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The dynamics of small bodies around the Earth has gained a renewed interest, since the

awareness of the problems that space debris can cause in the nearby future. A relevant

role in space debris is played by lunisolar secular resonances, which might contribute

to an increase of the orbital elements, typically of the eccentricity. We concentrate our

attention on the lunisolar secular resonance described by the relation 2ω̇+ �̇ = 0, where

ω and � denote the argument of perigee and the longitude of the ascending node of the

space debris. We introduce three different models with increasing complexity. We show

that the growth in eccentricity, as observed in space debris located in the MEO region

at the inclination about equal to 56◦, can be explained as a natural effect of the secular

resonance 2ω̇ + �̇ = 0, while the chaotic variations of the orbital parameters are the

result of interaction and overlapping of nearby resonances.

Keywords: space debris, lunisolar secular resonance, eccentricity growth

1. INTRODUCTION

Thousands of man-made objects, abandoned during space missions or remnants of operative
satellites, orbit around the Earth at different altitudes. Their size varies from larger pieces, like
old satellites or rocket stages, to dust-size particles given by fragmentation of satellites or even by
collision events, like the impact between Kosmos 2251 and Iridium 33 in 2009, or the destruction
of Fengyun-1C in 2007.

The dynamics of space debris strongly differs according to the altitude from the Earth. To this
end, one distinguishes 4 main regions as follows:

(i) the LEO (Low Earth Orbit) region spans the altitude from 0 to 2000 km; here the objects feel,
in order of importance, the gravitational attraction of our planet, the dissipation due to the
atmospheric drag, the Earth’s oblateness effect, the attraction of Moon and Sun, and the solar
radiation pressure;

(ii) the MEO (Medium Earth Orbit) region goes from 2000 to 30,000 km of altitude; the forces felt
by the debris are like in LEO, except that there is no atmospheric drag;

(iii) the GEO (Geostationary orbit) region is located around the value of 42,164.17 km from the
Earth’s center; geostationary objects move with an orbital period equal to the rotational period
of the Earth;

(iv) HEO (High Earth orbit) region, refers to the space region with altitude above the
geosynchronous orbit.

In this work we are interested in a particular type of motion, which corresponds to a so-called
secular resonance. In particular, we consider the orbital elements which are solutions of the relation
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2ω̇ + �̇ = 0 , (1)

where ω denotes the argument of perigee of the debris and �

its longitude of the ascending node. A relation like Equation
(1), involving quantities moving on long time-scales, is called
a secular resonance. By considering the variations of ω and �

as just due to the effect of the main spherical harmonics of the
geopotential, one can show that Equation (1) can be written just
in terms of the inclination. As shown in Hughes (1980), there can
be several secular resonances which depend on the inclination
only. Among such resonances, Equation (1) represents a very
interesting case, since it has been shown that it affects the
dynamics of objects in the MEO region (Rossi, 2008; Radtke
et al., 2015; Sanchez et al., 2015). Chaotic motions arise from
the interaction and overlapping of nearby resonances (Rosengren
et al., 2015a,b; Daquin et al., 2016).

In this paper we introduce three different models with
increasing complexity, apt to study the resonance Equation (1).
The simplest model is described by a one degree-of-freedom
autonomous Hamiltonian, which is obtained by averaging over
the fast angles and by neglecting the rates of variation of the
lunar longitude of the ascending node. This model provides the
essential features, like the location of stable equilibria with large
as well as with small libration amplitude. The growth of the
eccentricity can be easily explained by this integrable model. In
the second model one does not average over the fast angles, but
still retains the assumption that the longitude of the ascending
node of the Moon is constant. Circulation and libration regions
can be located, as well as the chaotic separatrix, although
the dynamics is very complicated: overlapping of resonances,
bifurcations and, as a consequence, the existence of equilibria
at large eccentricities as well as at small eccentricities, variation
of the amplitude of the resonance. The last model includes the
variation of the lunar longitude of the ascending node and shows
that large chaotic regions can appear, contributing to an irregular
variation of the orbital elements.

2. THE MODEL

We consider a space debris subject to the gravitational attraction
of the Earth, including the oblateness potential, as well as the
influence of Sun and Moon. This model is described by a
Hamiltonian of the form

H = HKep +HGeo +HMoon +HSun , (2)

which is the sum of different contributions that we are going
to explain and express in terms of the Delaunay action–angle
variables (L,G,H,M, ω,�), where the actions are defined by

L =
√

µEa , G = L
√

1− e2 , H = G cos I , (3)

with µE = GmE the product of the gravitational constant G
and the Earth’s mass mE, a the semimajor axis, e the orbital
eccentricity, I the inclination, while the angle variables are the
mean anomaly M, the argument of perigee ω, the longitude of

the ascending node �, which are expressed with respect to the
equatorial plane.

The first term in Equation (2) represents the Keplerian part
HKep, which can be expressed as

HKep(L) = −
µ2
E

2L2
. (4)

The second term HGeo describes the perturbation due to the
Earth, when considering the shape of our planet. In particular,
we will consider only the most important term of the expansion
in spherical harmonics of the geopotential, the so-called J2-
term. Indeed, while studying the long-term dynamics of resonant
orbits, the short-periodic terms that depend on the mean
anomaly of the satellite (as well as the mean anomaly of the
perturbing body, when dealing with Sun and Moon) can be
averaged over from the disturbing function. Therefore, in the
expression for HGeo we take an average of the Hamiltonian over
the mean anomaly of the space debris, which implies to consider
only the most important contribution, corresponding to the J2
gravity coefficient of the secular part (see, e.g., Celletti and Galeş,
2014, compare also with Celletti and Galeş, 2015). This leads to
expressHGeo in the form:

HGeo(L,G,H) =
R2EJ2µ

4
E

4

1

L3G3
(1− 3

H2

G2
) , (5)

where RE is the mean equatorial radius of the Earth and J2 =
1.08263× 10−3.

The contributions due to Moon and Sun are simplified by
averaging over the fast angles, precisely the mean anomaly of
the debris and the mean anomalies of the perturbers (Moon
and Sun). Moreover, we truncate the potentials to second order
in the ratio of semi-major axes (see Kaula, 1962; Lane, 1989;
Celletti et al., 2016b for details), thus obtaining the expression
for HSun and the (quite long) expression for HMoon, reported
in Supplementary Section (see also Cook, 1962). Adding the
contributions in Equations (4), (5) as well as HSun and HMoon,
we obtain the Hamiltonian Equation (2).

Since the mean anomaly M is a cyclic variable, its conjugated
action L (or equivalently the semi-major axis a) is constant. As
a consequence, the Hamiltonian system described by Equation
(2) is non-autonomous with two degrees of freedom. As it was
remarked by Rosengren et al. (2015a), Daquin et al. (2016), and
analytically shown in Celletti et al. (2016b), the Hamiltonian H

depends on time just through the longitude of lunar ascending
node �M with a rate of variation equal to �̇M ≃ −0.053◦/day,
which implies a periodicity of�M over 18.6 years.More precisely,
since �̇S = 0, where �S is the longitude of the solar ascending
node, and the expansions of the lunar and solar potentials to
second order in the ratio of semimajor axes are independent of
the lunar and solar perigees, it follows that H depends on time
only through �M .

To a first approximation we assume that the Moon orbits on
an elliptic trajectory with semimajor axis equal to aM = 384, 748
km, eccentricity eM = 0.0549006 and inclination IM = 5◦15′; the
massmM of the Moon, expressed in Earth’s masses, is about equal
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to 0.0123. The orbital elements of the Moon are referred to the
ecliptic plane.

As for the Sun, we can assume that its elements are constants
and, precisely, aS = 149, 597, 871 km, eccentricity eS =
0.01671123 and inclination IS = 23◦26′21.406′′; the mass of the
Sun mS, expressed in Earth’s masses, is approximately equal to
333,060.4016. The orbital elements of the Sun are expressed with
respect to the equatorial plane.

The model described by Equation (2) gives all the ingredients
to capture the main dynamical features of the resonant structure
within the MEO region (see Rosengren et al., 2015a for a
comparison between various models).

3. THE SECULAR RESONANCE 2ω̇ + �̇ = 0

In this Section we are interested to the so-called (lunar and
solar) secular resonances, which occur whenever one has a
commensurability between the arguments of perigee and the
longitudes of the nodes of the debris and the perturbers,
according to the following definition.

Definition 1. A lunar gravity secular resonance occurs whenever
there exists an integer vector (k1, k2, k3) ∈ Z

3\{0}, such that

k1ω̇ + k2�̇ + k3�̇M = 0 . (6)

We have a solar gravity secular resonance whenever there exist
(k1, k2, k3) ∈ Z

3\{0}, such that

k1ω̇ + k2�̇ + k3�̇S = 0 . (7)

We can assume that the rate of variation �̇S is zero, while for the
Moon we will build different models according to which the rate
�̇M is zero or it is rather equal to �̇M ≃ −0.053◦/day.

As for the debris, we can approximate ω̇, �̇ by considering
only the effect of J2 (Hughes, 1980):

ω̇ ≃ 4.98
(RE

a

)
7
2
(1− e2)−2 (5 cos2 I − 1) ◦/day ,

�̇ ≃ −9.97
(RE

a

)
7
2
(1− e2)−2 cos I ◦/day . (8)

Inserting Equation (8) in Equation (6) or Equation (7), we get
an expression which involves the orbital elements a, e, I, thus
providing the location of the secular resonance.

A remarkable fact (see Hughes, 1980) is that some resonances
depend only on the inclination and are independent on a,
e. Precisely, following Hughes (1980) we can identify the
following classes of lunisolar secular resonances depending only
on inclination (see Figure 1):

(i) ω̇ = 0, which occurs at the critical inclinations I = 63.4◦,
I = 116.6◦;

(ii) �̇ = 0, which corresponds to polar orbits;
(iii) αω̇ + β�̇ = 0 for some nonzero α, β ∈ Z.

In this work we are interested to a specific resonance of type (iii)
and precisely to the resonance

2ω̇ + �̇ = 0 . (9)

Using Equations (8) and (9), one can write this resonances as

2ω̇+ �̇ =
(RE

a

)
7
2
(1−e2)−2

[

9.96(5 cos2 I−1)−9.97 cos I
]

= 0 ,

whose solutions are I = 56.1◦ and I = 111.0◦, independently of
the values of semimajor axis and eccentricity.

In writing Equation (9) we have implicitly assumed that �̇M =
0 (as we mentioned, the other rates ω̇M , ω̇S, �̇S can be assumed
to be equal to zero). However, �M varies periodically and some
arguments of HMoon could depend also on �M . Therefore,
besides 2ω̇+� = 0, one also has the commensurability relations

2ω̇ + � + s�̇M = 0 , s = −2,−1, 1, 2 . (10)

This means that the secular resonance splits into a multiplet
of resonances. This splitting phenomenon is responsible for the
existence of a very complex web-like background of resonances
in the phase space, which leads to a chaotic variation of the
orbital elements. An analytical estimate of the location of the
resonance corresponding to each component of the multiplet,
as a function of eccentricity and inclination, can be obtained by
using Equation (8) (see, for example, Figure 2 in Ely and Howell,
1997 or Rosengren et al., 2015a).

To describe properly the dynamics, it is convenient to use
resonant variables, which are introduced through the symplectic
transformation (G,H, ω,�) → (S,T, σ, η) defined by

σ = 2ω + � , S =
G

2
,

η = � , T = H −
G

2
.

(11)

Since we expressed the Hamiltonian in Delaunay variables, we
represent in Figure 1 the web structure of resonances in the
space of the actions T–S introduced in Equation (11). To avoid
confusions that might arise when we speak about a specific
resonance, we will use the terminology exact resonance when we
refer to the component of the multiplet characterized by s = 0 in
Equation (10), while the expression whole resonance means that
we refer to all components of the multiplet.

We underline that the units of length and time are normalized
so that the geostationary distance is unity (it amounts to
42, 164.17 km) and that the period of the Earth’s rotation is equal
to 2π . As a consequence, from Kepler’s third law it follows that
µE = 1. Therefore, unless the units are explicitly specified, the
action variables L, S and T are expressed in the above units.

Figure 1 shows the structure of resonances for a = 15, 000 km
(top panels) and a = 29, 546 km (bottom panels). The colored
curves provide the location of the resonances, while the vertical
black dashed line in the top-right panel is drawn to provide the
value of T used in computing the FLI plot for a = 15, 000
km (see Figure 6). In order to show graphical evidence of the
splitting phenomenon, Figure 1, left panels, provide the resonant

structure for S ∈ [0, Smax], where Smax =
√

µEa
2 . These plots

contain also the horizontal black line S = Smin, where Smin is
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computed from the condition that the distance of the perigee
cannot be smaller than the radius of the Earth, that is

Smin =
1

2

√

(2a− RE)µERE

a
.

Therefore, the interval of interest is [Smin, Smax]. The right panels
of Figure 1 magnify the regions associated to the orbits that
do not collide with the Earth (at least for a small interval of
time). Figure 1 shows the complicated interplay of the web of
resonances, with multiple crossings of lines, which correspond to
overlapping of resonances, possibly providing a mechanism for
the onset of chaos (Chirikov, 1979; Daquin et al., 2016).

4. A COMPARISON OF DIFFERENT
MODELS

In order to understand the complicated dynamics of the whole
resonance 2ω̇ + �̇ = 0, we shall simplify further the model
described in the previous Section. In fact, we consider three
different models, based on the Hamiltonian function introduced
in Equation (2):

a) The one degree-of-freedom autonomous Hamiltonian,
obtained by averagingH in Equation (2) over the fast angle η

and by neglecting the rates of variation of �M . Indeed, we use
the constant value �M = 125.045◦, valid at epoch J2000.

b) The two degrees-of-freedom autonomous Hamiltonian,
derived under the assumption that the rate of variation of
�M is negligible. Again, we use the constant value �M =
125.045◦, valid at epoch J2000.

c) The non-autonomous Hamiltonian H, defined by Equation
(2).

The following sections describe in detail the results which are
obtained using models a–c.

4.1. Results for model A
The results obtained integrating model a, the simplest model as
possible, are shown in Figure 2, which provides the phase space
portraits for a = 15, 000 km and a = 29, 546 km. In order to
show more clearly the structure of the phase space, in all figures
we represent the resonant angle σ = 2ω + � on intervals longer
than 360◦.

Figure 2 shows that for sufficiently small values of the
semimajor axis (left panel) the phase space has a pendulum-like
structure, while for larger values of the semimajor axis (middle
and right panels) the pendulum-like model is no longer valid. In
fact, for a = 29, 546 km, a bifurcation phenomenon appears,
showing that there are some cases when a specific resonance

FIGURE 1 | The web structure of resonances in the space of the actions for a = 15,000 km (upper panels) and a = 29,546 km (bottom panels). The thick

curves represent the location of the following exact resonances (the multiplet component having s = 0): �̇ = 0 (pink color, I = 90◦), ω̇ − �̇ = 0 (green color, I = 73.2◦,
I = 133.6◦), 2ω̇ − �̇ = 0 (gray color, I = 69.0◦), I = 123.9◦, ω̇ = 0 (red color, I = 63.4◦, I = 116.6◦), 2ω̇ + �̇ = 0 (blue color, I = 56.1◦, I = 111◦) and ω̇ + �̇ = 0 (orange

color, I = 46.4◦, I = 106.9◦). The thin curves give the position of the resonances (2− 2p)ω̇ +m�̇ + s�̇k = 0 with p,m = 0,1,2 and s = −2,−1,1,2. The vertical black

dashed line (top right panel) corresponds to the values of T used in computing the Figure 6. Left panels are obtained for S ∈ [0,Smax ], whereas in the right plots S

varies from Smin to Smax , as explained in the text.
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cannot be modeled by a pendulum type system, but one should
use a more complex model, referred in the literature as the
extended fundamental model (see Breiter, 2001; Celletti et al.,
2016a for details).

Comparing the right panel of Figure 2, obtained for T = 0.03,
with the middle panel of the same Figure 2, computed for T =
0.05, we notice the appearance of a new elliptic point, located
at σ = 180◦. Besides this phenomenon, it is important to note
that the main stable point, which is located at σ = 360◦ (or 0◦),
changes its position in the action space as a function of T. For
instance, for T = 0.05, this point is located at S = 0.3407 [or
at e = 0.581, as it follows from Equations (3), (11)], while for
T = 0.03, it is positioned at S = 0.26 (or e = 0.784). Figure 2
middle plot reveals the fact that none of the orbits located
inside the libration region of the elliptic point will collide with
the Earth, while in Figure 2 right plot, all orbits located inside
the libration region associated with the main elliptic point are
colliding orbits.

The integrablemodel a gives a clear explanation for the growth
of the eccentricity of the satellites and space debris revolving
around the Earth on orbits having an inclination about equal to
56◦. In fact, the growth of the eccentricity is mainly due to the
dynamical feature of the resonance. Inside the libration region,
the resonant angle σ = 2ω + � and its conjugated action S
vary periodically. Since, the eccentricity e is related to S through

the relation e =
√

1− 4S2

T2 , then it follows naturally that the
eccentricity varies in time.

4.2. Results for Model B
To analyze model b we use the Fast Lyapunov Indicators
(hereafter, FLI), which are defined as the largest Lyapunov
characteristic exponents at a fixed time (compare with Celletti
and Galeş, 2014). We provide the definition of FLI in
Supplementary Materials. Their values provide a numerical
indication of the stable (low values) and chaotic (high values)
behavior of the dynamical system as the initial conditions or some
internal parameters are varied.

We shall focus on a = 29, 546 km, because for a = 15, 000
km the phase plane σ–S, even in the case of the full model c, is
similar to a pendulum, as it is shown in Figure 6.

The results for model b are given in Figures 3–5. Thus, given
a = 29, 546 km and a value for T, we compute a grid of 100×100
points of the σ–S plane, where the resonant angle ranges in the
interval [0◦, 360◦] (also here we use a larger interval just to show
better the structure of the phase space), while S spans the interval
[Smin, Smax]. However, instead of displaying S on the vertical axis,
in each plot we show the eccentricity values (on the left) and the
inclination values (on the right), computed by using the relations
(3) and (11) for given values of T. In all plots that represent the
FLI values, we use the ranges corresponding to those used in
the right panels of Figure 1. The relation among S, T, e and I
is trivial; for instance, the value e = 0.784 from the left panel of
Figure 3 corresponds to the value S = 0.26 from the top right
panel of Figure 1, while the value I = 52.02◦ from the same
left panel of Figure 3 corresponds to the values S = 0.26 and
T = 0.06.

Although the initial conditions are set such that the initial
orbits have the perigee larger than RE, since we are interested in
understanding the mean dynamical features of the 2ω̇ + �̇ = 0
resonance, during the total time of integration, we neglect the
Earth’s dimensions. Namely, we propagate each orbit up to 465
years (equal to 25 × 18.6 years), even if at some intermediate
time the perigee distance becomes smaller than the radius of
the Earth.

As we mentioned in Section 4.1, for large values of
the semimajor axis in model a, the phase space is much
more complicated than the one associated to the pendulum
model. The complexity increases when we consider the two
degrees-of-freedom autonomous Hamiltonian of model b. In
fact, the manifolds defined by H(S,T, σ, η) = const. have
dimension three in the four dimensional phase space R

2 ×
T
2. This makes difficult the visualization of phase portraits

or even the interpretation of the FLI plots. However, we
can draw some conclusions from Figures 3, 5, obtained by
projecting the phase space on the plane (σ, S), for fixed values
of T and η.

In fact, we underline three aspects concerning the global
dynamics, which are revealed by the model b, namely: the
amplitude of resonance depends on the values of both canonical
variables T and η. For some values of the canonical variables,
the resonances 2ω̇ + �̇ = 0 and ω̇ = 0 overlap;

FIGURE 2 | Phase space portraits for a = 15,000 km and T = 0.03 (left panel), a = 29,546 km and T = 0.05 (middle panel), a = 29,546 km and T = 0.03

(right panel).
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the bifurcation phenomenon, revealed by the model a, is
observable both in this case but also in the case of the full
model c.

The plots shown in Figure 3 are obtained for η = 180◦ and
different values of its conjugated action T, while Figure 5 shows
some results obtained for the same value of T and various values

FIGURE 3 | FLIs for the model b, for a = 29,546 km, � = 180◦ and: T = 0.06 (left), T = 0.05 (middle), T = 0.04 (right). Each plot contains one green circle.

These circles represent the orbits analyzed in Figure 4.

FIGURE 4 | Integration of the orbits having the initial conditions � = 180◦ and: σ = 295◦, T = 0.06, S = 0.37 (or e = 0.467, I = 54.47◦) (top plots);

σ = 360◦, T = 0.05, S = 0.33 (or e = 0.615, I = 54.85◦) (middle plots); σ = 180◦, T = 0.04, S = 0.415 (or e = 0.13, I = 56.76◦) (bottom plots).
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FIGURE 5 | FLIs for the model b, for a = 29,546 km, T = 0.04 and: � = 0◦ (left); � = 90◦ (middle); � = 270◦ (right).

of η. Moreover, in order to have a clear idea about the patterns
shown in these plots, in Figure 4we represent the evolution of the
eccentricity, inclination and the resonant angle for three distinct
orbits. Thus, the orbit depicted by the top plots of Figure 4

(the green circle in the left panel of Figure 3) is located inside
the libration region; the eccentricity and resonant angle vary
periodically. In the middle panels of Figure 4 (see also the green
circle of the middle panel of Figure 3) we consider an orbit
located inside the region where the resonances 2ω̇ + �̇ = 0 and
ω̇ = 0 are so close that there is a non negligible interaction;
we integrate the orbit over a longer time (930 years), even if
it is a colliding orbit just to show the strong interaction of
the above mentioned resonances. Over a period of 350 years
the orbit is located inside the libration region of the resonance
2ω̇ + �̇ = 0, then, after an interval of time, it escapes from that
resonance and it is rather captured into the critical inclination
resonance. Finally, the bottom plots of Figure 4 correspond
also to a resonant orbit (the green circle of the right panel of
Figure 4): they do not belong to the main resonant libration
region, but rather to the resonant small region which appears
as a result of the bifurcation phenomenon, already described by
the model a.

In conclusion, the global dynamics revealed by the model b is
very complex: overlapping of resonances (the yellow regions1 in
Figures 3, 5), bifurcations and, as a consequence, the existence of
equilibria at large eccentricities as well as at small eccentricities,
variation of the amplitude of the resonance as a function of T and
η (compare, for instance, the small libration zone of the left plot
of Figure 5 with the large libration regions from the middle and
right plots again of Figure 5).

4.3. Results for Model C
We finally consider the dynamics associated to the more
complete model c, which is described by the non-autonomous
Hamiltonian H introduced in Equation (2) The results are
presented in Figures 6–8. As we already remarked above, for
a = 15, 000 km, the phase plane σ–S is very similar to
the one described by model a, compare Figure 6 with the
left panel of Figure 2. However, for large a, the dynamics is
much more complex. Roughly speaking, on the global dynamical

1 For the critical inclination resonance, the stable equilibrium points are located at

ω = 90◦ and ω = 270◦.

FIGURE 6 | FLIs for the model c, for a = 15,000 km, � = 180◦ and

T = 0.03.

background described by model b, and which does not change
significantly in a vicinity of several km from the nominal
distance of a = 29, 546 km, one should superimpose the exact
resonances shown in different colors in the right bottom panel
of Figure 1. These resonances are due to the variation of the
lunar node, as noted by Ely and Howell (1997), Rosengren
et al. (2015a), and their location depends on the value of the
semimajor axis.

As a consequence, since the resonance 2ω̇ + �̇ = 0 is crossed
bymultiple exact resonances, having different widths (see Daquin
et al., 2016), the orbital elements vary chaotically. One gets large
regions filled by chaotic motions, marked by larger yellow-red
values of the FLI. In contrast with the model b, here the FLI
values vary on a longer scale, from 2 to 14. Figure 7 shows
the results for T = 0.04 and for � = 0◦ (left), � = 90◦

(middle) and � = 180◦ (right). Comparing these plots with
the corresponding ones obtained for model b, we remark that,
besides the large yellow-red regions obtained as effect of the
overlapping of resonances (either the superposition of the exact
resonances shown in the right bottom panel of Figure 1 with the
exact resonance 2ω̇ + �̇ = 0, or with the critical inclination
resonance ω̇ = 0), some blue regions are noticeable, which
account for the libration regions associated to the equilibrium
points. For instance, in the left plot of Figure 7, we have a stable
equilibrium point at about σ = 360◦ and e = 0.294 with a
libration island (blue color) small in width (compare also with
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FIGURE 7 | FLIs for the model c, for a = 29,546 km T = 0.04 and: � = 0◦ (left); � = 90◦ (middle); � = 180◦ (right). The green circle in the right plot represents

an orbit analyzed in Figure 8.

FIGURE 8 | Integration of the orbit having the initial conditions T = 0.04, � = 180◦, σ = 142◦ and S = 0.41 (or e = 0.201, I = 56.71◦).

the left plot of Figure 5). Numerical tests show that an initial
condition inside this region remains there, even if the variations
of e and σ are not regular. The red-yellow regions visible for
eccentricities larger than 0.5 are due to the interaction of the
exact resonances depicted in Figure 1, bottom right plot, with the
critical inclination resonance.

In both the middle and right panels of Figure 7, we notice
two important blue (libration) regions: one at small eccentricities
(the orbit marked with a green circle in the right panel of
Figure 7 and analyzed in Figure 8 is within this region) and one
at large eccentricities (at about σ = 360◦ and e = 0.784 in the
right panel of Figure 7). These regions show that the bifurcation
phenomenon described by the model a is still valid for the more
complete model c.

As a final remark, one should clarify what is happening
inside the yellow-red region, for example in the middle panel
of Figure 7. The answer is the following: usually one obtains an
irregular growth in eccentricity. The growth is due, in essence, to
the resonance 2ω̇ + �̇ = 0 (as the models a and b infer) and
the irregular (chaotic) behavior is obtained as an effect of the
overlapping of the resonance 2ω̇ + �̇ = 0 with the resonances
shown in Figure 1. We made several other experiments and
found that colliding orbits can occur as a byproduct of the
eccentricity growth due to the interaction with the resonance
2ω̇ + �̇ = 0: the increase of the eccentricity leads to have a
distance at perigee less than the Earth’s radius. On the other
hand, initial data in a chaotic region can undergo the effect of

the interaction between different resonance, but without leading
to collisions.

5. CONCLUSIONS

Lunisolar resonances might contribute to shape the dynamics
of small bodies around the Earth (Breiter, 2001; Rosengren
et al., 2015a; Daquin et al., 2016). Among such resonances, that
corresponding to 2ω̇ + �̇ = 0 is responsible for the growth
in eccentricity. To explain this phenomenon, we compare three
different models with increasing complexity, obtained averaging
over fast angles (model a), or just by neglecting the rate of
variation of �M (model b), or rather including the variation of
�M (model c). A comparison among these models provide us
with the ingredients which lead to chaos and which provide an
increase of the eccentricity.

By comparing the results of models a–c, we infer that the
dynamics around the stable equilibria at large values of the
eccentricity is well represented by all models. On the contrary,
for small values of the eccentricity the effect of the variation of
the lunar longitude of the node plays a relevant role and, even if
it occurs on long time scales, cannot be neglected for an accurate
description of the dynamics.

Finally, it is worth noticing that the growth in eccentricity
provoked by the resonance 2ω̇+�̇ = 0 can be used as an effective
strategy to move space debris into non-operative or graveyard
orbits.
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Celletti, A., and Galeş, C. (2014). On the dynamics of space debris: 1:1 and 2:1

resonances. J. Nonlin. Sci. 24, 1231–1262. doi: 10.1023/A:1013363221377
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