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Extragalactic astronomy is a relatively young science. Its birth may be set at the time of the “great
debate” between Harlow Shapley and Heber Curtis on the extragalactic nature of the nebule (which
culminated with a meeting of the two protagonists in April 1920) or, with a more conservative
stance, a few years later at the time of Edwin Hubble’s discovery of Cepheid variables in Messier 31,
the Andromeda galaxy and the nearest spiral galaxy to our own (Hubble, 1925). In the late 1920s
the Kapteyns Universe (that posed the Sun as the center of the Milky Way) and Shapley’s view (a
giant Milky Way of which the spiral nebula were part) had fallen out of favor with the appreciation
of the importance of interstellar matter in the absorption of light. Even if the Universe’s constituents
were stars and gas, they were not confined to a single galaxy, our own galaxy, the Milky Way. In the
1950s the recalibration of the relation between period and luminosity of the Cepheid stars provided
a distance scale consistent with the one presently adopted, greatly increasing the distance of even
the nearest spiral nebule and settling the issue of the island universes forever (Baade, 1958).

Frontiers in extragalactic astronomy—which, unlike other fields, can be literally associated with
a physical distance—have progressed as improvements in instrumental capabilities made it possible
to detect and to study more and more distant objects over an ever broader range of frequencies,
from the radio to the y-ray domain. Many results on distant sources are inferred by analogy with
better studied sources, which are usually brighter and closer. Until now this approach—which is
epistemologically risky (Salmon, 2012)—has not led research into major dead ends. There have
been fully unexpected, and less unexpected discoveries that proved to be lasting paradigm shifts.
The discovery of quasars expanded the cosmic scenario to distances previously unimaginable
(Schmidt, 1963). The inference of dark matter in cluster of galaxies (Zwicky, 1933), and of dark
matter influence on the rotation curve of galaxies (Rubin et al., 1980) in the early 1970s provided
early glimpses of the “dark Universe” as we understand it today. The realization of the importance
of obscuration and extinction phenomena that affect even the most powerful extragalactic sources
came gradually with the development of X-ray, spectro-polarimetric and IR instrumentation. Other
discoveries fulfilled dreams that had become reality, like the first planetary transit in front of a Milky
Way star that was not the Sun (Charbonneau et al., 2000). All of them enriched our view of the
Universe. For comprehensive reviews, the reader may consider the historical chapters of D’Onofrio
et al. (2012) and D’Onofrio et al. (2015) that provide first-hand accounts on major discoveries of
the last 50 years of Galactic and extra-galactic astronomical research. The possibility of a truly
revolutionary paradigm change was vented perhaps only once, at the time of quasars discovery
(Arp, 1987). In the mid 1960s quasar distances derived from the Hubble law looked enormous,
and the ensuing quasar power demanded physics that appeared exotic at the time: accretion onto
a supermassive black hole (Salpeter, 1964; Zel'Dovich and Novikov, 1965). The issue was definitely
settled when astronomers could see better at larger distances. With the advent of Hubble Space
Telescope in the early 1990s quasars were definitely confirmed as nuclei of distant galaxies as
implied by Hubble’s law (Bahcall et al., 1997). Active galactic nuclei (AGN)—which include quasars
that were once believed to be rare—were found to be relatively common and to play an important
role in the evolution of galaxies (e.g., Kormendy and Ho, 2013, and references therein).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 1

May 2015 | Volume 2 | Article 1


http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://dx.doi.org/10.3389/fspas.2015.00001
http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org
http://www.frontiersin.org/Astronomy_and_Space_Sciences/archive
https://creativecommons.org/licenses/by/4.0/
mailto:paola.marziani@oapd.inaf.it
http://dx.doi.org/10.3389/fspas.2015.00001
http://journal.frontiersin.org/article/10.3389/fspas.2015.00001/abstract
http://community.frontiersin.org/people/u/115900

Marziani

Grand challenges in Milky Way and galaxies

These considerations lead to the framing of three challenges
in Galactic and extra-galactic astronomy that, in my opinion,
can be legitimately called “grand:” the expansion of the redshift
frontier, the census of galaxies and of their constituents with a full
understanding of galactic evolution, and the study of accretion
onto supermassive black holes in galactic nuclei, whose event
horizon is literally a physical frontier of the Universe and where
there is a potential for the development of new physics.

The first grand challenge is obviously associated with data
improvement in terms of sample coverage and multiplexing
for the most distant galaxies. There has always been a redshift
frontier in extragalactic astronomy, and expanding the present
one at z ~ 10 (Ono et al, 2013) is perhaps the ultimate
challenge since we are dealing with cosmic epoch when the
universe was going opaque to UV radiation. Where does the
re-ionization energy come from, from star forming galaxies or
massive black holes (Madau et al., 1999)? Primordial galaxies did
not live through the evolutionary paths of present-day galaxies
so that they provide the best representation of galaxies not so
much time after formation. However, it is still unknown at which
epoch after the Big Bag massive progenitor could exist. There
is a cosmic age problem, as several evolved galaxies have been
found a relatively high-z (e.g., Riechers et al., 2013; Watson et al.,
2015). A special population of-highly accreting quasars has to be
assumed to explain the large masses observed at high z (Netzer
and Trakhtenbrot, 2014). At z &~ 6 we still observe supersolar
iron abundances which may conflict with timescales needed for
iron enrichment due to type Ia supernovee (Kurk et al., 2007).
The shifting redshift frontier, that 30 years ago was at z ~ 3.5
(Trimble and Woltjer, 1986) has always yielded implications on
galaxy formation and evolution; far-reaching implication may
soon even involve A-Cold Dark Matter cosmology. IR and sub-
mm instrumentation from ground and space (such as the James
Webb Space Telescope, optimized for IR) is and will be at the
forefront of the observation of the most distant galaxies and
quasars.

The second grand challenge is the development of a census
of sources—let it be the stars in the Milky Way or galaxies at
remote cosmic epochs—that may lead to a full understanding of
the Milky Way and external galaxies structure and evolution. We
live in an exciting time when the census of the stellar populations
within the Galaxy and of the extra-galactic Universe is still
being expanded to an unprecedented extent of completeness
through surveys such as the new generation of the Sloan Digitized
Sky Survey (SDSS) that provide immense public databases.
Dedicated surveys are being carried out to map the detailed three-
dimensional structure of the Galaxy: the space-based Gaia as well
as spin-offs of the Sloan IR surveys that overcome the effect of
interstellar extinction especially heavy toward the direction of
the Galactic center. Planned wide-field telescopes will provide an
almost synoptic survey of the whole sky at an unprecedented rate
(Ivezic et al., 2008).

We still miss a large population of quiescent and active
galaxies that are too faint for the present day instrumentation,
and not just the ones at the highest z that are being studied by
ultra-deep Hubble Space Telescope observations. Recent studies
based on the SDSS still miss the faint companions and important

morphological features (Smirnova et al., 2010). Even in the Local
Group, the census of all dwarf galaxies may not be complete
(Makarov et al., 2012). This is an unfortunate circumstance since
dwarf galaxies are directly related to galaxy formation theories,
and minor mergers are expected to play an important role in the
evolution of bulges (Naab et al., 2009). There is an obvious bias
in AGN discovery that depends on black hole mass and accretion
rate in flux-limited samples, so that at high z we still miss a large
population of quasars (Sulentic et al., 2014).

Galaxy evolution involves a number of non-linear processes
in structure formation that are still poorly understood.
Environmental effects such as gravitational interaction between
galaxies are a fundamental driver of galactic evolution though
hierarchical growth (Hopkins et al., 2006), and induced star
formation (e.g., Mihos and Hernquist, 1996; Krongold et al,
2002). Environmental effects on galaxies can be as strong as
to lead to a morphological transformation through merging
(Toomre and Toomre, 1972), and through the depletion
and stripping of the galaxy interstellar medium (Spitzer and
Baade, 1951). They yield evolutionary patterns that can be
radically different from galaxy to galaxy. Only in recent years
environmental phenomena have been studied in a detailed way
that makes it possible to appreciate their complexity (e.g., Forster
Schreiber et al., 2009; Monreal-Ibero et al., 2010; Sivanandam
et al., 2014, for different approaches), although we still miss
many aspects of the star formation micro-physics (Evans, 1999)
and multifrequency observational data are often presented on
an object-by-object basis. Realistic models of galactic structure
and evolution should include evolving stellar populations, the
supermassive black hole, and their feedback on the cold and hot
components of the inter-stellar medium (Fabian, 2012) in a large-
scale environmental context. We still need a full appreciation
of the relative importance of primordial collapse, hierarchical
growth, secular evolution and active nucleus feedback to account
for empirical relations such as the fundamental plane of
spheroidal galaxies (Djorgovski and Davis, 1987; D’Onofrio
et al,, 2013), that implies different stellar population for different
galactic structures, or color-magnitude diagrams, where the two
fundamental sequences of galaxies, the blue (star-forming) and
red (quiescent) one are defined.

The third grand challenge is to assess the role of accretion
onto supermassive compact objects in galactic structure and
evolution. Unification schemes account for a majority population
of obscured quasars and a small minority of beamed sources
(Antonucci, 1993; Urry and Padovani, 1995), but do not provide a
scenario for the diversity of unobscured, unbeamed AGNs. Is the
so-called first eigenvector of quasars (Boroson and Green, 1992;
Sulentic et al., 2000) a real surrogate of the stellar Hertzsprung-
Russell diagram? There is a well-defined sequence that allows
for the definition of spectral types. The sequence is likely to
be governed by Eddington ratio, but orientation, mass, spin,
luminosity, chemical composition and other effects complicate
its interpretation (e.g., Marziani et al., 2001; Shen and Ho, 2014;
Wang et al., 2014). Accretion processes may be almost self-
similar over a huge range of masses (Zamanov and Marziani,
2002; Merloni et al., 2003) but they are still poorly understood
as far as the structure of the accretion flow is concerned (e.g.,
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Abramowicz and Straub, 2014, and references therein), especially
if the flow is advection-dominated at very low and high accretion
rates. How and under which condition will they launch a jet or a
radiation driven wind? There is no clear physical understanding
of why AGN come into two varieties, radio quiet and radio loud.
Hierarchical growth scenarios also predict a large number of sub-
parsec binary black holes (Volonteri et al., 2009), but where are
they? Until now their existence is supported by observations only
in a handful of cases (Bon et al., 2012). As in other fields of extra-
galactic research, there is also here an obvious gap between theory
and observation.

There is convincing evidence of a large concentration of
mass in at least some galactic nuclei (Peterson and Wandel,
1999; Ghez et al., 2003). Is the mass really in the form of a
black hole? An important aspect of the third challenge is the
ability to resolve the inner structure of galactic nuclei down to
the black hole event horizon, not only because of its uncertain
nature and the possibility of new physics (Hawking, 2014),
but also because within a few tens of gravitational radii from
the event horizon it is possible to test general relativity, the
physics of accretion, as well as the collimation of relativistic
jets. In principle, with enough resolving power in the sub-
mm domain it is possible to measure the black hole spin
and even detect possible deviations from the Kerr metric i.e.,
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to even test the so-called “no hair” theorem for black holes
(Broderick et al., 2014). This is the challenge meant for the Event
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sub-milimetre array that is presently under development
(Ricarte and Dexter, 2015), and for the planned Athena X-ray
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The time is ripe to work in the direction of a coherent view
in galaxy evolution that will include accretion processes in the
framework of a less and less lacunose mapping of the Galactic
and of the distant Universe. Facing these challenges calls for
improved light gathering power that is needed for the high S/N
and high-resolution spectroscopy of faint sources—especially in
the IR and X-ray bands, to observe dust-obscured or high-
redshift sources—that will be detected in a large numbers by the
wide field telescopes expected to come into operation in the next
years. It will require the dedication and the enthusiasm of the
present and next generations of researchers.
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