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Proper Motion and Secular Variations
of Keplerian Orbital Elements
Alexey G. Butkevich*

Department of Fundamental Astronomy, Pulkovo Observatory (RAS), Saint Petersburg, Russia

High-precision observations require accurate modeling of secular changes in the orbital

elements in order to extrapolate measurements over long time intervals, and to detect

deviation from pure Keplerian motion caused, for example, by other bodies or relativistic

effects. We consider the evolution of the Keplerian elements resulting from the gradual

change of the apparent orbit orientation due to proper motion. We present rigorous

formulae for the transformation of the orbit inclination, longitude of the ascending node

and argument of the pericenter from one epoch to another, assuming uniform stellar

motion and taking radial velocity into account. An approximate treatment, accurate to the

second-order terms in time, is also given. The proper motion effects may be significant

for long-period transiting planets. These theoretical results are applicable to the modeling

of planetary transits and precise Doppler measurements as well as analysis of pulsar and

eclipsing binary timing observations.

Keywords: stellar kinematics, binary stars, analytical methods, pulsars, exoplanetary systems

1. INTRODUCTION

Keplerian orbits are among the most important concepts in astronomy. Variations of the
parameters of a Keplerian orbit lead to various phenomena in observational data. Observed
orbit characteristics can vary due to physical or geometrical effects. In the classical two-body
problem, when two isolated bodies, possessing centrally symmetric distribution of mass, attract
each other according to the Newtonian law, the bodies move about the common center of
mass in elliptical orbits. The orbits preserve their form and orientation until the underlying
assumptions of the classical problem hold. If any of these prerequisites is violated, the orbit
parameters become variable. It happens, for example, when internal mass distribution of any body
deviates from spherical symmetry, or the bodies undergo an action of an external (gravitational or
non-gravitational) force, or the effects of general relativity come into play.

The impact of asphericity of the central body on motion of an orbiting low-mass body
is considered by Iorio (2011) for stellar motions around the rotating black hole in Sgr A∗,
and by Renzetti (2013, 2014) for the satellite orbital precession. Kaula (2000) gives a detailed
exposition of the perturbations in the Keplerian orbital elements due to the geopotential. Moreover,
perturbations of the orbital elements of artificial satellite provide powerful tools for experimental
testing of various relativistic effects, such as the Lense-Thirring precession (Iorio, 2012a) and
post-Newtonian effects due to the oblateness of the central body (Iorio, 2015).

The generalization of the Keplerian orbital elements in general relativity is comprehensively
explained in the textbooks by Kopeikin et al. (2011) and Poisson and Will (2014). The additional
quantities, needed to describe deviations from a pure Keplerian motion, are referred to as the
post-Keplerian parameters and used in modeling binary pulsar observations (Lorimer and Kramer,
2012) and stellar orbits around massive black holes (Iorio and Zhang, 2017).
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It is also worth mentioning that, besides the Newtonian and
general-relativistic frameworks, the Keplerian orbital elements
are explored in the alternative theories of gravitation. For
instance, Adkins and McDonnell (2007) and Chashchina
and Silagadze (2008) calculated orbital precession due to
perturbations of arbitrary central force. Iorio (2005) studied
orbital motion in the framework of the braneworld gravitymodel.
Considering Lorentz-violating standard model extension, Iorio
(2012b) demonstrated that the Keplerian parameters undergo
secular variation due to the gravitomagnetic acceleration.
Furthermore, analysis of the precession of the solar system
planets provided constraints on the parameters of the preferred-
frame parameters (Iorio, 2014).

The perturbations of the Keplerian orbital elements are widely
used for analytical calculation of subtle measurable effects in
various fields ranging from geodesy to high-energy astrophysics.
For example, they are employed in studying geodetic inter-
satellite tracking (Cheng, 2002), in developing relationship
between the perturbation of the conventional orbital elements
and the perturbations of position and velocity (Casotto, 1993).
They also provide a theoretical basis for analytical calculation of
the post-Keplerian effect in the radial velocity of binary systems
(Iorio, 2017a) and the orbital time shift in binary pulsars (Iorio,
2017b) as well as the effect of the Lense-Thirring precession on
BepiColombo mission (Iorio, 2018).

The aim of the present work is to consider the effects of proper
motion on the orbital elements due to changing orbit orientation
with respect to the line of sight. To study the effects in their
purest form, we assume that no other body perturbs the orbit and
ignore the effects of general relativity. Moreover, our treatment is
based on the assumption that the center of mass moves uniformly
at a constant velocity. It is worth noting that this approach
was pioneered by van den Bos (1926), who, among other
things, derived expressions for the variations in the Keplerian
elements due to the proper motion. The effects of the change
in orbit orientation due to proper motion have been studied for
different classes of astronomical objects and various observation
techniques. Kopeikin (1996), who considered the case of a binary
pulsar, derived equation governing the variation of the projected
semimajor axis and the longitude of the periastron due to
proper motion and demonstrated that effect of proper motion
on pulsar timing may be significantly larger than the effects from
gravitational waves. The theoretical study of proper motion effect
on Doppler measurements of binary orbits has been undertaken
by Kopeikin and Ozernoy (1999). Rafikov (2009) studied the
effects of proper motion on timing of planetary transits. Results
of this study indicate that for stars with proper motion at the
level 10–100mas yr−1 the rate of variation of transit duration is
comparable or exceeds effects from general relativity or stellar
oblateness. However, these works consider only linear, first-order
in time, terms of the orbital parameters variation.

In the present paper, we first derive rigorous expressions
governing the evolution of the Keplerian parameters and then
expand them to second-order terms. We consider an isolated
system of two bodies with its center of mass moving at constant
velocity. The assumption that the center of mass preserves its
velocity (both in value and direction) is referred to as the
uniform rectilinear model in what follows. The gradual change of

orientation of the orbital ellipses with respect to the line of sight
results in secular variation of the relevant Keplerian parameters.
It should bementioned that these variation generally depends not
only on the conventional proper motion, i.e., transversal velocity,
but also on the radial velocity. The model of the uniform motion
enables us to easily include the effect of the radial velocity and
other non-linear effects. This paper concerns with binary stars
and exoplanetary systems.

The paper is organized as follows. We discuss the orbit
specification in section 2. Section 3 presents a uniform rectilinear
model of stellar motion and related questions. Section 4
contains an analytical treatment of the time-dependence of the
Keplerian parameters. Results and conclusions are summarized
in sections 5 and 6.

2. ORBIT SPECIFICATION

The equatorial coordinate system is used throughout this
paper, with all relevant quantities referring to the solar system
barycenter (SSB). The position of an object on the celestial sphere
is conventionally specified by right ascension α and declination
δ. In what follows, we use the unit vector n̂ from SSB toward
δ = +90◦; in fact, it represents the polar axis of the equatorial
system. Let the unit vector r̂ determine the barycentric direction
to the object, i.e., the direction along the line-of-sight as seen by
an observer at the SSB. The coordinates of the vector r̂ are

r̂ =



cosα cos δ
sinα cos δ

sin δ


 . (1)

At any position on the celestial sphere, the local directions of
increasing α and δ are specified by the unit vectors p̂ and q̂,
respectively. The vector p̂ is parallel to the celestial equator and,
accordingly, normal to the vector n̂, while q̂ points to the north
celestial pole. These vectors can be equivalently found by means
of geometric or differential calculations:

p̂ =
〈
n̂× r̂

〉
=

∂ r̂

cos δ ∂α
=



− sinα
cosα
0


 , (2)

q̂ = r̂ × p̂ =
∂ r̂

∂δ
=



− cosα sin δ
− sinα sin δ

cos δ


 , (3)

where the angular brackets denote vector normalization, 〈x〉 =

x/ |x|. The three orthogonal unit vectors constitute the so-called
normal triad

[
p̂, q̂, r̂

]
relative to the equatorial system. The vectors

p̂ and q̂ span the tangent plane at the position r̂. Any direction in
the tangent plane is specified by the position angle reckoned from
north to east, i.e., counterclockwise from q̂ to p̂.

The general consideration of the Keplerian orbits can be
found in many books (e.g., Heintz, 1978; Kopeikin et al., 2011;
Perryman, 2011). Orbits are conventionally parameterized by
means of the six Keplerian elements. The five of these elements,
semi-major axis a, eccentricity e, inclination i, longitude of the
ascending node �, and argument of the pericenter ω, specify
the geometry of the orbit. The remaining sixth element, which
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defines position of the body on the orbit at a specified epoch,
is usually represented by the mean anomaly at an initial epoch
or, equivalently, by the time of the pericenter passage. The three
angles i, �, ω describing the orbit orientation with respect to
the line of sight are illustrated in Figure 1. The inclination is the
angle between the orbital plane and the tangent plane. The orbital
motion is prograde, i.e., the apparent motion is in the direction of
increasing position angle, if i < π/2, and retrograde (clockwise)
if i > π/2. Thus, i = 0 and π correspond to face-on orbits
with apparent counterclockwise and clockwise motion, with the
orbital angular momentum being antiparallel and parallel to the
line of sight, respectively. The orbital and tangent plane intersect
along the line of nodes. The point where the star recedes from
the observer when it crosses the tangent plane is called the
ascending node, whose position angle gives �. The argument of
the pericenter ω is the angle between the ascending node and the
pericenter measured in the direction of the star orbital motion.

To study the effect of propermotion on the orbital parameters,
it is convenient to make use of a reference system aligned with
the orbit. This system is represented by three orthogonal

unit vectors ı̂ , ̂ , k̂, with k̂ being parallel to the orbital
angular momentum, ı̂ directed along the semi-major axis

from the orbit center to its pericenter, and ̂ = k̂ × ı̂ . The

transformation between the right-handed vector triads
[

ı̂ , ̂ , k̂
]

and
[
p̂, q̂, r̂

]
is done by the matrix of the direction cosines




ı̂ · p̂ ̂ · p̂ k̂ · p̂

ı̂ · q̂ ̂ · q̂ k̂ · q̂

ı̂ · r̂ ̂ · r̂ k̂ · r̂


 =



cosω sin�+ sinω cos� cos i − sinω sin�+ cosω cos� cos i + cos� sin i
cosω cos�− sinω sin� cos i − sinω cos�− cosω sin� cos i − sin� sin i

sinω sin i cosω sin i − cos i


 . (4)

FIGURE 1 | An elliptical orbit as seen by an observer at the solar system

barycenter, with the plane of the plot tangent to the celestial sphere. The unit

vectors p̂ and q̂ specify the local directions of increasing equatorial coordinates

α and δ. The arrow indicates direction of the orbital motion. i is the inclination

of the orbit. The orbit crosses the tangent plane in the two nodes. The

ascending node is the node where the object recedes from the observer. The

position angle of the ascending node � is reckoned counterclockwise from q̂

in the tangent plane. The argument of the pericenter ω is the angle between

the ascending node and the pericenter measured in the direction of the orbital

motion. The orthogonal unit vectors î and ĵ, with î pointing to the pericenter,

define the Cartesian coordinates.

This matrix is closely related to the Thiele-Innes elements,
another tool for specify orbit orientation (Heintz, 1978;
Perryman, 2011). We, however, do not use this formalism in the
present paper.

The description by means of the Keplerian elements is
equally applicable to all kinds of elliptic orbits. Depending on
masses of the bodies, two different cases may be distinguished:
objects of comparable masses, such as components of a
binary system, or an object revolving around a massive
central body, for example, an exoplanet orbiting its host
star1. We further address these cases in sections 5.1 and 5.2,
respectively.

3. THE UNIFORM RECTILINEAR MODEL
OF STELLAR MOTION AND
TRANSFORMATION OF THE NORMAL
TRIAD

A basic assumption of the uniform rectilinear model is that an
objectmoves with constant velocity relative to the SSB. According
to this model, the barycentric position of the star at the epoch T
is given by the path equation

b (T) = b0 + (T − T0) v , (5)

where b0 is the barycentric position at the initial epoch T0 and v

the constant space velocity. For simplicity, we shall subsequently
use t = T − T0 as the time argument in all expressions instead of
T. Moreover, we use the subscript 0 to denote quantities at t = 0
and omit the time argument in what follows.

The velocity is usually represented as a sum of radial and
tangential components

v = r̂0vr + µb0 , (6)

where b0 is the barycentric distance and µ is the proper motion
vector:

µ = p̂0µα∗ + q̂0µδ . (7)

The asterisk in the notationµα∗ means that the proper motion in
the right ascension contains the factor cos δ: µα∗ = µα cos δ ≡(
dα/dt

)
cos δ. Introducing the radial proper motion, µr = vr/b0,

we can write the velocity in the form

v = b0
(
r̂0µr + µ

)
, (8)

1Rigorously speaking, both the host star and planet orbit the system’s center of

mass, but the amplitude of the stellar orbital motion is very small compared to that

of the planet because of the significant difference in mass. It worth mentioning

that analysis of the reflex motion of the host star is fundamental in astrometric

detection of exoplanets and other unseen companions (Perryman, 2011; Butkevich,

2018).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 May 2018 | Volume 5 | Article 18

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Butkevich Proper Motion and Orbital Elements

Substituting it in Equation (5) and representing the barycentric
position as b = br̂, we obtain the direction vector at the time t:

r̂ =
[
r̂0 (1+ µrt)+ µt

]
fD , (9)

where fD is the distance factor:

fD ≡
b0

b
=

[
(1+ µrt)

2 + µ2t2
]−1/2

. (10)

Transformation from one epoch to another is generally referred
to as the epoch propagation of astrometric data. For the
following, we need the propagations of the two other constituents
of the normal triad. To find the vector p̂ at the epoch t, we make
use of the relation, p̂ =

〈
n× r̂

〉
. After simple, though lengthy,

calculations, we find

p̂ =
[
p̂0 (1+ µrt)+

((
q̂0µα∗ − p̂0µδ

)
tan δ − r̂0µα∗

)
t
]
fP .
(11)

The normalization factor fP is determined by the condition
p2 = 1:

fP =
[
(1+ (µr − µδ tan δ) t)

2 + µ2
αt

2
]−1/2

. (12)

It should be noted that here the proper motion µα does not
include the factor cos δ. Finally, substitution of Equations (9)
and (11) into the relation q̂ = r̂ × p̂ gives the propagation of
the vector q̂:

q̂ =
[
q̂0 (1+ µrt)

2 −
(
r̂0µδ + µ tan δ

)
(1+ µrt) t

+
(
q̂0µ

2
α∗ + r̂0µ

2 tan δ − p̂0µα∗µδ
)
t2

]
fDfP . (13)

These formulae give the complete solution to the problem: they
determine the vectors p̂, q̂, and r̂ at any instant in terms of their
initial values and astrometric parameters. It can be easily seen
that the vectors preserve their geometrical properties under this
transformation: p̂ is always parallel to the celestial equator and q̂

always points toward the north celestial pole.

4. TRANSFORMATION OF THE KEPLERIAN
ELEMENTS

4.1. Rigorous Treatment
Equations (11), (13), and (9) describe the time dependence of
the normal triad. Combined with the direction cosine matrix
given by Equation (4), the latter, in turn, determines propagation
of the orbital elements. The resulting equations involve the dot
products of the triad constituents and proper motion vector. It is
instructive to explicitly write down these products:

ı̂ · µ = µα∗
(
ı̂ · p̂0

)
+ µδ

(
ı̂ · q̂0

)
= µ [+ cosω0 cos (ψ −�0)

+ sinω0 sin (ψ −�0) cos i0] , (14)

̂ · µ = µα∗
(
̂ · p̂0

)
+ µδ

(
̂ · q̂0

)
= µ [− sinω0 cos (ψ −�0)

+ cosω0 sin (ψ −�0) cos i0] , (15)

k̂ · µ = µα∗(k̂ · p̂0)+ µδ(k̂ · q̂0) = µ sin (ψ −�0) sin i0 . (16)

The Keplerian elements are conveniently expressed in terms of
the direction cosine matrix items. The orbit inclination can be
found from

cos i = −k̂ · r̂ . (17)

Making use of Equation (9) and substituting the dot products

k̂ · r̂0 and k̂ ·µ from Equations (4) and (16), respectively, we find
the propagation of the inclination

cos i = [cos i0 (1+ µrt)− µt sin (ψ −�0) sin i0] fD . (18)

The argument of pericenter and longitude of the ascending node
range from 0 to 2π , therefore both sine and cosine should be
known to specify them uniquely. For ω, we take the following
two relations

sinω sin i = ı̂ · r̂ , (19)

cosω sin i = ̂ · r̂ . (20)

Similarly, substituting r̂ from Equation (9), we get the
propagation of the argument of the pericenter

sinω sin i =
[
sinω0 sin i0 (1+ µrt)+

(
ı̂ · µ

)
t
]
fD , (21)

cosω sin i =
[
cosω0 sin i0 (1+ µrt)+

(
̂ · µ

)
t
]
fD . (22)

Finally,� is specified by the relations

sin� sin i = −k̂ · q̂ , (23)

cos� sin i = +k̂ · p̂ . (24)

Using the vectors p̂ and q̂ from Equations (11) and (13), we
obtain the propagation of the longitude of the ascending node

sin� sin i =
[
sin�0 sin i0 (1+ µrt)

2 + (sin (ψ −�0) sin i0 tan δ

− cosψ cos i0) (1+ µrt) µt + (sinψ cos (ψ −�0)

sin i0 + cos i0 tan δ) µ
2t2

]
fDfP (25)

cos� sin i = [cos�0 sin i0 (1+ µrt)+ (sinψ cos i0

− cos (ψ −�0) sin i0 tan δ) µt
]
fD . (26)

The above formulae describe the complete transformation of

(i0,ω0,�0) at epoch T0 into (i,ω,�) at the arbitrary epoch T =

T0 + t, based on the model of uniform rectilinear stellar motion.
It is useful to point out that a reverse transformation from T to
T0 is rigorously reversible, i.e., recovers the original parameters,
only if the astrometric parameters are propagated to the epoch T
(Butkevich and Lindegren, 2014).

4.2. Approximate Formulae
In this section, we derive approximate formulae for the time
dependence of the orbital elements to the second order in time.
To concisely write the resulting equations, it is convenient to
make use of the proper motion position angle ψ ; the proper
motion components are then

µα∗ = µ sinψ , µδ = µ cosψ . (27)
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Expanding Equation (18) in a Taylor series in time and keeping
the second-order terms, we find the variation of the orbital
inclination

1i = µt sin (ψ −�0) +

[
cot i0

2
µ2 cos2 (ψ −�0)

−µrµ sin (ψ −�0)

]
t2 (28)

Substitution of the propagated inclination from Equation (18)
into Equations (21) and (22) and expansion of the results in a
series in time gives the change in the argument of the pericenter

1ω =
[
µt csc i0 − t2 csc2 i0

(
µ2 sin (ψ −�0) cos i0 + µrµ sin i0

)]

cos (ψ −�0) . (29)

Similarly, we obtain the variation of the longitude of the
ascending node from Equations (25) and (26). We, however,
omit the second order terms because they are very complicated

1� = µt [(sinψ + cosψ sin�0 cos�0) tan δ

− cos (ψ −�0) cot i0] . (30)

Here we keep only the linear term for 1� to avoid too length
expression. However, the second-order terms of1� can be easily
calculated numerically from the general expressions given by
Equations (25) and (26).

The linear terms of the above expressions are derived
and discussed in various textbooks and papers (Heintz, 1978;
Kopeikin, 1996; Kopeikin and Ozernoy, 1999; Rafikov, 2009).
The linear term in1i and1ω agree with those obtained in other
works. However, the situation with1� is different. The formula
for 1� is given only in the book by Heintz (1978) where it
was adopted from the pioneering work of van den Bos (1926).
Equation (30) contains a term µt cosψ sin�0 cos�0 tan δ,
which is absent in there. Comparison of our calculation
with that work shows that only formula for sin� has been
used in that paper and the omission of the formula for
cos� was the reason why the above mentioned term was
missing.

Making use of the proper motion position angle ψ enables us
to make qualitative conclusions on the evolution of the Keplerian
elements. Equation (28) shows that, if the proper motion is along
the line of nodes (ψ = �0 or ψ = � ± π), the linear term in
1i vanishes and the inclination depends on time as ∼µ2t2. For
the argument of the pericenter, the situation is more interesting:
if the proper motion is normal the line of nodes (ψ = �0±π/2),
both the first- and second-order terms are zero and ω becomes
independent of time. Moreover, it can be demonstrated that, in
such a configuration, ω does not depend on time at all. The
linear term of the longitude of the ascending node vanishes only
under very special conditions. For example, one may infer from
Equation (30) that 1� = 0 when δ = 0 and cos (ψ −�0) = 0,
i.e., for a star on the celestial equator with proper motion normal
to the line of nodes.

The second-order terms of all the orbital elements include
the radial proper motion µr . Thus, an accurate treatment of
the evolution of the Keplerian parameters needs to take radial
velocity as well as the tangential proper motion into account.

4.3. Face-on Orbits
For face-on orbits, the orbit and tangent planes are parallel
and the line of nodes cannot be defined, therefore there is an
ambiguity in the choice of the angles � and ω. Whatever choice
is made, these quantities change discontinuously when the orbit
plane becomes normal to the line of sight. Mathematically this
corresponds to the fact that Equations (29) and (30) have
singularities if i = 0. The inclination remains the only Keplerian
angle which changes smoothly when the alignment geometry
passes through a face-on configuration. However, propagation
formulae need some modification for such cases. Substituting
i = 0 and π in Equation (18), we find the propagation of the
inclination for a face-on orbit

cos i = ± (1+ µrt) fD . (31)

The upper sign applies for prograde motion and the lower sign
for retrograde motion. Expansion to the quadratic terms gives

1i = ±
∣∣µt − µrµt

2
∣∣ . (32)

The absolute value in this formulae is related to the fact that the
sign of 1i should not change under time reversal, as can be seen
from straightforward geometrical arguments.

5. DISCUSSION

In the following, we discuss some practical implications of the
analytical results obtained in the preceding sections. Since the
first-order proper-motion effects have already been studied in
the context of various object type (e.g., Kopeikin, 1996; Rafikov,
2009), we mainly concern the second-order effects. We consider
first the impact of the proper motion on the radial velocity
amplitude of a binary star component. As a second example, we
examine how it affects the duration of exoplanetary transit time.

5.1. Effect on Radial Velocity of Binary
Component
Radial velocity amplitudes of components of a binary system
depend on the orbit inclination. Let the masses of the
components be M1 and M2, then it follows from Kepler’s third
law that for a circular orbit the radial velocity semi-amplitude of
the first component is

K1 =

(
2πGM3

2

P (M1 +M2)
2

)1/3

sin i ≡ K̃1 sin i , (33)

where G is the gravity constant and P is the orbital period.
Moreover, we introduced K̃1 to designate the velocity amplitude
the star had if the system would be seen edge-on. Making use of
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the variation of the orbit inclination given by Equation (28), we
find the variation of the velocity amplitude

1K = K̃1

[
µt sin (ψ −�0) cos i0 + t2

(
cos2 i0 − sin2 (ψ −�0)

sin i0
µ2

− µrµ sin (ψ −�0) cos i0

)]
(34)

To estimate the size of the effect, we ignore the trigonometric
factors and note that both µ and µr are of the order of v/d, the
ratio of the space velocity to the barycentric distance. Then the
first- and second-order terms can be approximated by K̃1

(
vt/d

)

and K̃1

(
vt/d

)2
, respectively. Assuming for simplicity that the

components are of the same mass M, we find the following
estimates for the first-order term

K̃1
vt

d
= 0.2m s−1

(
M

M⊙

)1/3 (
P

1 yr

)−1/3 (
v

10 km s−1

)

(
d

10 pc

) (
t

10 yr

)
(35)

and for the second-order term

K̃1

(
vt

d

)2

= 10−5ms−1

(
M

M⊙

)1/3 (
P

1 d

)−1/3 (
v

10 km s−1

)2

(
d

10 pc

)2 (
t

10 yr

)2

. (36)

These equations vary in the units of the orbital period to
emphasize the very large difference between the effects. The linear
effect, whichmay amount to aboutm s−1 for high-velocity nearby
stars, should be taken into account in interpretation of precise
Doppler measurements. In contrast, the second-order effect,
being at the level of mm s−1 per century even for short-period
close binaries, is truly negligible in practice.

5.2. Effect on Timing of Planetary Transits
The effects of proper motion on the timing of planetary transits
are studied by Rafikov (2009) in the linear approximation. In
what follows, we complement this study by considering the
second-order effects. Duration of planetary transit is the time
interval during which a planet moves in front of its host star. We
consider here the simplest case of a circular orbit and ignore small
effects due to planet radius. The transit geometry is conveniently
described in terms of the so-called impact parameter, the distance
between the center of stellar disc and the projection of the
planetary orbit onto it, expressed in units of the stellar radius:

b =
a

R
|cos i| , (37)

where R is the radius of the host star and a is the radius of the
planetary orbit. Variation of the duration due to a change in
the orbit inclination lends itself to a straightforward geometrical
interpretation. Any increase or decrease of the angle between the
line of sight and the orbital plane makes the impact parameter
larger or smaller. This, in turn, changes the length of the

TABLE 1 | Parameters of the transiting planets.

GJ 436b P = 1 yr

µ (mas yr−1) 1,209.76 71.71

µr (mas yr−1) 207.95 0.00

P (days) 2.64385 365.25

i (deg) 86.36 89.74

a/R 13.34 214.94

b 0.848 0.975

FIGURE 2 | Effect of proper motion on the transit planet GJ 436b. The solid

line and left axis show the difference in the duration of transit, while the dashed

line and right axis show the second-order term.

projection and the time the planet takes to pass through it. The
effect of changing inclination on transit duration is evidently
larger when the orbit projection lies not very close to the stellar
center because small variations of the impact parameter then
result is significant changes in the projection length due to the
curvature of the stellar disc.

For a circular orbit, with the planetary radius ignored, the
transit duration T depends on three parameters: the orbital
period P, the ratio of the orbit and stellar radii a/R and the impact
factor b (e.g., Perryman, 2011, Chapter 6):

T =
P

π

R

a

√
1− b2 . (38)

The effect of changing orbit inclination on the transit duration
is evidently more pronounced for long-period planets when a
small change in inclination can result in a sizeable shift of the
orbit projection on stellar disc. As explained above, this effect
is especially large for systems with impact factors close to one
when transit occurs close to the edge of the stellar disc. On the
other hand, the proper motion effect are evidently significant
for stars with high-proper motion. To compare the effects of
proper motion and orbit period, we considered two opposite
cases: a high-proper motion star hosting a short-period planet
and a system with moderate proper motion and long-period
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FIGURE 3 | As Figure 2, but for a system with µ = 71mas yr−1,

cos i = 89.◦74 and P = 1 yr.

planet. The first case is well exemplified by GJ 436b, a Neptune-
mass planet with P = 2.644 day orbiting an M dwarf star with
µ = 1, 210mas yr−1 (Torres et al., 2008). To illustrate a long-
period system, we considered a planet with P = 1 yr orbiting a
Solar-type star with µ = 72mas yr−1. Moreover, to demonstrate
strong dependence of grazing transit on time, we assume that the
impact factor is close to unity, b = 0.975. Parameters of these
transiting systems are summarized in Table 1.

The evolution of transit duration was calculated for a time
span of 25 years for both systems. The results of the numerical
calculations are shown in Figures 2, 3. The plots also contain
separate graphs showing the second-order effects. Practical
significance of these effects is determined on the accuracy of
transit timing, σT . Assuming σT = 10 s , we see that the
linear effects are significant for time interval ≥ 15 yr, while the
second-order effects are negligible for GJ 436b. In contrast, for
a planet with P = 1 yr, the linear effects should be measurable
in successive transits, whereas the the second-order effect are
important for t ≃ 30 yr. However, the situation changes if higher
timing is attainable. For example, the quadratic variation of the
transit duration should be taken into account for t ≃ 22 yr if
σT = 5 s and for t ≃ 10 yr if σT = 1 s. Thus, we may conclude
that the linear effect may be significant for long-period planets,
because variation of the transit duration between two subsequent
transit events can be measured in practice for such systems. The
second-order effect are important for grazing transits, provided
that the timing accuracy is better than≃ 10 s.

6. CONCLUSIONS

We have presented an analysis of the effect of proper motion
on the Keplerian orbital elements. Change in the orbit
orientation due to the star’s space motion leads to variation
of the three Keplerian elements, which specify the alignment
geometry: inclination, longitude of the ascending node,
and argument of the pericenter. The uniform rectilinear
model of barycentric stellar motion provides the time-
dependence of the normal triad. Resolving the unit vectors
associated with the orbits along the triad constituents,
we derived explicit and rigorous formulae for the secular
variation of the three Keplerian parameters. It should be
emphasized that the effects studied in this paper are purely
kinematical with no post-Newtonian acceleration taken into
account.

The analysis of the obtained results demonstrated that
a consistent treatment of the evolution of the orbital
parameters necessitates the accounting for all components
of the star velocity. The conventional proper motion, i.e., the
tangential velocity component, is sufficient only in the linear
approximation. In the second-order terms in time, however,
the radial velocity comes into play. The effect of the radial
velocity on the Keplerian elements, ∼ µµrt

2, is equivalent
to the secular, or perspective, acceleration, a well-known
effect in classical astrometry. Numerical estimations indicate
that the proper motion may provide significant effect on
transit timing variations for long-period planets with grazing
transit. The results of this study are applicable to modeling
of planetary transits and precise Doppler measurements
as well as analysis of pulsar and eclipsing binary timing
observations.
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