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Recently some pessimism has been expressed about our lack of progress in
understanding quasars over the 50+ year since their discovery (Antonucci, 2013). It
is worthwhile to look back at some of the progress that has been made—but still lies
under the radar—perhaps because few people are working on optical/UV spectroscopy
in this field. Great advances in understanding quasar phenomenology have emerged
using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R
Diagram for quasars with a source main sequence driven by Eddington ratio convolved
with line-of-sight orientation. Appreciating the striking differences between quasars at
opposite ends of the main sequence (so-called population A and B sources) opens the
door toward a unified model of quasar physics, geometry and kinematics. We present a
review of some of the progress that has been made over the past 15 years, and point
out unsolved issues.
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1. Introduction

The first 50 years of research on quasars has lead us to a paradigm involving threemain (unresolved)
components: (1) a supermassive black hole (SMBH; Salpeter, 1964; Zel’Dovich and Novikov, 1965),
(2) an emitting accretion disk (AD; Shields, 1978; Malkan and Sargent, 1982), and (3) an obscuring
torus (Antonucci and Miller, 1985). Component 3 arises from attempts to unify type-1 and 2
sources on the basis of orientation, and it is now being partially resolved in the nearest active nuclei
thanks to the new generation of IR interferometers (Jaffe et al., 2004; Tristram et al., 2009; Burtscher
et al., 2013, and references therein). A 4th component would involve narrow line emission and
sometimes radio-jets extending on scales of parsecs, kpc or even Mpc along the rotation axis of the
disk, resolved or partially resolved in the nearest sources (Capetti et al., 1996; Falcke et al., 1998).
The AD may contribute to broad line emission and as such may be a constituent of the broad
line region (BLR, Chen et al., 1989; Dumont and Collin-Souffrin, 1990; Eracleous and Halpern,
2003; Bon et al., 2007), while Component 4 involves only narrow-line region (NLR) emission unless
the source is radio-loud. Cartoons showing the different components neatly aligned are likely too
optimistic but we can hope it is often the case. Moving beyond this paradigm has not been easy
leading to some expressions of frustration. Impediments to real progress involve lack of a clear
definition of a quasar and the lack of any paradigm in which to contextualize source commonalities
and differences. For a long time then we have been stuck with the paradigm as definition and the
assumption that all quasars (or, better said, active galactic nuclei AGN) are the same.

During the past 15 years we have assembled a formalism designed to contextualize quasar
diversity and identify the principal physical drivers of that diversity. This 4D Eigenvector 1
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(4DE1) parameter space represents a surrogate H-R Diagram
for type 1 AGN. We extend the definition of type-1 to include
sources that show both broad-line emission from the principal
optical and UV permitted lines and sources that show optical
Fe II emission (Fe IIopt) and that are therefore expected to
accrete at a moderate to high-rate (dimensionless accretion rates
& 10−3 − 10−2, Woo and Urry, 2002; Marziani et al., 2003c).
4DE1 was built upon pioneering studies of optical (Boroson
and Green, 1992), UV (Gaskell, 1982), and X-ray (Wang et al.,
1996) spectra. By the year 2000 enough data and ideas were
in place to introduce the 4DE1 formalism and the idea of two
quasar populations, A and B [Population A with FWHM(Hβ)
≤ 4000 km s−1; Population B(broader) with FWHM(Hβ) >

4000 km s−1, Sulentic et al., 2000a,b] to emphasize the many
differences between high and low accreting type-1 sources. The
populations may really represent two distinct quasar classes.
Population A may be seen as the class that includes local Narrow
Line Seyfert 1s (NLSy1s) as well as high accretors (Marziani
and Sulentic, 2014), and Population B as the only class capable
of radio-loudness (e.g., Zamfir et al., 2008), or else the two
populations could be just the opposite extremes of a single
quasar “main sequence” defined in the optical plane of the 4DE1
parameter space (Sulentic et al., 2011).

Developments in the statistical analysis before late 1999
of low-z quasar spectral properties are reviewed in Sulentic
et al. (2000a). Here we retrace developments that came mainly
afterwards, since the turn of the century, and that are associated
with a better understanding and expansion of the original
eigenvector 1 results. A recent work by Shen and Ho (2014,
hereafter SH14) basically confirms many past results and
hopefully reawakens interest in the subject. The aim of this paper
is to review the main steps in the development and exploitation
of 4DE1 mainly by the group of Sulentic and collaborators
(Sections 3–6). We also review the “rediscovery” paper SH14
(Section 8) and mention its followup (Sun and Shen, 2015).
We maintain a loose chronological order (Sections 3–6) in an
attempt to clarify which results can be considered established
and which still lie on uncertain ground– therefore necessitating
further study. We finally point out some major open issues
(Section 9).

2. 2000: Formulation of an Eigenvector
1-based Parameter Space

The 4DE1 parameters introduced in 2000 involve:

1. full width half maximum (FWHM) of broad Hβ (HβBC);
2. equivalent width (or flux F) ratio of the optical FeIIλ4570

blue blend and broad Hβ (RFeII=W(FeIIλ4570)/W(Hβ) ≈
F(FeIIλ4570)/F(Hβ); see Figure 1). The choice of equivalent
width was motivated by its widespread availability in low z
(<0.7) spectra. In more recent time we have preferred to use
RFeII as defined from the intensity or flux ratio in order to
avoid division by a continuum that is often steeply rising
toward the blue;

3. profile shift at half maximum of high ionization line CIVλ1549
c( 12 );

4. soft X-ray photon index (Ŵsoft).

FIGURE 1 | The Hβ spectral range of two SDSS sources of Pop. A (top)
and Pop. B (bottom). Abscissa is rest frame wavelength in Å, ordinate is
specific flux in units of 10−15 ergs s−1 cm−2 Å−1. The shaded areas indicate
spectral regions where the main emission line contribution is due to Fe IIopt.
On the blue side of Hβ the wavelength range of the shaded area defines
FeIIλ4570 i.e., the Fe IIopt blended emission that is used to compute RFeII and
to characterize Fe IIopt prominence along the quasar eigenvector-1 sequence.

The parameters are thought to be: (1) a measure of virialized
motions in a low-ionization line emitting AD or flattened system
of clouds that is considered an important virial estimator of black
hole mass for large samples of quasars; (2) a sensitive diagnostic
of ionization, and column density in BLR gas arising, as far as we
can tell from shielded or outer parts of the BLR. The strength of
Fe IIopt emission in many sources has been argued to support the
AD origin for the emission (Collin-Souffrin et al., 1988; Dultzin-
Hacyan et al., 1999; Joly et al., 2008) and a role for metallicity;
(3) a strong diagnostic of winds/outflows in the higher ionization
broad line gas; (4) a diagnostic measure of thermal emission
likely connected with the accretion disk, and to the accretion state
(e.g., Mineshige et al., 2000, although see Done et al., 2012, for a
dissenting view). These measures were chosen because they were
available for: (1) large numbers (100+) of low z quasars with
(2) high S/N spectra (S/N > 20) and (3) because they showed
statistically significant dispersion along the 4DE1 main sequence.
They are Eigenvector 1 because they are strongly correlated and
if parameters 3 and 4 had been included in the first principal
component analysis (PCA) they would have contributed much
of the power of Eigenvector 1. They are “orthogonal” in the sense
that they involve parameters describing independent aspects of
quasar phenomenology as well as different physical processes
connected to the BLR.

One can mark 1998 as the year when theoretical attempts to
model the BLR (of well-studied NGC 5548) were acknowledged
to have failed at least in part (Dumont et al., 1998). We think
the pessimism that followed is reflected in the incompatibility
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of measures for population A and B quasars (e.g., significantly
different ionization parameter U and structure factor f , see page
9). After 1990, there has been a widening void between theory
and observations, probably because the large diversity of quasar
properties has not been taken into account as needed.Muchmore
success is likely to arise from attempts at modeling Pop. A (e.g., I
Zw 1) and B (NGC 5548) or individual spectral types (as defined
by Sulentic et al., 2002; §4 below) separately. Two typical spectra
of Pop. A and B sources are shown in Figure 1. Differences in line
width, Fe IIopt prominence, Hβ line profile, as well as in [OIII]-
λλ4959,5007 strength are visually evident. Then the question of
uniting the two solutions—or the need to invoke separate quasar
populations (perhaps driven by a critical accretion rate, Marziani
et al., 2014) can be addressed.

3. 2001: The Physical Drivers of 4DE1

After we proposed the 4DE1 contextualization we began to search
for the physical drivers. We knew that, unlike stars, quasars
are very unlikely to show the same spectroscopic properties at
different viewing angles (Wills and Browne, 1986). Boroson and
Green (1992) suggested L/LEdd as a possible physical driver
by exclusion, as a “best guess.” Not source luminosity (an
Eigenvector 2 parameter in their PCA), not simply orientation
(the extreme range in FWHM alone Hβ precludes that) nor
geometry –all were discussed much more. They were writing in
the early 1990s using a sample of 87 quasars so their discussions
are perhaps out of date from today’s perspective. More than
two measures would likely be needed to break the degeneracy
between source orientation and physics. The following year we
explored the physical drivers of source occupation along the
optical “main sequence” (Marziani et al., 2001, Figure 2), and
concluded that source orientation (θ) convolved with the ratio
of quasar luminosity to black hole mass (L/MBH∝ Eddington
ratio, as anticipated by Boroson and Green, 1992) could describe
rather well source occupation in the optical plane of 4DE1.
Figure 2 reproduces an overlay on our heterogeneous but high
S/N sample (see also ESOMessenger for June 2001, Sulentic et al.,
2001). The following year two of us considered the role of black
hole mass over ≈ 8dex range (Zamanov and Marziani, 2002).
This was accompanied by an attempt to estimate L/LEdd from
L and MBH (Marziani et al., 2003c). MBH was also estimated
from line width and scaling relations (Laor, 2000; Boroson,
2002).

At this point it might be useful to compare the abstract of
SH14 with that of Marziani et al. (2001). In one sense, SH14 is
“one step forward and one step back.” The new paper uses amuch
larger sample of quasars drawn from SDSS (one step forward)
but, most of the spectra that they use and measure (Shen et al.,
2011) are unsuitable to produce an equal or greater description
of the role for L/LEdd (one step back). SDSS is a gold mine but at
the same time it is aminefield for the uninitiated user. Automated
processing of these spectra is indeed a walk through a minefield.
We have emphasized since 1996 the need for, and importance of,
quasar spectra with high enough S/N and resolution to permit
reliable spectroscopic parameter measures. That is why Boroson

FIGURE 2 | Simplified version of Figure 4 in Marziani et al. (2001). The
4DE1 optical plane shows sources from the Sulentic et al. (2000b) sample with
a superposed grid of theoretical values of viewing angle i (10 ≤ i ≤ 40) and
L/MBH, expressed in solar values, for 3.1 ≤ log L/MBH≤ 4.5 (implying log

L/LEdd≈ 0), at steps of δ log L/MBH= 0.1. A value of logM ≈ 8 in solar units
was assumed for U. Filled circles and squares represent RQ and RL sources,
respectively. Boxes identify BAL QSOs (2 of them, Mark 231 and IRAS
0759+651 not in Sulentic et al., 2000b). The red spot mark the average for the
strong FeII emitters of Lipari et al. (1993). Error bars in the upper right corner
indicate typical 2σ uncertainties for a data point at FWHM ≈ 4000 km s−1 and
RFeII≈ 0.5. The dot-dashed line is the FWHM(Hβ) = 4000 km s−1 boundary
between Pop. A and B, and the dotted lines at FWHM(Hβ) = 2000 km s−1

marks the FWHM limit of NLSy1s.

and Green (1992) was such a step forward and their measures are
still used 25 years later.

Although it may sound disappointing, most low S/N quasar
spectra are not suitable for useful spectroscopic measures. If
this statement were untrue then, in the context of future quasar
studies, most of the justification for 10m class telescopes—
beyond observing perhaps just obscured quasars—would be
negated. Figure 3 shows a comparison of automated measures
of SDSS quasars (Shen et al., 2011) used in the SH14 study
with IRAF SPECFIT measures of Zamfir et al. (2010). The
comparison involves the brightest quasars in SDSS-DR5 and
therefore generally showing S/N > 20. Continuum S/N should
not be confused with S/N computed in regions with strong
emission lines. Surprisingly many of the FWHM Hβ measures
used in this paper (Shen et al., 2011) are also strongly discordant
with more detailed analysis presented a few years ago (Zamfir
et al., 2010) for the 500 brightest DR5 quasars (Figure 3). This
is especially true for so-called population B quasars with FWHM
Hβ >4000 km s−1 as was shown in 2002 (Sulentic et al., 2002).
Figure 3 in Marziani et al. (2003a) quantifies the dependence
of FeII detectivity on S/N and FWHM Hβ . In Figure 3 of the
present paper each Shen et al. (2011) measure is connected to the
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FIGURE 3 | Left: a comparison between Shen et al. (2011) and Zamfir et al. (2010) in the optical plane of 4DE1 involving the FWHM of Hβ in km s−1 and the strength
of optical FeII (RFeII parameter). The blue lines connect Zamfir et al. (2010) (green stars) with Shen et al. (2011) measurements for the same objects. Right: A2 and
part of adjacent bins in the 4DE1 optical plane.

corresponding Zamfir measure. Taken at face value, automated
measures can even mislead statistical analyses i.e., it is not
that they fail occasionally, it is that they create categories of
spurious classes of sources especially for large sample sizes. This
is shown by the left panel of Figure 3 where the “outliers” in the
optical plane of 4DE1 turn out to agree with the main sequence
once more accurate measures are used. An additional problem
is that HeIIλ4686 emission is apparently included as part of
the FeII blue blend in the Shen et al. (2011) data. HeIIλ4686
measurements are not reported there. HeIIλ4686 is pernicious
leading to overestimation of FeIIλ4570 strength, overestimation
of Fe IIopt template width and claims of an Fe IIopt redshift
relative to Hβ (Hu et al., 2008; Sulentic et al., 2012). This is
shown by Figure 4 where the one FeII strong source is more
straightforwardly interpreted in terms of weak FeII, and strong
and very broad HeIIλ4686.

The new analysis might not have been “two steps back" if
all quasar spectra were the same. Our work from 1989 to 2001
also emphasized the diversity of the spectroscopic (and other)
properties of quasars. The concept of two quasar populations (A
and B) was introduced to further emphasize this point—it is a
simplified analog of the seven principal spectral types identified
in the stellar H-R Diagram. Naturally low S/N spectra tend to
diminish this diversity leading to the quite natural temptation
to indiscriminately average many noisy spectra together in order
to produce higher S/N composites. But without a context with
which to average, these composites it confuses rather then
clarifies the quasar phenomenology and raises an impediment
to improved physical models. What would a composite of
OBAFGKM stellar spectra give us?

Figure 1 of SH14 allows us to visualize the main E1 trend
but it does not improve our understanding of the distribution of
sources in the 4DE1 optical plane because the FeII blends, present

in virtually all quasar spectra, cannot be properly detected, much
less modeled, in 90–95% of the SDSS spectra. A continuum is
likely fit on top of noisy FeII emission resulting in a zero, or
too low, measure of FeII strength. A censored data analysis is
appropriate in this context (Sulentic et al., 2002).

4. 2002—Eigenvector Binning and First
Explorations of [OIII]λ5007

4.1. Defining Spectral Types
We are still speaking about pre-SDSS years. Further
exploration/exploitation of 4DE1 required a larger sample
but fewer then 200 quasars with moderate/high S/N spectra
existed at this early time. While engaged in obtaining new data
with 2 m class telescopes in Spain, Mexico, Italy and Chile
we realized that another approach would be to bin the optical
plane in order to better contrast quasars along the 4DE1 main
sequence. Bin sizes were chosen so that all quasars within a
given bin were statistically indistinguishable. If we were to bin
stellar spectra we would bin by spectral type or even subtype
since indiscriminate averaging will obscure any physical insights.
Most of our papers showed that tremendous spectral diversity
existed in the type-1 quasar population. We chose bins of equal
size because we had at first no evidence that the physical drivers
of 4DE1 source occupation correlate with measured properties
in a way to justify unequal bins. We are not yet in a position to
know for sure. SH14 rediscover binning but with bins of unequal
size which seems to us a step back. Binning should be predefined
rather than driven by a distribution in a parameter space defined
using low S/N spectra. Our first paper showing average spectra
of Hβ (Sulentic et al., 2002) revealed a clear change in the
profile shape along the sequence with profiles for sources with
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FIGURE 4 | Top: The Hβ spectral range of source SDSS
J034106.75+004609.9. Abscissa in rest-frame wavelength in Å, ordinate in
specific flux in units of 10−15 ergs s−1 cm−2 Å−1. The black line traces the
featureless continuum; the green line traces the total continuum that includes a
contribution from the host galaxy. There is no detectable FeII emission. The
magenta line traces the cleaned Hβ broad profile. Bottom: Hβ profile
analysis. The excess on the blue side of Hβ (orange line) can be explained by
significant HeIIλ4686 VBC emission. Hβ and Hγ are consistently fit with the
same BC and VBC parameters [the BC (magenta) and VBC (red)
decomposition is shown for Hβ only]. Narrow lines ([OIII]λλ4959,5007 and
HβNC) have been modeled by a core and a (fainter) blue shifted component
(blue line). The abscissæ are rest frame wavelength in Å radial velocity
displacement from Hβ narrow component in km s−1 (lower panel), ordinate is
specific flux normalized to fλ(5100 Å) ≈ 3.44 · 10−16 ergs s−1 cm−2 Å−1. The
lower panel yields the residuals defined as observed minus model spectrum.

lowest inferred Eddington ratio showing an extra very broad
and redshifted component (VBC). This is not to say that the
binning done by Sulentic et al. (2002) isolated sources that were
scattering randomly around an average value in each bin: rather,
the grid of Marziani et al. (2001) clearly shows that within each
bin orientation and Eddington ratio trends were expected.

4.2. Very Broad Component and Very Broad Line
Region
Striking differences motivated us however to separate quasars
into two populations: population A, involving mostly radio-quiet
(RQ) high accretors with symmetric Lorentz-like Hβ profiles,
strong optical FeII emission, a CIVλ1549 blueshift / asymmetry
and a soft X-ray excess. Population B sources are lower
accretors including most of the classical radio-louds quasars
(RL). They show composite double-Gaussian (BC+VBC) Hβ

profiles, weaker optical FeII emission, unshifted (or redshifted?)
CIVλ1549 and no soft X-ray excess. Some quasars show an
unusually strong VBC component that dominates the Hβ profile,
e.g., (PG 1416–129, Sulentic et al., 2000c). At first the BC +
VBC decomposition was purely phenomenological, but extreme
VBC sources give us a clearer insight into the shape of Hβ

VBC. In most cases it was possible to reproduce Hβ for the
overwhelming majority of population B sources and specifically
the ones classified as AR,R or AR,B (i.e., redward asymmetric,
AR, with red or blueshifted peak, Sulentic, 1989). A very broad
line region (VBLR) has been postulated since the mid 1980s
and was initially suggested to be due to optically thin gas
in the innermost BLR (Peterson and Ferland, 1986; Morris
and Ward, 1989; Zheng, 1992; Shields et al., 1995). Optical
“thinness" has however strong implications for the maximum
luminosity associated with a line: if the medium is optically
thin the intensity of the same recombination line is governed
by the volume and density of the emitting gas and is not
directly related to the luminosity of the ionizing continuum
(Marziani et al., 2006).

Earlier observational definitions were based mostly on the
CIVλ1549 profile. Brotherton et al. (1994a) postulated the
existence of a intermediate line region emitting most of
CIVλ1549 of FWHM ≈ 2000 km s−1, and a broader component
(the VBC) to account for the extended CIVλ1549 wings. Corbin
(1995) interpreted the redshift often observed in the Hβ wings
as gravitational redshift affecting the VBC. By 2002–2003 it
was clear that the profile analysis of the CIVλ1549 profile was
more ambiguous than the one of Hβ . While Hβ customarily
shows a narrower component sharply separated from the broad
component, the CIVλ1549 profile of Pop. B sources shows a
prominent semi-broad core that merges smoothly with the line
base. We already had suggested an interpretation in terms of
density stratified NLR to account for the CIVλ1549 core profile
(Marziani et al., 1996; Sulentic and Marziani, 1999).

No VBC is apparently present in FeII: we run several tests
and we concluded that the VBC cannot be as strong in Hβ

and, if present, is too weak to be appreciable. The BC and VBC
decompositions therefore reflects the ionization stratification
within the BLR, simplifying what is probably a continuous radial
trend. Twomain regions are identified: a higher ionizationVBLR,
associated with the VBC (i.e., line base and line wings), and
a lower one associated with the BC, that emits most of all of
FeII. The absence of FeII emission can be considered a defining
property of the VBLR.

It was later shown that the VBC is strong in luminous quasars,
and that its luminosity cannot be explained by optically thin
gas (Marziani et al., 2009). Presently, the VBLR is understood
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as inner emitting region whose high ionization degree leads to
a lower responsivity to continuum changes (Korista and Goad,
2004; Goad and Korista, 2014).

4.3. Blue Outliers: Linking Wind Signatures on
Widely Different Spatial Scales?
During this year we also began exploration of [OIII]λ5007 as a
diagnostic of the narrow line region. This kind of study requires
very high resolution. In fact Boroson and Green (1992) expressed
frustration with attempts to parameterize [OIII]λ5007 using
standard measures like equivalent width. The reason for this was
that even the very good spectra employed in Boroson and Green
(1992) were too low resolution to allow realization that there
are two distinct components of [OIII]λλ4959,5007. We obtained
spectra at San Pedro Martir, Calar Alto and KPNO and identified
a class of “blue outlier” sources (Zamanov et al., 2002), where the
profile appeared with a blueshift >250 km s−1 in amplitude and
the velocity separation between the two [OIII]λ5007 components
(unshifted+ blueshifted) was largest. They appear to favor
population A quasars (Figure 5) which also show large CIVλ1549
blueshifts, suggesting a kinematic linkage between the narrow
and broad line regions. Additional examples were presented the
next year (Marziani et al., 2003c), and the existence of large
blueshifts and semi-broad [OIII]λλ4959,5007 emission has been
confirmed in a number of studies (Aoki et al., 2005; Bian et al.,
2005; Komossa et al., 2008; Zhang et al., 2011, 2013). Recent
studies even find emission extended on galactic scales giving
rise to an integrated semibroad profile (Cano-Díaz et al., 2012),
although the original results of Zamanov et al. (2002) indicated
that the semibroad [OIII]λλ4959,5007 component originated in
a very compact NLR,∼ 1 pc in size. At that time andwith our data
the question mark on the BLR-NLR linkage was wise. Nowadays
it seems that quasar outflows are linked from the BLR up to the
circumnuclear regions, where molecular outflows are detected,
at least in the extreme source Mrk 231 (Feruglio et al., 2015;
Tombesi et al., 2015), a BAL QSO that was noted in our early
analysis because of the abnormally large Hβ FWHM that placed
the source outside the main sequence of 4DE1 (Marziani et al.,

FIGURE 5 | Average shift of [OIII]λ5007 (negative is blueshift) for

spectral types in the optical plane of 4DE1. Numbers in parentheses
indicate sources in each bin with the dataset available to us in late 2001.

2001; Sulentic et al., 2006). It is unfortunate that the binning
in SH14 was nonuniform because it damped out some of the
[OIII]λ5007 profile diversity in their Figure 2. Bin size should
not be motivated to maximize the number of quasars within a
bin but rather to explore the diversity of type-1 spectroscopic
properties within the parameter space. We have evidence that
even our already rather fine subdivision should be made even
finer. Given the complexity of Fe IIopt emission and weakness of
[OIII]λλ4959,5007 in extreme population A sources one must be
especially cautious interpreting results for these quasars.

The essential point that emerged in 2002/2003 is that [OIII]-
λλ4959,5007 shows two components. The narrower unshifted
component apparently shows a strong change along the 4DE1
main sequence becoming very weak or absent in extreme Pop.
A (highest L/LEdd) sources. A second semibroad and blueshifted
component may be present in all sources but is most prominent
in extreme population A where it shows blueshifts up to ∼
1000 km s−1 (I Zw 1 is a famous example of the so-called blue
outliers). This is not a novelty of SH14, since this trends was
discussed in Marziani et al. (2006) on the basis of the previous
2002–2003 papers. The semibroad component is difficult to
study in many sources requiring spectra of very high S/N
and resolution. In some of these spectra [OIII]λλ4959,5007 is
at least partly resolved into two components (Grupe et al.,
1999; Zhang et al., 2013). A further problem mentioned in
some of the above references involves slit effects connected
with extended emission line region (EELR) contaminating the
spectrum.

5. 2003: An Useful, Uniform Dataset After
Boroson and Green (1992)

5.1. A Physical Dichotomy between Pop. A and B?
This was “a very good year” when observations in Mexico, Spain,
Italy, and Chile (ESO) enabled us to expand our sample to more
than 200 low z quasars. This was a big deal on the eve of the SDSS.
Even better we began to explore in more detail of role of black
hole mass and Eddington ratio along the quasar main sequence.
We were not the first but the 4DE1 approach allowed us to gain
some insight, and to suggest that the separation between Pop. A
and B occurred as a fairly well defined L/LEdd, ≈ 0.1 − 0.2 for a
quasar with logMBH∼8 (Marziani et al., 2003c). It is possible that
this critical Eddington ratio may signal the transition to a slim
disk from an optically thick, geometrically thin disk (Abramowicz
et al., 1988).

Are population A and B simply extreme ends of a main
sequence or do they represent two distinct quasar populations?
This remains an open question as far as we are concerned,
although there is now evidence that the A/B differences could
be associated with an accretion mode transition, with higher
L/LEdd sources accreting in an advection dominated accretion
flow (ADAF, Marziani et al., 2014, and references therein). The
gravitational explanation for the large redshift observed at the
line base of Hβ was found to be too large to be consistent with
the assumption of predominantly virial motion (Marziani et al.,
2003c).
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5.2. The RL/RQ Dichotomy
It was also the year when more detailed studies of the RQ—RL
dichotomy were explored in the 4DE1 context, first with our
own atlas (Sulentic et al., 2003) and later with the 500 brightest
SDSS DR5 quasars (Zamfir et al., 2008). The strategy here was
to explore the distribution along the 4DE1 main sequence of the
most unambiguous class of RL quasars–those showing classical
double-lobe (LD) radio morphology. They clearly show a strong
concentration at the low L/LEdd (Population B) end of the main
sequence. Almost all show a consistent absence of a soft X-ray
excess and CIV blueshift. The restricted 4DE1 parameter space
occupation of LDRL sources is perhaps the strongest evidence for
a physical dichotomy between RL and RQ quasars (Figure 6)—if
4DE1 parameters reflect fundamental aspects of BLR structure
and kinematics. The situation is much less clear for core-
dominated RL—a few are interpreted as preferentially aligned
LD sources but the majority especially those weaker than the LD
sample lower limit (log P1.415GHz ≈ 31.6 ergs s−1Hz) have been
attributed to diverse scenarios. If these scenarios reflect reality
they imply that some CD sources below log L1.415GHz ≈ 31.6 ergs
s−1Hz−1 may not be RL in the classical sense. They will rise out
of the RQ population and many will become rapidly quenching
radio sources (e.g., Fanti et al., 1995), or eventually cross the
LD boundary producing LD morphology (as proposed for the
compact steep spectrum (CSS) radio sources). It was shown in
Zamfir et al. (2008) that CD sources in the range log L1.415GHz ∼
30.0–31.6 ergs s−1Hz−1 distribute like RQ quasars and not LD

FIGURE 6 | The 4DE1 optical plane involving the width of Hβ and the

strength of optical FeII. The horizontal line marks the boundary between
population A (lower half of the diagram) and B (upper half) sources. Source
occupation is shown for the 470 brightest SDSS-DR5 quasars (z < 0.75) with
highest S/N SDSS spectra (Zamfir et al., 2008). Gray and red dots represent
RQ and lobe dominated LD RL quasars. The latter class shows a strong
preference for the Population B zone.

RL. Looking at Figures 4, 5 of Zamfir et al. (2008) makes
it obvious that 4DE1 has much to say about the RL-RQ
dichotomy.

6. 2004(+2007): interpreting the rest-frame
UV spectrum and the CIVλ1549 profiles
along 4DE1

Up to this point we were not in a position to explore the
other 4DE1 parameters in much detail. Myriads of CIVλ1549
spectra existed by this time including the very good spectra
from the Palomar surveys (e.g., Barthel et al., 1990) but we
had no way to reliably estimate quasar rest frames. Since we
knew that CIVλ1549 profile shifts showed large diversity along
the 4DE1 main sequence we could not proceed. We could not
use existing studies (Brotherton et al., 1994b) because their
methods of CIVλ1549 profile decomposition were incompatible
with ours and not physically justified (Sulentic and Marziani,
1999). We argued that a narrow component of CIVλ1549 must
be cautiously subtracted and that it was stronger in population B
quasars, with semi-broad profiles. Our approach was motivated
by lack of a well defined critical density associated with
CIVλ1549 (instead suppressing [OIII]λλ4959,5007 at density
nH& 106 cm−3. The assumption of a density radial trend
gave additional arguments that CIVλ1549 narrow component
(NC) could be broader than [OIII]λλ4959,5007 by up to 3
times following the simple modelization of Netzer (1990).
CIVλ1549 emission it favored at high ionization parameter,
with a steep decrease toward lower ionization conditions.
The emissivity of Hβ has instead a much flatter dependence
on ionization parameter, and its volume integrated profile
is weighted toward the outer emitting regions. Hence, the
CIVλ1549 NC profile may merge smoothly with the BC, while
the Hβ NC profiles stands out as an easily separable feature that
is discontinuous from the BC. Since CIVλ1549NC is due mainly
to the inner NLR, CIVλ1549NC blueshift within a few hundreds
km s−1 per second are expected (Zamanov et al., 2002; Aoki
et al., 2005; Bian et al., 2005; Boroson, 2005; Komossa et al.,
2008).

We also gave a recipe for estimating if NC is present and how
to subtract it. Obviously if one does not distinguish population
A and B things look more confusing. If CIVλ1549 NC is
present and you do not subtract then you measure CIVλ1549
too narrow, too strong and probably less shifted. Baskin and
Laor (2005) made a NC subtraction although it was much
lower for sources in common. In population B, where the
NC merges smoothly with the BC, an NC definition is often
operationally ambiguous. However, not subtracting the NC may
introduce a significant bias lowering MBH mass estimates, and
making them fortuitously consistent with the Hβ-derived ones
(Sulentic et al., 2007).

Finally the number of low-z spectra with CIVλ1549 spectra
in the HST archive passed 100 enabling us to produce binned
spectra (Bachev et al., 2004; Sulentic et al., 2007). Binning (and
rest frame estimation) came from previously obtained matching
optical spectra of the Hβ region. Now it was very clear that
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CIVλ1549 blueshifts were a Population A phenomenon likely
associated with a disk wind or outflows in these highest accretors
(Figure 7).

This year also saw the beginning of our study of high redshift
quasars in the 4DE1 context. This required 8 m class telescope
time because we were forced to follow Hβ + [OIII]λ5007 into
the infrared in order to both assign high z sources to the correct
bin and to obtain a reliable estimate of the rest frame. We
used VLT-ISAAC to obtain spectra of unprecedented S/N for 52
high z sources. We could, for the first time, observe changes in
4DE1 source occupation and we could explore UV surrogates for
estimating rest frame and black hole mass—lessening the need
for IR spectra of large samples.

Equivalent measures for FWHM(Hβ) and RFeII (items 1 and
2 in §2) have been identified in the redshifted UV spectra of
high-redshift quasars (Negrete et al., 2014a). In the simplest
consideration of quasar diversity involving Population A and
B sources (described below), virtually all multi-wavelength
measures of quasars show differences (see Table 5 of Sulentic
et al., 2007).

7. 2009

Until the mid 2000s our main results were based on the study
of low-z, predominantly low luminosity sources. In 2009 we
presented the largest instalment of IR spectra of Hamburg-ESO
intermediate redshift quasars covering the Hβ spectra range

FIGURE 7 | Optical plane of 4DE1 as in Figure 6, for all low-z quasars

with measurable HST/FOS UV spectra (Sulentic et al., 2007). Different
symbols represent the amplitude of the CIVλ1549 blueshift at half maximum
c( 12 ) normalized by FWHM(Hβ) (a measure of the virial broadening): dark blue
circles: 1vr≤ −0.1, pale blue: −0.1 < 1vr≤ −0.05; gray (unshifted):
−0.05 < 1vr≤ +0.05, pale red: km s−1+0.05 < 1vr≤ +0.1; red: 1vr≥ +0.1.
Filled symbols: Pop. A, open symbols: Pop. B, squares: RL, circles RQ.

(Marziani et al., 2009). In total, considering previous batches
(Sulentic et al., 2004, 2006), we had data available for 52 very
luminous quasars. Comparison with previous observations at
lower L allowed as to start the analysis along the L dependent
“eigenvector 2.” Perhaps the most remarkable result was the
detection of the systematic increase in minimum-FWHM as a
function of luminosity, a trend that is expected if: (1) the Hβ

line profile is virially broadened; (2) L/LEdd= 1 is a physical
limit; and (3) the BLR radius scales as L ∝ rα with luminosity,
with α ≈ 0.5 − 0.65 (Kaspi et al., 2005; Bentz et al., 2013).
We cannot find high luminosity narrow line sources if these
assumptions are valid. Negrete et al. (2012) and Marziani
and Sulentic (2014) have shown the equivalence of broader-
lined sources with the prototype NLSy1 I Zw 1. This implies
that the limit at FWHM = 2000 km s−1 for defining NLSy1
sources makes sense only at low luminosity. Relaxing this limit
would allow to appreciate that there are sources which are
analogous to local FeII-strong NLSy1s in terms of physical
conditions but simply with broader lines. A more physically
oriented criterion could attempt to isolate sources at L/LEdd→
O(1), which means applying the empirical criterion RFeII&1
(i.e., to isolate the sources we called extreme accretors, xA, in
Marziani and Sulentic, 2014). A second intriguing result was the
high frequency of blueshifted, low equivalent width [OIII]λ5007
profiles.

8. 2014, or the Year of the Final
Rediscovery

8.1. Results Involving [OIII]λλ4959,5007
SH14 establish in a firmer way the sequence of [OIII]λλ4959,-
5007 profile behavior, something also described much earlier
(Zamanov et al., 2002; Marziani et al., 2003b, 2006; Marziani
and Sulentic, 2012). Figure 5 supports the trend concerning
shifts of [OIII]λ5007 shown in their Extended Data Figure 2. Its
significance was discussed in the above references and also by
Bian et al. (2005), Hu et al. (2008), and Komossa et al. (2008).
These finding may support, especially at low z and luminosity, an
evolutionary interpretation of E1 (Dultzin-Hacyan et al., 2007;
Marziani et al., 2014): at the extreme Pop. A end, small MBH

black holes accreting at high rate, with evidence of circumnuclear
star formation (e.g., Sani et al., 2010); at the end of population
B, mostly very massive quasars associated with low accretion rate
and old structures like extended radio-lobes of Fanaroff-Riley II
sources. The evolutionary interpretation seems straightforward
for RQ quasars. However, while the properties of extreme
population A and B are obviously different, and old radio
sources are preferentially found at the extreme of population B
(Zamfir et al., 2008), it is still not obvious which sources may
be considered the radio loud progenitors of FRII in the 4DE1
sequence. A tantalizing possibility is that compact-steep sources
(CSS) may evolve into FRII (van Breugel et al., 1984; Sulentic
et al., 2015).

The panel SFI of SH14 shows the [OIII]λλ4959,5007 “Baldwin
effect,” i.e., a systematic decrease of W([OIII]λλ4959,5007) with
L. It has already been stressed (Netzer et al., 2004), and is
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consistent with the VLT data of Hamburg ESO quasars (Sulentic
et al., 2004, 2006; Marziani et al., 2009). It is interesting
that SH14 find a different trend for the [OIII]λλ4959,5007
blue wings—in the sense that wings remain prominent also
at large luminosity, and shows little or no Baldwin effect
(cf. Zhang et al., 2013). The absence of a Baldwin effect in
the blueshifted line component is consistent with a nuclear
origin of the outflow, as originally suggested by Zamanov et al.
(2002).

8.2. Physical Interpretation of the Optical E1
Diagrams
SH14 adopt an approach that is at first as surprising as it is
unconventional. They consider that quasars hosting massive
black holes—associated with larger hosts—should form in denser
environments. They conclude that quasars with higher RFeII
are on average less massive because they form in less dense
environments. The deduction is intriguing and, as presented, has
a statistical value: it supports the idea that there is also a trend
of mass with RFeII that may lead to a sequence of L/MBH if the
L range is not large. This would account for a displacement in
the horizontal direction i.e., RFeII, but not in the direction of
FWHM. They then conclude that the spread in FWHM is not
due to MBH and may largely be due to orientation. As a proof
it is incomplete. Their approach also follows the hypothesis that
it is not possible to have strong FeII in very massive sources.
However, this is contradicted by our VLT–ISAAC observations
of 52 high luminosity ESO-Hamburg quasars where we often find
strong FeII (Sulentic et al., 2004, 2006; Marziani et al., 2009) that
led to even suspect an “anti-Baldwin effect” for Fe IIopt. In our
opinion, a more convincing proof is offered by the stellar velocity
dispersion σ⋆ systematically decreasing with increasing FeII at
fixed quasar luminosity. If MBH and host galaxy bulge mass are
tightly correlated (Ferrarese and Merritt, 2000; Gebhardt et al.,
2000), then FeII strength increases with the L/M ratio (Sun and
Shen, 2015).

In order to test the effect of orientation SH14 consider
the ratio between black hole mass (derived from the
MBH–σ⋆ relation) and the virial product r FWHM2: f̃ =
GMBH,σ⋆

/rFWHM2. The parameter f̃ is the inverse of the
structure factor f as customarily defined. f̃ should be independent
of line width if not influenced by viewing angle. A dependence
on orientation is however expected from the assumption of a
flattened, axially symmetric broad line region. SH14 indeed find a
strong dependence and conclude that orientation strongly affects
FWHMHβ . The orientation effect has been extensively explored,
and a strong dependence confirmed, using radio-loud quasars
where orientation can be inferred from radio morphology (Wills
and Browne, 1986; Sulentic et al., 2003; Jarvis and McLure, 2006;
Zamfir et al., 2008; Runnoe et al., 2012, 2013). This result adds
evidence to the hypothesis that orientation is indeed vertically
displacing sources in the 4DE1 optical plane (as clearly also seen
in Marziani et al., 2001). It leaves open the possibility that f
is changing due to other effects (for example Eddington ratio,
although it is reasonable to expect that the effect of L/LEdd is not
as large as that due to orientation).

The next conclusion in SH14 is quite surprising: that
orientation is driving the change in Balmer line profiles
between Population B (broader) and Population A (narrower).
A significant vertical displacement is expected from MBH (since
FWHM ∝

√
MBH). Zamanov and Marziani (2002), in a paper

that complemented Marziani et al. (2001) showed the effect of
changing MBH on the optical plane. We also considered the
hypothesis that orientation was the dominating factor in 4DE1
and that it was driving Pop. A and B differences. We concluded
that this is very unlikely: there are differences not only in line
profiles but also in diagnostic line ratios that cannot be reconciled
with an orientation effect, and demand a change in physical
conditions. The grid in Marziani et al. (2001)—derived also
considering trends in diagnostic ratios—was computed for a
fixed black hole mass. It showed that the effect of orientation is
most important for sources with weak RFeII. If more luminous
sources are included we find a vertical spread associated with
increasing mass: i.e., large RFeII and large FWHM. A 4DE1
contextualization must therefore involve at least 3 dimensions in
order to distinguish between the effects of orientation and mass.
And the SH14 results still do not provide an estimation of viewing
angle that is valid for individual sources.

Accepting at face values the results of Marziani et al. (2001)
and SH14 the conclusion would be that spectral type A1 (RFeII ≤
0.5, FWHM≤ 4000 km s−1) is mainly due to face-on population
B sources. An inspection of the sources in spectral bin A1 for
the sample of Marziani et al. (2003c) indeed reveals a composite
distribution. Bin A1 is populated by sources which could be
Pop. B oriented pole-on (i.e., powerful CD radio-loud sources
showing a relatively narrow BC and a faint VBC) but also by
sources similar to A2 with lower RFeII. The latter type slightly
outnumbered the type B sources in our samples (including the
one of Zamfir et al., 2010), yielding amedian A1 profile consistent
with a Lorentzian function.

8.3. 4DE1 Parameters
LowestW(CIVλ1549) sources colored black/blue are favoring the
lower end of the main sequence in the RFeII vs FWHMHβ plane.
This rediscovered trend in SH14 SFIV was previously reported in
Bachev et al. (2004) and Sulentic et al. (2007). Note that sources
in Population bin A1 do show relatively large W(CIVλ1549). The
CIVλ1549 equivalent width is especially useful for identifying
spectral bin type of high redshift quasars. Negrete et al. (2014b)
discuss UV identification criteria in the 4DE1 context showing
that W(CIVλ1549) <∼ 50 Å is a sufficient criterion for identifying
extreme Pop. A sources (bin types A2, A3 and A4—but not
A1). CIVλ1549 as well as intermediate ionization line widths and
profile shapes distinguish bin A1 from B1.

Early work resulted in the inclusion of Ŵsoft as a principal
4DE1 parameter. The presence of a hard X-ray power-law may
represent the best “operational definition” unifying all AGN but
it was found to show less intrinsic dispersion than the soft X-ray
photon index (Brandt et al., 1997). There is a clear trend along the
main sequence but SH14 can only rediscover in their SFVII what
we have already learned (Wang et al., 1996; Sulentic et al., 2000b).
It is the availability of X-ray spectra that limits our statistical
analyses. The main sequence trend is clearest when comparing
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mean/median measures for the upper (Pop. A) and lower (Pop.
B) ends. Spectral types A2–A4 show the largest soft X-ray excesses
and Pop. B only show a hard power/law. A comparison of all
available (up to 2006) XMM spectra (n = 20–40) for Pop. A
and B sources (Sulentic et al., 2008) confirms the differences
originally reported in Sulentic et al. (2000b) in the sense that
only Pop. A quasars show a soft excess. A later analysis of 156
XMM sources consistently revealed a highly significant anti-
correlation between Ŵsoft and FWHM(Hβ) (Bianchi et al., 2009).
SH14 show more Chandra/XMM data points than were available
in 2006 and 2009 but it is unclear what filters have been applied
to existing X-ray data (e.g., number of hard/soft X-ray photons
detected).

8.4. RL/RQ Dichotomy
There has been considerable work seeking connections between
4D Eigenvector 1 parameters and radio properties both to use
radio-loud sources as orientation indicators and to explore the
RQ-RL dichotomy (Wills and Browne, 1986;Marziani et al., 2001;
Rokaki et al., 2003; Sulentic et al., 2003; Zamfir et al., 2008).
SH14 wisely distinguish between core and lobe dominant RL
sources in their SFIX. The problem with this “rediscovery” and
a step backwards comes from their adopted definition of radio-
loudness. A widely used criterion sees as RL all sources with
radio/optical flux ratio RK > 10 (Kellermann et al., 1989). Our
own work (Sulentic et al., 2003; Zamfir et al., 2008) has focussed
on lobe-dominated (LD) RL sources as the parent population
of classical RL quasars. LD sources show a well defined lower
limit in radio to-optical power ratio (RK > 70) and radio power
(log Pν

>∼ 31.6 [ergs s−1 Hz−1]) and a restricted occupation along
the upper end of the 4DE1 main sequence. CD sources do not
show these properties and those between RK = 10–70 distribute
along the main sequence like the RQ quasar majority. Inclusion
of these sources in a RL sample will tend to obscure differences
(and dichotomy) between RQ and RL quasars. Perhaps ironically,
a larger sample of the brightest 150 LD quasars from SDSS DR9
confirms our original lower radio power limit for these sources as
well as their restricted 4DE1 population B occupation.

9. Important Open Issues

The previous sections outline an undeniable progress in the
understanding of quasar multifrequency properties, with a
successful contextualization in eigenvector 1 based schemes. We
think that there are however some open issues that should be
faced openly to set eigenvector 1 studies on a firmer ground.
The first one is the formation of Fe IIopt and FEIIUV lines.
Current photoionization calculations do not allow to reproduce
sources with RFeII& 1, and it is still unclear whether this is a
shortcoming of photoionization codes that, being based on a
mean escape probability formalism for the treatment of radiation
transfer, are not suited to consider low ionization line formation
in the extended partially ionized zone where absorption processes
are mainly non-local. On the one hand a study of other low
ionization lines like the CaII IR triplet indicate that a dense,
low ionization photoionizing medium can reproduce their total
emission even in the most luminous sources (Matsuoka et al.,

2007; Loli Martínez-Aldama et al., 2015). On the other hand,
extreme Pop. A sources with RFeII& 1 are still poorly understood.
They are most likely affected by a strong wind that may lead to
shielding of the continuum (e.g., Elvis, 2000; Leighly and Moore,
2004; Leighly et al., 2007) or to mechanical heating of the line
emitting gas. The relatively old paper by Marziani et al. (2001)
estimated a decrease in ionization parameter U with increasing
L/LEdd, but connect U and FeII prominence on an empirical
relation and on crude scaling assumptions. Another aspect, that
is severely constrained by data availability, is the interpretation
of the Ŵsoft that may complicated by the presence of the warm
absorber (Chakravorty et al., 2012; Done et al., 2012). Last, we
have to mention that not all workers agree that the CIVλ1549
blueshift can be interpreted in terms of an outflow (Gaskell and
Goosmann, 2013), and that the best approach to extract a virial
broadening indicator from the line width of Hβ , especially in
Pop. B, is still a debated issue (e.g., Collin et al., 2006; Marziani
and Sulentic, 2012; Shen, 2013). In this context, it remains
important to ascertain the nature of the redward displacement
of the VBC in Pop. B sources.

10. Conclusion

The efforts reviewed in this paper consistently point toward an
increasing ability to systematically organize quasar properties.
Over the last 15 years, most main spectral energy distribution
and spectrophotometric parameters have been investigated in
a eigenvector-1 context. Physical parameters that were found
to be most relevant in the interpretation are Eddington ratio
and black hole mass. Aspect also plays an important role, as
several properties such as line width appear to be orientation-
dependent. An important physical parameter whose relevance
still needs to be assessed is black hole spin. Since the jet power
depends on the square (or even to a larger power) of the black
hole angular velocity (Blandford and Znajek, 1977; Tchekhovskoy
et al., 2010), the black hole spin is considered a prime
factor to account for the radio-loud radio-quiet dichotomy.
What we also miss is a characterization of morphology and
surrounding environment along the eigenvector-1 sequence. At
least some NLSy1 nuclei reside in disk-dominated galaxies that
are characterized by pseudo-bulges, not real bulges (Orban de
Xivry et al., 2011). On the other hand, powerful RL sources
are mainly host in elliptical galaxies (e.g., Gürkan et al.,
2014). An analysis following the eigenvector 1 criteria may
connect evolution of nuclear activity and evolution of host
galaxies.

SH14 and Sun and Shen (2015) confirm several empirical
trends that were discovered earlier. Among them the ones
involving [OIII]λλ4959,5007, distributional differences of RL/RQ
sources in 4DE1, Hβ profile properties as well as soft X-ray
and CIVλ1549 measures. SH14 add an empirical verification
that orientation effects matter also for RQ sources—something
missing from earlier papers that used the FWHM dependence
on orientation derived from RL samples. It does not clarify the
physical factors driving the location of sources in the 4DE1
optical plane. Only a multidimensional approach involving at
leastMBH, L/LEdd and orientation (cf. Laor, 2000; Marziani et al.,
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2001; Zamanov et al., 2002) can lead to a final clarification of
these issues and successful development of a physical model.
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