different signature (1). Examples of proximal

geophysical sensors used in peat mapping studies include ground

penetrating radars [GPR, e.g., (23, 25–31)], electromagnetic

induction [EMI, (32–36)], electrical resistivity tomography (27,

28, 30, 31, 34, 35, 37) and gamma radiometric sensors (36, 38–

43). These instruments were used at multiple spatial scales due to

their compatibility with various platforms, such as drones, land

vehicles and airborne surveys. Many studies have already mapped

peatlands or shallow organic deposits at the field scale using one or

multiple instruments (28, 33, 43–47), but detecting and reporting

limnic layers has rarely been a research objective. Proximal sensors

rapidly provide a high density of data and reduce the need for

laboratory analyses. In the case of the Montérégie region, Canada,

where a regional map of the MPT was generated (14), there is the

potential to downscale (i.e., increasing its spatial resolution) such

map products by supplementing them with field-scale data and take

advantage of previous mapping efforts. To reduce the propagation

of error, the need for manual sampling, and improve the prediction

accuracies, it is hypothesized that directly predicting the MPT at the

field-scale will yield better results compared to the existing regional

map. As such, this study had the following objectives: (1) to

compare mapping products at field-scale derived from proximal

sensor data to a regional map; (2) to test if using the regional map as

a covariate can improve the result (i.e, downscaling); and (3) to

determine if the covariates can accurately detect the boundary

between peat-limnic and peat-mineral layers.
2 Materials and methods

2.1 Study area and soil data collection

A commercial 6.9 ha field, a drained and cultivated organic soil

in the Montérégie region, Québec, Canada was selected to

investigate the spatial variability of limnic and mineral layers near

the soil surface. Ground truth measurements were obtained in May

and October 2021. The study area is in a temperate continental/

humid continental climate zone, receiving around 970 mm of

precipitation per year, while the average temperature is 6.7°C. In
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May, the average temperature and rainfall are 13.3°C and 91 mm,

respectively. Soil cores were extracted at 61 locations in the field

using a Macauley sample (Eijkelkamp peat sampler) to a maximum

depth of 1.5 m, whereby the depth to the limnic layer was recorded.

The sampling design was a 26 m x 36 m rectangular grid with

duplicates at some sites to ensure a better representation of the

small-scale variability. The dataset should have included an

additional seven observations, however, they were removed from

the dataset due to the peat deposits being >1.5 m could not be

adequately measured with our equipment. This led to a gap in the

sampling grid Figure 1. On average, the thickness of the observed

limnic layer was 0.28 m (± 0.17 m), with some locations having no

limnic layers. The peat soils were classified as an Orthic Humic

Gleysol in the shallowest part of the field and transitioned to a

Humic Mesisol where the peat accumulation was greater (19).
2.2 Preprocessing of the
environmental covariates

In this study, we used apparent electrical conductivity (ECa)

measurement, digital elevation data, and a regional map of the MPT

as predictors to train the models. Data preprocessing and modelling

were carried out using the R statistical software (48). The descriptive

statistics of the peat thickness and the environmental covariates are

presented in Table 1, including the percentage of the coefficient of

variation (CV), which measures the variability of a property. The

CV was classified as follows: weak (<15%), moderate (15–35%),

strong (35–50%), very strong (50–100%), or extremely strong

(>100%) (49). The Pearson correlation coefficient (r) between the

covariates was also computed.
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2.2.1 Veris apparent electrical conductivity
The ECa measurements were carried out in May 2021 using a

Veris Q2800 (Veris Technologies, Inc., Salina, KS, USA; Figure 2)

were collected in May 2021. It is a direct current resistivity sensor,

compared to frequency-domain or time-domain electromagnetic

instruments often used in peatland mapping studies (e.g., EM38,

DUALEM-421S, ground penetrating radar, and time-domain

reflectometer). Instead of emitting and detecting electromagnetic

waves with a primary and secondary coil, the Q2800 consists of a

series of coulters in contact with the soil surface acting as electrodes

in a Wenner array configuration, generating a current arc that

travels through the soil. The voltage decrease between the electrodes

is then used to measure the resistance and infer soil ECa using

Ohm’s law (50). Two current electrodes located in the center of the

array complete the circuit with two inner potential electrodes

(ECashallow) and two outer potential electrodes (ECadeep). This

intrusive electrical sensor has mostly been used in mineral soil

studies. The Veris was tracked across the field at an average speed of

7 km h-1 with a swath of 7 m between transects. This instrument

measures the ECa, in mS m-1, at two theoretical depth intervals

simultaneously, equivalent to 90% of the response; 0-30 cm

(ECashallow) and 0-90 cm (ECadeep). Details regarding the

calculation of the theoretical relative and cumulative instrument

response to ECa with depth can be found in Sudduth et al. (50, 51).

This relationship varies as a non-linear function of depth. The data

was georeferenced with a Garmin 17x HVS receiver (Garmin

International, Olathe, KS, USA). At the time of the survey, the

field had a high water content and was even saturated at certain

locations. Preliminary tests showed that the correlation between

ECashallow and ECadeep was lower and the data was less noisy when

the soil was moister; therefore, Spring was chosen as an ideal data

collection period.

The 3,548 ECa measurements were then preprocessed before

the modelling steps. Duplicate values at the same coordinates were

removed before filtering out the observations that fell outside of ± 3

standard deviations of the mean (52) since the instrument is prone

to rapid drifts in the data (38). The coordinate system was

transformed from geographic coordinates to planimetric

coordinates (WGS84 to NAD93 MTM 8). The measurements

were then interpolated using ordinary kriging (OK) with a block

support. The experimental and theoretical variograms were

computed using the gstat package (53, 54). Maps for ECashallow
and ECadeep at a 5-m spatial resolution were generated. The

ECashallow required a log-transformation before modelling and

was back-transformed following the method proposed by Laurent

(55). The transformation was done to respect the normality

assumption (low skewness and kurtosis) required by this

interpolation method.

2.2.2 LiDAR digital elevation model
The region’s digital elevation model (DEM) was downloaded

from the Donneés Queb́ec repository. It was distributed by the

Ministère des Foret̂s, de la Faune et des Parcs and derived from an

aerial LiDAR survey. The DEM had a native spatial resolution of

1 m. The tile was clipped, aligned with the ECa interpolated maps,
FIGURE 1

Study area showing the ground truth locations and the raw Veris
data. A zone with no ground truth data can be seen on the
southeast portion of the field.
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and resampled at a 5 m spatial resolution using a bilinear

interpolation method. This step also removed part of the noise

from the original data. Although the data was not acquired at the

field-scale, this covariate was chosen because it was open-access, of

high spatial resolution, and because it could be generated at the

field-scale with a drone if needed (56).

2.2.3 Regional MPT map
A predictive map of the MPT generated at a regional-scale in a

previous study (14) was at a 10 m spatial resolution but was resampled

to a spatial resolution of 5 m using the nearest neighbour method and

ensure its alignment with other covariates. The nearest neighbour

approach was preferred over other resampling methods to avoid

generating new interpolated values. This regional map (RM) was

used as a baseline to compare the performance of the field-scale

predictive models, but also as a covariate to assess the possibility of

downscaling it. All models using the RM as a covariate were given the

“-RM” suffix (e.g., Cubist-RM).
2.3 Modeling approaches

Two geostatistical models (OK and regression kriging), three

machine learning algorithms (Cubist, Random Forest and Support
Frontiers in Soil Science 04
Vector Regression) and a multiple linear model were tested for their

ability to predict the MPT. All models, except OK, were fitted twice

to the data: once with the DEM and ECa as predictors, and a second

time also including the RM to evaluate the impact of its addition on

the models, for a total of 11 models. The covariates described in the

previous section were spatially intersected with the ground truth

measurements to form a training dataset. The final predictions were

made at a spatial resolution of 5 m and the final maps were created

in QGIS (57).

2.3.1 Ordinary kriging
OK is an interpolation technique that provides the best linear

unbiased predictions (i.e., aiming for no bias and minimized

variance). To do so, a theoretical semivariogram model of the

spatial autocorrelation between georeferenced observations is

fitted to the experimental data. A prediction at unsampled

locations can be made by using a weighted average of nearby

observations, where the weights are a function of the modeled

spatial autocorrelation and the distance to the predicted location

(58). Here, multiple functions were tested along with isotropic and

anisotropic semivariograms. This first approach to modelling the

MPT was to generate an OK map with block support using ground

truth observations. The map was generated the same way as for the

ECa data. The residual sum of squares and the R2 were used to find
TABLE 1 Descriptive statistics of the predicted variable and the interpolated environmental covariates.

Variable N Minimum Q0.25 Mean SD Median Q0.75 Maximum Skewness Kurtosis CV (%)

Peat
thickness (cm) 61 8.00 35.00 58.77 30.56 53.00 86.00 138.00 0.49 -0.69 52.00

ECashallow
(mS m-1) 2682 10.47 14.00 17.53 5.65 15.47 18.62 41.29 1.90 3.26 32.26

ECadeep
(mS m-1) 2682 21.43 31.01 34.47 5.68 33.30 36.79 55.53 1.14 1.82 16.48

DEM (m) 2682 52.41 52.79 52.96 0.23 52.96 53.15 53.56 0.00 -0.79 0.43

Regional
map (cm) 2680 9.79 42.80 86.69 46.35 90.96 126.63 180.23 0.07 -1.32 53.47
fro
Q0.25, 25% quantile; SD, Standard deviation; Q0.75, 75% quantile; CV, Coefficient of variation; ECashallow, Veris apparent electrical conductivity from 0-30 cm; ECadeep, Veris apparent electrical
conductivity from 0-90 cm; DEM, Digital elevation model.
FIGURE 2

Image of the Veris Q2800 proximal sensor in transport mode (left) and schematic view of the configuration of the Veris Q2800 electrodes array
(right). Image reproduced with permission, Veris Q2800 75 cm Row Spacing by Eric Lund, licensed under CC BY-SA, Veris Technologies.
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the best fit for the theoretical semivariogram. The range was

recorded to provide a measure of the maximum distance at which

two observations are spatially correlated. The purpose of the OK

model was to evaluate, as a reference, the prediction performance of

a manual sampling approach, without using any other covariate to

predict the MPT.

2.3.2 Multiple linear regression
The multiple linear regression (MLR) aims to assess the

relationship between multiple independent predictors and a

dependent variable while minimizing the error associated with the

fit (i.e., the residuals) (59). Compared to more complex models, it is

intuitive to interpret and can tolerate a certain degree of correlation

between the covariates. While this model is simple to compute,

statistical assumptions must be verified. Two multiple linear

regression (MLR and MLR-RM) models were fitted in two steps.

A first stepwise model was fitted to the full set of covariates and

non-significant ones were removed. For both models, ECadeep was

removed. Then, the statistical assumptions were validated (linearity,

homoskedasticity and normality of the residuals, independence of

errors and independence of the covariates). Finally, the model was

applied to the set of interpolated covariates to generate a predictive

MPT map for the field. In the final map, negative values were

converted to zeros.

2.3.3 Multiple linear regression kriging
Regression kriging is a hybrid interpolation technique that

combines deterministic and stochastic components to provide

more accurate estimates of a variable (60). To improve the MLR

models, a regression kriging workflow was implemented (MLRK

and MLRK-RM). This was done under the assumption that the

MLR models do not account for spatial autocorrelation. Because a

spatial structure was expected in the residuals, it could be

characterized and modelled with a semivariogram. Therefore,

residuals from the MLR and MLR-RM models were extracted and

interpolated with OK. The map of the residuals was added to the

predicted MLR map. In the final map, negative values were

converted to zeros. The sill and range for both theoretical

semivariograms were recorded. The sill is a measure of the

variability present in the dataset.

2.3.4 Cubist
This machine learner is a rule-based algorithm in the form of a

model tree. Cubist decomposes the multivariate relationship

between the dependent and independent variables at each node of

the tree. Then, it fits linear models using one or multiple predictors,

thereby minimizing the within-node variance. The terminal node of

each branch consists of a linear model. The advantages of Cubist

include its ability to capture both linear and nonlinear relationships

in the dataset (61) and to avoid over and underfitting via the tuning

of its two hyperparameters. Multiple trees can be aggregated with a

boosting technique (i.e., the number of committees) and the final

tree prediction is adjusted with a nearest neighbour search in the

training data (i.e., the number of neighbours) (62, 63). The Cubist
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model was accessed through the caret package (64). Two models

were trained: Cubist and Cubist-RM.

2.3.5 Random forest
Random Forest is a non-parametric decision-tree model based

on ensemble modelling theory (65). It makes use of a bootstrapping

approach to sample with replacement the original dataset and

generates multiple prediction trees. The trees are then aggregated

to obtain an average prediction that is less biased than a single-

model tree (62). Its hyperparameters are mtry, the number of

randomly selected predictors used at each node of the tree to

divide the dataset by minimizing the within-node heterogeneity,

and NTrees, the number of trees to be computed and aggregated,

which was set to the default value of 500. RF and RF-RM were

trained using the caret package in R.

2.3.6 Support vector regression
Support Vector Regression (SVR) is a generalization of the

support vector machine algorithm used for classification purposes.

Instead of maximizing the decision boundaries between two classes

by finding the best support vectors to minimize the classification

error, SVR fits a regression hyperplane to the training sample in a

higher dimensional space. An e-insensitive region, or e-tube, is
optimized around the regression hyperplane so that most training

observations are contained by it. The advantage of SVR is its ability

to transform non-linearly separable data to linearly separable data

in a higher dimension by projecting it using a kernel function. After

testing multiple kernels, a radial basis function kernel was selected

using the caret and kernlab packages (66, 67). Then, the model was

trained to find the best cost (C) and sigma hyperparameters specific

to the radial kernel. C controls the penalty associated with

observations that fall outside the e-tube. For instance, a high C

leads to higher penalties and larger margins (i.e., the width of the e-
tube within which observation departures from the regression

hyperplane will not penalize the model during the optimization

phase), leading to a lower prediction bias and larger variance. Sigma

controls the linearity of the margins by adjusting the weight of the

individual training observations. SVM and SVM-RM were trained

this way. More information about the theory behind SVR can be

found in other references (68).
2.4 Performance metrics

Two accuracy metrics, three error metrics, and the range of the

predicted values were extracted for every model, and used to tune

the hyperparameters. The coefficient of determination (R2) and

Lin’s concordance correlation coefficient (CCC; eq. 1) were used as

accuracy metrics to evaluate the relationship between the observed

and predicted variables and their departure from the 1:1 line (69).

Compared to the R2, CCC corrects the agreement between two

variables in the presence of a systematic bias:

CCC =  
2sop

(�o − �p)2 +   s2o +   s2p
(1)
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where sop is the covariance between predicted and observed

values, the s2 are their corresponding variance, �o   is the mean of the

observed values, and �p   is the mean of the predicted values.

The root mean square of error (RMSE, eq. 2), mean absolute

bias (MAB, eq. 3), and mean bias error (MBE, eq. 4) complemented

the accuracy metrics by representing the precision of the

predictions. The equation for RMSE is:

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1
(Oi − Pi)

2

N

r
(2)

where O is the observed value and P the corresponding

predicted value for the ith observation, and N is the total number

of observations. The MAB and MBE were calculated as follows:

MAB =  oN
i=1

Oi − Pij j
N

(3)

MBE =  oN
i=1

Oi − Pi
N

(4)

The MBE reports the average difference between the observed

and predicted values; the MAB reports the average, absolute

difference between observed and predicted values; and the RMSE

reports the spread of the individual errors. Similar values of RMSE

and MAB indicate similar errors across the predicted range, while

the MBE indicates a tendency to underestimate (negative value) or

overestimate (positive value).
2.5 Model tuning

A leave-one-out cross-validation (LOOCV) procedure was

selected to evaluate all models for its simplicity and due to the

lack of an external data set for validation. Nonetheless, some models

required adjustments to this procedure to be carried out. For the

OK model, the performance metrics were calculated using the

predicted values from the LOOCV procedure with a local

neighbourhood of 16 observations implemented with the krige.cv

function. For the machine learners, the hyperparameters were tuned

using an LOOCV procedure and the CCC as the metric to select the

best tuning parameter. The same LOOCV predictions were used to

compute the model performance metrics. Then, a final model was

trained using that set of hyperparameters and used to make a

prediction for the entire field.

For the MLR models, the observed and predicted values were

used to compute the performance metrics. Regarding the MLRK

models, a LOOCV loop was implemented as follows. First, the MLR

model was computed, along with a semivariogram of the residuals

of all 61 observations. Then, one observation was removed. The

MLR model was computed again and applied over the field. A

residual map was produced and added to the MLR prediction map.

Finally, the out-of-the-bag observation was spatially intersected

with the final map to compare the predicted and observed values.

This procedure was repeated for every observation to calculate the

performance metrics. Here, it is important to note that the R2 and

CCC metrics are pseudo-statistics since there were no repeats in the

LOOCV procedure. It was therefore impossible to compute these
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statistics on every fold (i.e., on one observation). The out-of-the-bag

predictions were aggregated to form a dataset on which these two

metrics were calculated. Since it was impossible to carry out the

LOOCV procedure for the RM, the 61 observations were spatially

intersected with it and the performance metrics were calculated by

comparing the observed and the predicted values. The performance

metrics and ranges from the semivariograms of the depth to the

mineral layer and of the limnic layer thickness were also extracted

for the RM from Deragon et al. (14).
2.6 Prediction uncertainty

To compare the uncertainty of the predicted maps more fairly

between the geostatistical and machine-learning models, a quantile

regression post-processing approach (QR) was used for all models.

This method was generalized and adapted to digital soil mapping by

Kasraei et al. (70) and was recently compared to other ways of

validating prediction uncertainty with good results (71). QR can

compute a linear regression model for any quantile of a given

dependent variable’s conditional distribution, compared to a

standard linear regression which computes the mean of the

dependent variable. The underlying assumption is that the

observed and predicted values follow a linear relationship. First, a

QR model was fitted to obtain the conditional quantile function of

the predicted values from the models (e.g.: Cubist, OK, MLRK, etc.)

conditioned by the observed values. This procedure was repeated

twice, to compute the 5th and 95th quantiles regressions. This was

done using the qr function from the package quantreg (72). Then,

maps for the lower and upper limits were generated by combining

the predicted map for the field and the QR models. Finally, the 90%

confidence interval was generated by subtracting the 95th and 5th

quantile maps. The QR uncertainty model is separated from the

actual predictive model, making it a model-agnostic procedure (71).
3 Results

3.1 Descriptive statistics and maps of
the covariates

The MPT recorded from the ground truth measurements

ranged from 8 to 138 cm, while the regional map predicted values

between 9 and 180 cm (Table 1, Figure 3A). A 1 m difference in

elevation was observed between the lowest and highest points of the

field, with a uniform gradient from the northwest to the southeast

(Figure 3B). The predicted MPT from the RM showed a similar

spatial pattern to that of the DEM, which was further evidenced by

the high Pearson correlation coefficient between them (r = 0.76).

Regarding the CV of the covariates, a very strong variability was

associated with the MPT (52.0%) and the RM (53.5%). The CV was

lowest for the DEM (0.4%), but it was expected since absolute

elevation was used. The ECadeep (CV = 16.5%) showed variability

on the low end of moderate, compared to the ECashallow variability

(CV = 32.3%), which can be observed in Figures 3C, D. Overall, the

CV indicated the presence of spatial heterogeneity across the field.
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3.2 Fitting the semivariograms for the
geostatistical approaches

The best fit for the semivariogram of the MPT for the OK

approach was achieved with a Gaussian model. Here, an effective
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range of 57 m was observed. For the MLRK model fitted on the

residuals, a sill of 617 cm2 and an effective range of 34 m were

obtained with an exponential model (Figure 4). The residuals of the

MLRK-RM model had a lower sill (298 cm2). The best fit was also

achieved with an exponential model and had an effective range of
A B
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FIGURE 3

Maps of the covariates. (A) The predicted maximum peat thickness from a regional map by Deragon et al. (14), (B) the digital elevation model,
(C) the shallow measurements of the apparent electrical conductivity (ECashallow), and (D) the deep measurements of the apparent electrical
conductivity (ECadeep) by the Veris Q2800.
FIGURE 4

Experimental (points) and theoretical (lines) semivariograms of the residuals of the multiple linear regression model (MLR, in red) and the multiple
linear regression model with the regional map (MLR-RM, in blue). A semivariogram plot illustrates the change in autocorrelation (or variance)
between two observations spaced by an incremental distance called lag.
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29 m. These ranges were smaller than the ones for the mineral layer

(957 m) and of the limnic layer thickness (4,733 m) obtained at the

regional scale (14).
3.3 Model performance

By intersecting the ground truth observations with the RM, a CCC

= 0.65 and RMSE = 30 cm was obtained (Table 2, Figure 5A). When

compared to the overall RM for the whole region, the model

performance was slightly better for this field. Nonetheless, this map

had the highest error and lowest accuracy compared to all the other

models from this study. Its MBE was also the highest, indicating a

strong tendency to overestimate the MPT. The MBE was close to zero

for all other models, with a tendency towards overestimation for the

MLRK models and underestimation for the machine learners.

The LOOCV procedure resulted in the lowest error (RMSE =

14 cm) and highest accuracy (CCC = 0.89) metrics for the OK

model (Table 2). The good fit of the theoretical semivariogram and

the LOOCV results of the OK model confirmed that a strong spatial

structure existed for the MPT. The second-best model was the

MLRK-RM (RMSE = 16 cm, CCC = 0.85). This model did not

significantly improve on the OK model. The best machine learner

was SVR-RM, showing an RMSE = 16 cm and CCC = 0.83. The

geostatistical approaches performed slightly better than the

machine learners. Despite their better performance metrics, the

Cubist-RM model had the closest predicted range to the ground

truth data (11-146 cm). The other models tended to underpredict

the deeper deposits in the field, especially the observations with an

MPT > 100 cm, as can be seen in Figure 5.
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The machine learners and the MLRK approach resulted in an

increase in CCC and a decrease in RMSE when the RM was added

as a predictor. The average increase in CCC and decrease in RMSE

associated with the addition of the RM as a covariate were 0.08 and

2.8 cm, respectively (Table 2). The Veris data combined with the

DEM always led to more accurate estimates than the RM alone.

ECashallow was an important predictor in the models; however,

ECadeep had a low predictive power in all machine learning models.

The Pearson correlation coefficient between ECashallow and ECadeep
was r = 0.002 in the training data and r = 0.35 across the field’s

extent, indicating a low correlation between them.
3.4 Predicted maps and
uncertainty estimates

The predicted maps for six of the models are presented in

Figure 6. All maps showed similar spatial patterns to the RM, except

in the southeast portion of the field where the latter overestimated

the MPT. In addition, artifacts related to the incorporation of the

RM in specific models were observed (Figures 6D, F). Other fine-

scale artifacts were observed for the SVR model (Figure 6E) due to

the ECa data, whereas the MLRK map (Figure 6C), which used the

same covariates, had a smoother appearance. The missing portion

of the sampling grid influenced the OK map, where a triangular

shallow zone was wrongly extrapolated (see Figure 1) and hence, the

resulting map should not be used for that extrapolated area. By

comparing the predicted maps to those of the environmental

covariates (Figure 3), the shallowest zones corresponded with

where the Veris ECa values were highest.
TABLE 2 Model performance metrics following the leave-one-out cross-validation (LOOCV) procedure for each model.

Modela Data usedb R2c CCC RMSE MAB MBE
Predicted values (cm)

Minimum Maximum

RM* Deragon et al. (14) 0.49 0.65 29.85 19.37 -9.42 12.18 177.13

OK Peat thickness alone 0.80 0.89 13.75 11.51 1.26 8.76 116.40

MLR Veris + DEM 0.43 0.61 22.81 18.80 0.00 0.00 92.09

MLR-RM Veris + DEM + RM 0.65 0.79 17.91 13.90 0.00 0.92 117.43

MLRK Veris + DEM 0.64 0.79 18.35 14.71 1.76 0.00 108.34

MLRK-RM Veris + DEM + RM 0.73 0.85 15.70 12.70 0.94 0.00 123.53

Cubist Veris + DEM 0.58 0.76 20.49 15.45 -0.30 9.77 121.29

Cubist-RM Veris + DEM + RM 0.64 0.80 19.02 13.31 -1.17 10.52 146.37

RF Veris + DEM 0.65 0.76 18.20 14.47 -0.03 21.4 97.47

RF-RM Veris + DEM + RM 0.70 0.82 16.65 12.44 -0.16 18.61 102.73

SVR Veris + DEM 0.59 0.76 19.39 15.19 0.03 15.06 110.41

SVR-RM Veris + DEM + RM 0.72 0.83 16.07 12.19 0.20 15.29 103.22
aRM, Regional map; OK, Ordinary kriging; MLR, Multiple linear regression; MLRK, Multiple linear regression kriging; RF, Random Forest; SVR, Support Vector Regression.
bDEM, Digital elevation model, RM, Maximum peat thickness predictions from the regional map.
cR2, Coefficient of determination; CCC, Lin’s concordance correlation coefficient, RMSE, Root mean square of error; MAB, Mean absolute bias; MBE, Mean bias error.
*For the Regional map, the performance metrics were not obtained with the LOOCV procedure but by spatially intersecting it with the sampling sites.
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The uncertainty maps of the three best models, OK, MLRK-RM

and SVR-RM, are presented in Figure 7. The 90% confidence

interval range of values for the OK model (32 to 69 cm) was

lower than that of the MLRK-RM model (24 to 80 cm) and the

SVR-RM model (35 to 82 cm), indicating an overall smaller

prediction uncertainty. Furthermore, the difference between the

widest and narrowest prediction interval within each prediction

uncertainty map was the smallest for the OK map. This indicates

fewer differences in prediction uncertainty across the field than the

other two best models. Moreover, the spatial distribution of the

uncertainty showed similar patterns to the predicted map (i.e.,

higher uncertainty was associated with higher predicted values).
Frontiers in Soil Science 09
4 Discussion

4.1 Interpreting model performance

Based on the results, direct, field-scale mapping of the MPT was

possible with high accuracy. This allowed the production of more

precise maps than the RM by avoiding the propagation of errors

linked to the determination of the depth to the mineral layer and

limnic layer thickness individually. The superiority of the OKmodel

indicated the presence of a strong spatial structure at the field-scale

in the dataset. The range of 57 m obtained with the Gaussian

theoretical model supports this claim. Furthermore, compared to
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FIGURE 5

Scatterplots of the relationship between the observed and predicted values for a selection of the final models: (A) Regional map, (B) Ordinary kriging,
(C) Multiple linear regression, (D) Multiple linear regression with RM, (E) Multiple linear regression kriging, (F) Multiple linear regression kriging with
RM, (G) Support vector regression, and (H) Support vector regression with RM. The red line represents a perfect 1:1 relationship between observed
and predicted observations.
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the 4,733 m range for the limnic layer thickness and the 957 m

range for the depth to the mineral layer at the regional scale (14), a

field-scale approach to study and predict the MPT seems more

appropriate. It was also possible to downscale the RM by using it as

a covariate, making use of previous mapping efforts. For instance,

adding the RM as a predictor in the MLRK-RM model reduced the

sill (i.e., variance) of the residuals twofold compared to MLRK

(Figure 4). This indicated lower prediction error from the MLR

model, which was supported by better performance metrics

(Table 2). The RM was trained using only remote sensing

covariates and was generalized to a greater extent than only this

field, leading to the worst fit compared to the other models when

used alone to predict the MPT. Nonetheless, the fact that the RM

map captured spatial patterns outside and around the field added

new information to the model. The RM acted as a general trend of

the MPT for the field based on the surroundings. This could explain

the observed increase in model performance when this predictor
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was added to the models. Supplementing the RM with proximally

sensed data also improved the MPT predictions in the southeast

portion of the field (Figure 6). All models captured the shallow

values where the RM predicted higher values erroneously.

There was not a major difference in model performance or

prediction uncertainty between the three best models (i.e., OK,

MLRK-RM, and SVR-RM, Figure 7). Assuming a fair comparison

between the models, SVR-RM could be a potential candidate for

future studies. While OK required fewer steps to generate the map

and MLRK-RM allowed for a better understanding of the predictors

via the deterministic portion of the model, they both required the

computation of a theoretical semivariogram to fit the observed data.

If a minimum number of observations is not available, the model

performance will suffer (58), which can be especially problematic

for smaller fields. Furthermore, statistical assumptions must be met

for both models and can limit the applicability of the method in

certain situations. On the other hand, SVR-RM could work on
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FIGURE 6

Maps of the predicted maximum peat thickness (MPT, cm) for six of the models: (A) Regional map, (B) Ordinary kriging, (C) Multiple linear regression
kriging, (D) Multiple linear regression kriging with the regional map, (E) Support Vector Regression, and (F) Support Vector Regression with the
regional map. All maps have a spatial resolution of 5 m and share the same legend.
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smaller datasets, decreasing the manual labour required for

modelling the MPT. It is worth noting that the OK model, the

only one not using the covariates, had better performances than

SVR-RM and MLRK-RM (Table 2). Two potential reasons could

explain this better performance. First, pairs of observations were

close to each other at seven locations in the sampling grid and had

different observed MPT values. Nonetheless, they had similar or the

same covariate values as they fell in the same grid cell. This might

have led to a poor understanding of the relationship between the

MPT and the covariates in the MLR and SVR models. This small-

scale variation in soil stratigraphy is similar to the nugget effect—

essentially a part of the variance that will never be explained.

Second, the selection of covariates was limited in this study and

their relationship with the MPT may have been affected by other

factors (see section 4.2.2). While it is not possible to compare these

results to other MPT studies, we can compare them to standard peat

thickness studies at the field-scale using similar covariates. For

instance, Koszinski et al. (47) modeled the peat thickness with an

EM38DD and airborne LiDAR data in 7 nearby agricultural fields.

For an observed range of 0-190 cm of peat thickness, they observed

an R2 = 0.61 with their model. Beucher et al. (33) measured the ECa

with a DUALEM-421S and used a LiDAR DEM along with terrain

attributes. Their best model, an MLR, had high accuracy

(CCC = 0.94) and low error (RMSE = 65 cm) for a range of

observed peat thickness between 3 and 730 cm. Koganti et al. (43)

returned in the same field as the previous study using a portable
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gamma-ray sensor and terrain attributes to map the peat thickness.

Their best model, ordinary kriging, achieved a CCC= 0.97 and an

RMSE = 0.59 m, which was very similar to the performance of their

second-best model, empirical Bayesian kriging regression (CCC=

0.97 and an RMSE = 0.63 m). The latter included covariates. These

accuracy metrics from previous studies are in the same range of

performance as ours and the error, if standardized with the range of

observed values, are comparable to the ones we observed.
4.2 Limitations of the study

4.2.1 The MPT dataset
Given the small to moderate number of ground truth

measurements, the LOOCV procedure was chosen to evaluate our

models and more easily compare them with the RM. Yet, it may

have overestimated the model accuracies by not accounting for

spatial autocorrelation (73). Resampled measures were not possible

in this study. With a larger dataset, a k-fold cross-validation

procedure or an additional validation dataset could have been

used to form training, testing and validation partitions to tune

and evaluate the performance of the machine learners. For instance,

Deragon et al. (14) trained their models on spatial and standard

LOOCV and obtained substantially better results with standard

LOOCV. The sampling design was oriented towards a geostatistical

approach with a uniform sampling grid. It may have led to a biased
A B
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FIGURE 7

Prediction uncertainty (cm) maps of the three best models: 90% confidence interval map for the (A) Ordinary kriging, (B) Multiple linear regression
kriging with the regional map, and (C) Support Vector Regression with the regional map models. All maps have a spatial resolution of 5 m and share
the same legend.
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performance evaluation for the machine learners since they require

good feature space coverage. For these reasons, the machine

learners were tested to provide a comparison to the geostatistical

approaches but could perform better if the sampling design were to

be adapted. The effect of the sampling density on the model

performance should also be evaluated in a future study by

removing observations from the dataset iteratively (43). A

sampling density of around 10 samples per hectare is on the high

end compared to other studies and might not be realistic for smaller

fields and practical applications of the method. Moreover, the range

of values of MPT > 100 cm was represented by only 4 observations

in our dataset (Figure 5). The unbalanced coverage of the MPT

range by the sampling design could partially explain why the model

fit was lower for higher predicted values of MPT. In other words,

future studies should seek to improve the methodology and

replicate it for multiple fields as a case study to assess how our

results could apply to other fields.

4.2.2 Drivers of the electrical properties of soil
layers and related errors

The electrical properties of peat are mostly driven by the water

content and the concentration of dissolved ions, which are related

to the porosity and bulk density. These factors determine the

resistivity, or conductivity, of the material. Peat has a higher

porosity compared to mineral layers, and therefore a generally

higher water content and apparent dielectric permittivity (Ka) (74).

In the past, differences in pore water conductivity were observed

between peat and the underlying mineral layer (32, 33). The peat

decomposition level, CEC, and temperature can also affect ECa

readings (32, 75). Regarding the properties of limnic layers, Lange

et al. (76) found a decrease in bulk density and an increase in total

porosity and salinity of limnic layers compared to the overlying

peaty layers. This is coherent with properties reported in other

studies (2, 21, 22). In general, it can be said that peaty layers are

more resistive than mineral and limnic layers, especially at lower

water contents (27, 47, 74).

Therefore, variations in these properties can affect the vertical

resolution of the Veris ECa and impact MPT predictions (50).

Anthropogenic activities can affect water regimes and salt

movement in the soil profile via capillary rise (77). Moreover,

agriculture often leads to the formation of a compacted layer near

the surface (78, 79) and requires fertilizer inputs that will impact

surface soil salinity (46). Drain tiles can also introduce artifacts in

readings of certain sensors, potentially adding random noise to the

ECa signal since we can expect variations in these factors across the

field. We can also expect ECadeep to be more sensitive than ECashallow
given its greater vertical sensing range. This could partially explain

why ECadeep had a low predictive power and the models

underpredicted the observations with an MPT > 100 cm.

Variations in the electrical properties of the soil layers could have

impacted the sensing depth of the Veris Q2800. Moreover, compared

to other EMI instruments, the Veris Q2800 has only two

simultaneous exploration depths. Some EMI instruments can have

4 or even 6 depths of conductivity sounding with a greater depth of
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exploration. This sensitivity to deeper layers can lead to a higher

vertical resolution.
4.3 Implications on soil
conservation practices

The initial goal in generating MPT maps was to support

precision soil conservation practices at the field-scale (13). Three

management zones have been suggested: MPT< 60 cm, 60-100 cm,

and > 100 cm. Such zones were needed to determine where biomass

amendments would be added in priority to compensate for

mineralization losses and avoid changes in physical and chemical

properties (7, 13). The RMSEs of the best models at field-scale are

twice as low as the one of the RM, resulting in a more accurate

classification of MPT zones in a field. Furthermore, the Montérégie

region possesses an RM that serves as a first rough estimation of the

MPT for farms where soil measurements were taken and for others

that do not have soil databases. Even if the RM was not accurate

enough, it is better than no estimation at all. Farmers could greatly

improve the accuracy of the MPT predictions at field-scale by

combining the map with proximal sensor data. A reduction of

manual sampling points can be expected, although a small number

will always be required to validate predictions. This improvement

can be related to the fact that proximal sensors can generate a high

density of observations to better capture the fine-scale variations in

the peat thickness. Veris data does not require calibration and the

equipment can easily be tracked by an ATV, which is an advantage

for the end-user of this methodology: farmers or agronomic

consultants. For now, a field-by-field approach would be more

advisable since the applicability and generalization of the SVR-RM

model to other fields are unknown. Extrapolation of OK and

MLRK-RM models to other fields is simply impossible due to the

nature of geostatistic models.

To limit sources of uncertainty related to ECa measurements

caused by the surveying season, we opted for a Spring survey. We

recommend Spring or Fall to monitor ECa to evaluate the MPT. Peat

near the soil surface tends to become hydrophobic when it dries with

evapotranspiration, tillage, and drainage (80, 81), which may occur

during the Summer. In our preliminary tests, we observed poor

contact between the electrode coulters and the soil, which is more

granular than deeper, untilled peat material. A poor contact resulted

in noisier data and potentially a shallower depth of exploration for

ECadeep. This led to a smaller range of ECa measurements compared

to the Spring period, and a higher correlation between ECashallow and

ECadeep. A significant water content gradient between the dry surface

layer and the underlying layers beneath the compact layer, generally

found around 30 cm, can introduce bias in the measurements. This

depth coincides with the peak sensitivity of the Veris Q2800. With a

more homogeneous water content in the soil profile, the sensing

depths of both measured ECa should be more distinct. Therefore, the

correlation between the measured values should decrease. During

summer, the temperature profile can also vary significantly (around

30°C on the soil surface and around 8-10°C at a depth of 90 cm).
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However, during Spring and Fall, the temperature is more constant

throughout the soil profile. For practical reasons, we also recommend

these periods as it is easier to access an empty field without a snow

cover or crops. Two caveats are associated with measurements in soil

with a higher water content; the salinity level of peat is expected to be

closer to that of limnic layers (2), and the soil must provide enough

bearing capacity to support the weight of the equipment.

The extent of limnic soils worldwide is unknown, but

estimations are available for certain countries; Canada: 32,057 ha

and Sweden: 48,915 ha (14, 20). Many other countries have reported

the presence of this layer, even though the extent might not have

been reported in the form of a map for the country. As stated by

Berglund and Berglund (20), limnic layers are uncovered with soil

loss and subsidence, leading to increased risks for cultures. Since

this phenomenon is not unique to Canada, the proposed field-scale

approach could be relevant to other countries needing crucial soil

data to support soil conservation interventions.
4.4 Mapping the MPT in future work

Although this study showed that direct mapping of the MPT

was possible for shallow soils, other surveys should evaluate the

methodology for thicker deposits. The methodology could be

improved to map the three materials individually to also acquire

spatial information about the depth and thickness of the limnic

layer at the field-scale. A better vertical resolution could be obtained

by first quantifying discriminant physical and chemical properties

of peaty, limnic and mineral layers. This would support the

selection of more appropriate proximal sensors or automated

probes (22). Moreover, an approach based on multi-sensor fusion

(44) could be used to take advantage of multiple technologies at

once. Using sensors with a greater sensing depth could solve the

underestimation issue for the site with an MPT > 100 cm observed

in this study. EMI and gamma-ray spectrometers are examples of

proximal sensors to test (33, 43). In optimal conditions, we should

be able to map and distinguish the three materials (mineral, limnic

and peaty layers) at greater depths to better inform farmers and to

generate maps of the C stocks simultaneously. Proximal sensors

should also be chosen for their sensitivity and specificity to a target

property to limit the influence of other factors. We do not believe

that ground penetrating radar or electrical resistivity tomography

were appropriate technologies in this agricultural context, despite

their effectiveness at detecting limnic layers in past studies (27, 30,

82, 83). For instance, Sass et al. (27) were able to detect limnic layers

in alpine mires using a ground penetrating radar and electrical

resistivity tomography. However, they concluded that manual

probing was still needed to validate the result. Other limitations

of these technologies include the need for site-specific calibrations,

the data output that is less compatible with the digital soil mapping

workflow and the fact that they cannot be used as on-the-go

sensors. Nonetheless, these studies also provided measurements of

electrical conductivity and permittivity for peat and limnic layers.
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To increase the vertical resolution of the predicted MPT, other

geophysical techniques could be used, such as the inversion of the

ECa data. Since the depth-weighted response function of the signal

is known for ECa instruments, the ECa can be converted to the true

apparent electrical conductivity (ECr) for every point of a soil

profile using an inversion software. In short, the apparent bulk

electrical conductivity is the sum of infinite layers of soil with an

ECr (e.g., ECa 0-30 cm = ECr 0-10 cm + ECr 10-20 cm + ECr 20-

30 cm). It is an alternative that allows the production of quasi-2D or

quasi-3D maps of soil electrical conductivity, which are correlated

with soil type variations and stratigraphy via sharp or smooth

gradients. In the peatland mapping literature, it is possible to find

multiple examples of ECa inversion to predict peat thickness (e.g.,

33, 35, 36). While the inversion often leads to a better

understanding of the stratigraphy and the petrophysical

properties of the materials, raw ECa measurements combined

with other modelling techniques can sometimes lead to more

accurate predictions of the peat thickness (33, 35). Data inversion

is also often done using EMI equipment with four or six depths of

exploration, rarely two like the Veris Q2800; the more signals

overlap, the better the inversion.

It is unknown how important the DEM would be in predicting

the MPT in areas with a greater difference in elevation than the one

observed in this study. We expected the DEM to be less relevant in

areas with highly variable stratigraphy not captured by the DEM.

We also expected the limnic layer, a sedimentary material, to have

deposited mostly in relatively flat zones. This can affect the

relationship between the DEM and the MPT. Nonetheless, a

DEM and its derivatives were used in studies at different scales

(14, 33, 43, 84) generally contributing to the predictive power of the

models. One advantage of the addition of the DEM is that it could

capture soil water content differences across a field with varying

elevation. These differences can affect the readings of proximal

sensors. Moreover, topographical and hydrological covariates can

be derived from the DEM as other potential covariates (e.g., slope,

aspect, wetness index).
5 Conclusion

We evaluated the potential of mapping at field-scale the maximum

peat thickness—a measure of the cultivable peat layer until either the

mineral layer or a limnic layer is encountered, using soil ECa from a

direct current resistivity sensor and elevation in a shallow cultivated

organic soil, in addition to a regional map of the MPT. Our results

suggest that it is possible to predict the MPT with various modelling

techniques; however, geostatistical approaches performed better.

Results showed that the ECa and the elevation could capture the

transition between the peat-limnic and peat-mineral layers,

significantly improving the accuracy of the regional map for the

same area. The addition of the regional map as a covariate also

improved all models, allowing them to downscale the former. This

study suggests a useful field-scale approach to form soil conservation
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management zones for farmers and agronomic consultants with much

less sampling efforts than manual sampling alone.
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