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In the context of Human Spaceflight exploration mission scenario, with the Lunar

Orbital Platform- Gateway (LOP-G) orbiting about Earth-Moon Lagrangian Point (EML),

Rendezvous and Docking (RVD) operational activities are mandatory and critical for the

deployment and utilization of the LOP-G (station assembly, crew rotations, cargo delivery,

lunar sample return). There is extensive experience with RVD in the two-body problem:

in Low Earth Orbit (LEO) to various space stations, or around quasi-circular Low Lunar

Orbits (LLO), the latter by Apollo by means of manual RVD. However, the RVD problem in

non-Keplerian environments has rarely been addressed and no RVD has been performed

to this date in the vicinity of Lagrangian points (LP) where Keplerian dynamics are no

longer applicable. Dynamics in such regions are more complex, but multi-body dynamics

also come with strong advantages that need to be further researched by the work

proposed here. The aim of this paper is to present methods and results of investigations

conducted to first set up strategies for far and close rendezvous between a target (the

LOP-G, for example) and a chaser (cargo, crew vehicle, ascent and descent vehicle,

station modules, etc.) depending on target and chaser orbit. Semi-analytical tools have

been developed to compute and model families of orbits about the Lagrangian points in

the Circular Restricted Three Body Problem (CR3BP) like NRHO, DRO, Lyapunov, Halo

and Lissajous orbits. As far as close rendezvous is concerned, implementation of different

linear and non-linear models used to describe cis-lunar relative motion will be discussed

and compared, in particular for NRHO and DRO.

Keywords: rendezvous, trajectory, CR3BP, Earth-Moon system, Lagrangian points, relative motion

INTRODUCTION

On the road to a solar system human exploration, the International Space Exploration
Coordination Group (ISEGC) (ISECG, 2018) has identified several mission scenarios beyond Low
Earth Orbit (LEO) as significant landmarks. In particular, it envisions to develop and operate with
the collaboration of all main international space agencies a Lunar Orbital Platform—Gateway
(LOP-G) as an outpost, located about one of the Earth-Moon Lagrangian points. This station
will be used as a strategic platform and a logistic hub for human missions in cis-lunar space,
including lunar surface and even beyond (Mars or asteroids destinations). Moreover, innovative
technologies could be tested onboard, taking benefit from a unique environment. At this time,
such an option is likely to rely on the NASA/ESA Orion MPCV (Multi-Purpose Crew Vehicle)
and a heavy launcher, like the Space Launch System (SLS). Thus, Rendezvous and Docking (RVD)
operational activities become mandatory and critical for the deployment and utilization of the
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LOP-G (like station assembly, crew rotations, cargo delivery,
or lunar sample return). As the next space station will be a
gateway for future exploration missions, various rendezvous
missions may be performed, including logistics flight and crew
transportation missions from the Low Earth Orbit (LEO),
Geostationary (GEO) or LLO (Lunar Low Orbit), so as to reach
NRHO (Near Rectilinear Halo Orbit), DRO (Distant Retrograde
Orbit) or Halo Orbits. As the capacity to rendezvous in the
vicinity of Earth-Moon Lagrangian Points is by nature necessary,
its analysis becomes fundamental.

Despite a very extensive experience with RVD in the two-body
problem (in Low Earth Orbit to various space stations, or around
quasi circular Low Lunar Orbits, the latter by Apollo by means of
manual RVD), the RVD problem in non-Keplerian environment
has rarely been addressed and no RVD has yet been performed
to this date in the vicinity of Lagrangian points where Keplerian
dynamics are no longer applicable. As a consequence, researches
presented in this paper contribute to a better understanding
of potential mission scenarios to rendezvous in the vicinity of
Earth-Moon Lagrangian Points.

This paper aims to study the rendezvous trajectories in the
vicinity of the Earth-Moon Lagrangian points, EML1 or EML2.
The Circular Restricted Three–Body Problem (CR3BP) has been
highlighted among more complex models so as to describe the
non-linear dynamics in this area. In the selected scenario, the
target’s orbit is assumed to belong to Halo orbits, NRHO or
DRO families, with a fixed attitude. The chaser is supposed
to be equipped with chemical propulsion. Considering only
impulsive maneuvers, their effect is instantaneous and chaser’s
motion is ballistic between maneuvers. This paper addresses
the feasibility of a rendezvous based on trajectories benefiting
from natural dynamics and limiting fuel consumption. Once
the feasibility has been demonstrated, an optimization process
will be carried out in order to minimize rendezvous operations’
duration and the consumption. This optimal scenario can be
then used as a first guess to develop refined trajectories with
intermediate maneuvers so as to correct the effects of orbit
estimation’s errors, of maneuvers inaccuracies and perturbations
(gravitational influence of the other celestial bodies like the Sun,
the Sun radiation pressure, etc.). In this paper, those effects are
neglected.

After transfer from LEO, lunar surface or other distant
locations (Mars, asteroids, etc.) and before docking activities, the
rendezvous is decomposed in two main stages. On the one hand,
far rendezvous and close rendezvous are analyzed independently
from the theoretical point of view. On the other hand, for
application purposes, a unique scenario will be presented for
NRHO, with proposed extensions to other families of orbits,
and in particular when the chaser and the target’s orbit are of a
different type. Moreover, when close rendezvous is concerned,
the objective is to extend classical methods proven in the two-
body problem to the three-body problem. The first contribution
of this paper is to propose a far rendezvous strategy with the use
of invariant structures extended by Lambert arcs to minimize
the cost of the mission. A second contribution lies in the use
of a non-linear model to describe the relative motion during
close rendezvous stage. The third contribution corresponds to a

preliminary safety analysis in case of a failure of the propulsion
sub-system (either in direction or in magnitude).

After a summary of the bibliographical context and a
description of the theoretical background, this paper will propose
strategies for far and close rendezvous between a target and a
chaser depending on both vehicles’ initial orbits. In the case of the
far rendezvous, a strategy in three maneuvers is presented, with
the main objective of using the invariant structures derived from
the natural dynamics in the vicinity of the Lagrange point. In
the case of the close rendezvous, the algorithm used to compute
the trajectory of the chaser to the target is detailed in two steps:
a first guess, where the relative motion between the chaser and
the target is linearized, then a more precise computation of the
trajectory arcs with a non-linearized relative motion. The last
paragraph depicts two specific scenarios where the chaser and the
target are in orbits (from the same family) around the EML2. The
selected examples mainly concern the Halo and NRHO orbits.
They are chaining the far rendezvous and the close rendezvous,
before analyzing the safety aspects.

HISTORICAL OVERVIEW OF THE
BIBLIOGRAPHICAL CONTEXT

A growing interest of the space scientific community for
trajectories toward, around and from Lagrangian points has
been registered in recent years. In particular, the three-body
problem (Szebehely, 1967) is one of the most studied models
not only in celestial mechanics, but also in mathematics. For
the early first solar system exploration missions (like Voyager), a
patched conics model was satisfactory to compute the trajectory.
As interplanetary missions became more demanding (as far
as fuel consumption or accuracy are concerned), this strategy
connecting several two body-problems was applied as a first
design approximation. Thus, other strategies (like three body-
problem and more) can be preferred. Moreover, some science
space missions take advantage of particular properties of the
Lagrangian points. In recent decades, many theoretical studies
have demonstrated the benefits of highly non-linear dynamics to
space exploration missions.

When looking at the set of studies performed in the field of
Lunar Libration Points, one stumbles upon the fathers and main
advocates of utilization concepts for these points repeatedly.
Lagrangian points are defined as equilibrium points in the
rotating referential of the studied system. R. Farquhar published
the first papers on the utilization of co-linear EMLs in the
late sixties and early seventies, including the application for
communication relay satellites (Farquhar, 1967), inhabited space
stations in a Halo orbit around EML2 (Farquhar, 1972) and
moreover, on the utility of Lagrangian Points (LPs) for human
solar system exploration (Farquhar et al., 2004)

Beyond the study of utilization of the Lagrangian Points
location, the interest in these models focuses on the emergence
of invariant structures, such as periodic or quasi-periodic orbits
(Farquhar, 1973; Richardson, 1980; Howell, 1984) and their
related stable and unstable manifolds (Gómez et al., 2001, 2004;
Koon et al., 2001). These invariant structuresmake it possible first
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to design staging orbits in the vicinity of the Lagrangian points,
then to establish low-energy trajectories for transfer between
the Earth, the Moon and the Lagrangian points. This paved
the way for mission’s concepts taking benefit of these invariant
structures so as to minimize fuel consumption through various
strategies like Indirect transfer (Alessi et al., 2010),Weak Stability
Boundary (Belbruno andCarrico, 2000; Belbruno, 2002) or Lunar
flyby (Mingtao and Zheng, 2010), for Earth-to-EML2 (Parker
and Anderson, 2013) or Earth-to-Moon tranfers (Mingotti et al.,
2012).

Despite this vast literature on orbits about the Lagrangian
points and transfers in the cis-lunar realm, the scientific
community has, at the moment, very few relevant researches on
rendezvous trajectories in non-keplerian dynamics. Actually, a
large amount of publications from 1950s to today dealing with
rendezvous can be found. But the typical rendezvous problem
considers that both vehicles are in orbit about a massive celestial
body (Earth, Moon, Mars. . . ) and lies only in the two-body
problem. Even though rendezvous is a critical phase, it has
rarely been studied in the context of the non-keplerian dynamics
except by Gerding (1971) in 1971, Jones and Bishop (1994)
in 1993 and 1994 and by Canalias (Canalias and Masdemont,
2006) in 2006. Nevertheless, a recent emergence of some sparse
publications can be observed since 1993, with a growing interest
after 2015 that can be explained by the studies related to LOP-G
and Orion missions (Davis et al., 2017; Williams et al., 2017).
Two main periods can be noticed: first scenario with the target
on Halo orbit around EML2, second scenario with the target
on NRHO or a DRO around EML1/2. During the first period,
Mand (2014) expressed linearized relative motion of the chaser
compared to the target on a Halo orbit around the EML2
within an ephemeris model. Afterwards Ueda and Murakami
(Murakami et al., 2015; Ueda and Murakami, 2015) presented
a global scenario with a departure from LEO, a transfer in cis-
lunar realm, a lunar flyby, an insertion on the target’s Halo
orbit around EML2, close rendezvous and proximity operations,
within ephemeris model for transfer and CR3BP in the vicinity
of EML2. This scenario is limited to a unique case with a
given Halo orbit of the target, with a fixed attitude and only
one insertion point for the chaser (best compromise between
fuel consumption and time of flight). Meanwhile, Lizy-Destrez
(2015) proposed a different strategy with three burns, relying
on invariant structures in the CR3BP to transfer the chaser
from a Halo parking orbit to the target’s parking orbit. This
approach is detailed in section Far Rendezvous Strategy. A
parametric analysis was conducted to evaluate the impact of the
chaser’s departure location, of the position of the intermediate
maneuver and of the insertion location on the target’s Halo
orbit on the rendezvous performances (duration, time of flight).
Colagrossi (Colagrossi et al., 2016) extended the theme to
rendezvous with very large infrastructures, including coupling
effects between orbital and attitude motion. A second period
took place after recent publications from NASA (Whitley and
Martinez, 2016; Davis et al., 2017; Williams et al., 2017), that
confirmed the attractiveness of less classical families of orbits, like
DRO andNRHO. In 2015,Murakami (Murakami and Yamanaka,
2015) introduced transfer trajectories from LEO to DRO with

three-impulsivemaneuvers, one of which is a lunar flyby. In 2017,
Ueda (Ueda et al., 2017) evaluates the guidance performance of a
linearized relative motion on Halo orbits, a NRHO or a DRO.
In 2017, Campolo (Campolo et al., 2017) presented a general
close approach rendezvous strategy designed to ensure safety
throughout during all rendezvous stages in the NRHO about
EML2 case.

Thanks to this analysis of the bibliographic context, it can be
observed that the theme of the transfer trajectories in the Earth-
Moon system has been largely covered, that the theme of the
rendezvous strategies is booming and that the theme of the safety
begins slowly.

THEORETICAL PROBLEM OVERVIEW

Themathematical model selected here to represent the dynamical
environment is the Circular Restricted Three-Body Problem, as
it produces quick and efficiently quantitative results for transfers
between primaries and libration orbits. As this model has been
deeply detailed in many publications, this paper mainly refers to
Parker and Chua (2012), which proposes a complete synthesis.

Circular Restricted Three-Body Problem
The 3-body problem consists in the prediction of the motion
of a particle of mass m under the gravitational influence of two
massive bodies with respective masses (m1 and m2), with m <<

m2 < m1. The three bodies are assumed to be isolated, that is to
say that no other effect has to be taken into account. Considering
that the particle is massless, the problem is said to be “Restricted.”
The model becomes the Circular Restricted Three-Body Problem
(CR3BP) when the primaries are supposed to be on circular orbits
about their common center of mass. The equations of motion
of the particle are described in the rotating reference synodic
frame, centered on O, the center of mass of the system M1-
M2 and with the x-axis directed from M1 (the larger primary)
to M2 (the smaller primary) and the y-axis in the plane of the

FIGURE 1 | Inertial and synodic reference frames.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 January 2019 | Volume 5 | Article 45

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lizy-Destrez et al. Rendezvous About EML Points

primaries’ motion (see Figure 1), the z-axis completes the right
hand system.

Masses, distances and time are normalized respectively with
the sum of the primaries’ masses, the distance between them and
their angular velocity around their barycenter. The unit of time
is taken such that the period of the orbits of the primaries is 2π.
The universal constant of gravitation, G, becomes then G = 1.
The only remaining parameter in the system of equations is the
mass parameter, µ, defined as µ =

m2
m1+m2

where µ ∈
[

0, 12
]

.
When the position vector of the particle is given by r =

(

x, y, z
)

, its equations of motion in the CR3BP (Koon et al., 2001),
using Newton’s law are:















ẍ− 2ẏ = ∂U
∂x

ÿ+ 2ẋ = ∂U
∂y

z̈ = ∂U
∂z

(1)

where the effective potential, Ū, is given by:

Ū
(

x, y, z
)

=
x2 + y2

2
+

1− µ

r1
+
µ

r2
+
µ (1− µ)

2
(2)

where r1 =

√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1+ µ)2 + y2 + z2 are the distances from the particle to

M1 and M2 primaries.

The dot (˙) denotes the time first derivative (velocity) and the
double dot (¨) denotes the time second derivative (acceleration).
The state of the particle is given by: X = (x, y, z, ẋ, ẏ, ż). The
equations of motion (1) can be written as:

Ẋ = f (X) (3)

From the equation of motion (3), let’s denote, 8 , the flow map
of the system, mapping the position of the particle from its
initial location at time, t0 to its location at time, t, with under
initial conditions X0: 8(t, t0,X0) :X(t0) → X (t)∀t ≥ t0 with
8(t0, t0,X (t0)) = X0.

Lagrangian Points and Families of Orbits in
the CR3BP
The system (1) has five equilibrium points, referred to as
Libration or Lagrangian points, Li, i = 1 . . . 5 or EMLi in
the Earth-Moon system. The collinear points L1, L2, and L3 are
on the line connecting the two primaries, while L4 and L5 are
equilateral points. In this paper, the distance from Li, to the
smallest primary, is named γi (Szebehely, 1967). According to
the literature (Szebehely, 1967; Farquhar, 1972, 1973; Whitley
and Martinez, 2016), several families of orbits around them exist,
usually designated as: Lissajous orbits, Horizontal Lyapunov
orbits, Vertical Lyapunov orbits, Halo orbits (including Near
Rectilinear Halo Orbits) or Distant Retrograde Orbits. This paper
mainly focuses on Halo orbits, which are three-dimensional and
periodic with the same in- and out-of-plane oscillation and

FIGURE 2 | Examples of periodic orbits around EML2. (A) Lissajous trajectory with Ay = Az = 3,500 km, (B) Halo trajectory Az = 5,000 km, (C) Eight shape Lissajous

trajectory with Ay = Az = 3,500 km and (D) Horizontal Lyapunov trajectory with Ay = 3,500 km.
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NRHO, which are particular case of Halo orbits, with a close
passage over a lunar pole. Moving inside the family toward the
Moon, the Halo orbits become more and more rectilinear as
the lunar gravitational influence becomes highly predominant.
Some studied cases refer to Horizontal Lyapunov orbits, which
lays in the orbital plane of the primaries (xy-plane), to Vertical
Lyapunov (or eight-shaped) orbits, which are three-dimensional,
almost vertical and periodic orbits. Some scenarios are also
applied on DRO, which are very stable solutions, encircling
the Moon in a clockwise way in the Earth-Moon rotating
frame.

Figure 2 depicts some examples of periodic orbits about
EML2, obtained from an expansion of the linearized equations
of motions in the CR3BP with Legendre polynomials, as a
first guess for the Lindstedt-Poincaré method (Parker and
Chua, 2012). Plots on Figure 2 correspond to (A) Lissajous
trajectory with Ay = Az = 3,500 km, (B) Halo trajectory Az =

5,000 km, (C) Eight shape Lissajous trajectory with Ay = Az =

3,500 km and (D) Horizontal Lyapunov trajectory with Ay =

3,500 km.
From (Canalias, 2007), the system (1) of equations of

motion of the particle can be linearized in the vicinity of the
studied Lagrangian point with the Legendre polynomial. Under
those conditions, the solutions of the linearized system can be

FIGURE 3 | Schematic representation of a Poincaré map.

expressed as:






x = A1e
λt + A2e

−λt + Ax cos (ωPt + φ)

y = cA1e
λt − cA2e

−λt + κAx sin (ωPt + φ)
z = Az cos (ωvt + ψ)

(4)

where A1, A2, Ax, Az, φ, and ψ depend on the initial condition
(

±λ,±iωp,±iωv,
)

are the eigenvalues of the characteristic
equation of the system (1) and c, κ depend exclusively on themass
parameter µ and the Libration point that is studied (in our case
EML2). Solutions with A1 and A2 equal to zero correspond to
periodic orbits, with an amplitude Ax and a phase ϕ in xy-plane
and an amplitude Az and a phase ψ in z direction.

A differential correction scheme is deployed to compute the
orbits, with a high order analytical approximation as first guess
(Howell, 1984). The method used for the first guess depends on
the orbit family studied.

Invariant Manifolds
The concept of unstable and stable manifold is exploited to
determine transfers from the orbits about the primaries to the
vicinity of the Lagrangian points as well as periodic solutions.

For a given orbit, the stable (resp. unstable) invariant manifold
is defined as the sub-space of the 6-dimensional phase space
consisting of all vectors whose future (resp. past) positions
converge to the periodic orbit. The corresponding trajectories
in the vicinity of the orbit are often called asymptotic orbits
since they slowly converge to or diverge from the orbit. As the
equations of motion are Hamiltonian, the system has an energy
integral of motion. Its expression is given by

E
(

x, y, z, ẋ, ẏ, ż
)

=
1

2

(

ẋ2 + ẏ2 + ż2
)

+ Ū
(

x, y, z
)

(5)

From the expression of the solutions of the linearized system of
Equations (4), it can be concluded that a small variation of the
trajectory can put the spacecraft on the unstable manifold A1 and
correspond to the hyperbolic amplitudes of the solution, with
A1 for the unstable component and A2 for the stable one. This
concept is then used to compute trajectories that converge toward
the orbit around the Lagrangian point (stable manifold) and
departs from the orbit (unstable manifold). Actually, the stable
manifold will converge to the desired orbit, while the unstable
manifold will exit the region of the Lagrangian point.

The invariant manifolds are often referred as “tubes“
since they exhibit tube-like shapes when projected onto the
3-dimensional position space.

For any given stateX =
(

x, y, z, ẋ, ẏ, ż
)

, on the aforementioned
given periodic orbit, the invariant stable (resp. unstable)manifold
can be computed thank to a linear approximation, while
considering a small perturbation ε applied to X which becomes
Xs (resp. Xu) and propagating the equations of motion backward
(resp. forward) from Xs (resp. Xu), with:

- For the stable manifold Ws: Xs =X ± εvs
- For the unstable manifold Wu: Xu =X ± εvu

where vs and vu are eigenvectors associated to the real eigenvalues
of themonodromymatrix of the closed trajectory. vu corresponds
to the eigenvalue> 1 and vs to the eigenvalue smaller than one.
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As the small perturbation, ε, can be positive or negative, two
stable (resp. unstable) manifolds can be obtained, which are
denominated, respectively interior and exterior. The manifold is
generated from a starting point, selected at a distance dM in the
stable or unstable direction provided by the eigenvector. For this
study, dM is set to 50 km (Gómez et al., 2001).

In order to decide when to stop the propagation of the
manifold branches, a Poincaré map (recorded as PΣp) is used.
Considering 8(t, t0,X (t0)), the trajectory representing one
solution of the system with X0 as initial conditions and Σp, a
hypersurface, the Poincaré map, PΣp, is defined as the set of
points of the trajectory, 8(t, t0,X (t0)) when it intersects the
hypersurface,Σp with:

P6p =
{

X =
(

x, y, z, ẋ, ẏ, ż
)

/X ∈ 6p and Ẋ = f (X)
}

(6)

Figure 3 provides a schematic representation of the use of a
Poincaré Map.

Manifolds Connection
Given an initial orbit and a final orbit, denoted by ψi and
ψf , respectively. Intersections between the unstable manifold

Wu(ψ i) of the initial orbit and the stable manifoldWs(ψ f ) of the

final orbit is defined as the set

Xp ⊂ Wu (ψi) ∩Ws
(

ψf

)

=















































xu
yu
zu
ẋu
ẏu
żu
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xs
ys
zs
ẋs
ẏs
żs

















∈ Ws
(

ψf

)

∣
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∣
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∣
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∣

∣

∣

xiu = x
j
s

yiu = y
j
s

ziu = z
j
s

ẋiu = ẋ
j
s

ẏiu = ẏ
j
s

żiu = ż
j
s































(7)

FIGURE 4 | Example of a 3-maneuvers scenario for Halo-to-Halo far rendezvous. (A) 3-maneuvers, manifold-to-manifold far rendezvous scenario, (B) 4-maneuvers

trajectory refinement: Lambert’s arc.
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Intersections in 6-D space of the manifolds are called free
intersections and provide an asymptotic path from one periodic
solution to another one (Parker and Chua, 2012). However, such
connections require stringent conditions on the initial and final
orbits, for example, they must be of the same energy level (5).

For the purpose of this study, only physical intersections (x,y,z)
between the manifolds will be sought for. While intersections
can happen at any point of space, the search space will be
restricted on a Poincaré map to reduce the computational
burden.

FIGURE 5 | Example of stable and unstable manifolds connections for EML2 Halo orbits and NRHO. (A) stable and unstable manifolds originated from Halo Southern

orbits (with ACz = 8,000 km in purple and ATz = 10,000 km in blue) (B) stable and unstable manifolds originated from Northern NRHO (with ACz = 70,000 km and

ATz = 74,960 km).

FIGURE 6 | Example of Halo-to-Halo far rendezvous, ACz = 7,800 km, ATz = 8,000 km, θC
i
=330, θT

f
=80, ϕPM=4.46. (A) Relative distance between chaser and target

over time, 3-burn strategy as a first guess, adimensional units, (B) Relative distance between chaser and target over time, 4-burn continuation, adimensional units.
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RENDEZVOUS

This paper focuses on rendezvous problematic in the vicinity of
EML2, as it constitutes one of the most critical sets of operations
during a Human spaceflight mission scenario.

Rendezvous Concepts Definition
Houbolt (1960) defines the rendezvous as:

”The problem of rendezvous in space, involving, for example, the

ascent of a satellite or space ferry as to make a soft contact with

another satellite or space station already in orbit.“

The space vehicle that is already in orbit is commonly
called the target, while the one that is arriving, is named
the chaser. Rendezvous then consists in all maneuvers and
trajectories performed by both vehicles to get nearer and
nearer before contact. The different phases and maneuvers
of a typical rendezvous mission from launch to docking
have been extensively studied from the Apollo missions to
the International Space Station (ISS) resupply missions. They
are mostly named: launch, transfer, orbital injection, phasing,
and proximity maneuvers (including homing, closing and final
approach). Rendezvous can be followed by either docking or
berthing, depending on the nature of the chaser. Rendezvous
operations considered in this study will start from the departure
of the chaser from its parking orbit to the injection maneuver
onto the target orbit in the vicinity of the Lagrangian point. As an
extension of successful rendezvous operations performed in Low
Earth Orbit, it is possible to identify three successive phases in
a rendezvous scenario: transfer phase, far rendezvous and close
rendezvous.

Far Rendezvous Strategy
Two different scenarios can be identified depending on the chaser
injection. The chaser can either travel on its transfer trajectory
from the Earth to the target orbit or can be injected on a parking
orbit about the Lagrangian point. It is not necessary that the
chaser’s parking orbit belong to the same families as target’s orbit.
In the second case, the chaser will wait there until far approach
operational activities start. Considering the launch and transfer
uncertainties inherent to the first scenario, the paper focuses on
scenarios including the use of a parking orbit. Four phases are
considered: parking orbit, far approach, insertion on the target’s
orbit and close rendezvous operations. Both chaser and target are
assumed to be traveling on two different closed orbits about the
L2 libration point, which admit stable and unstable manifolds.

The far approach strategy proposed in this paper takes
advantage of the natural dynamics of the system and follows
two steps. A 3-maneuver scenario is considered first. The chaser
performs a first maneuver (1v1) to leave its parking orbit and to
travel on the unstable manifold. It will then perform a second
maneuver (1v2) to leave the unstable manifold so as to reach
the stable manifold of the target orbit. Finally, arriving near
the target, it will perform a third maneuver (1v3) to leave
the manifold and enter the target parking orbit. As mentioned
previously, finding exact intersections between manifolds is

difficult and resource-consuming, a distance gap between the
stable and unstable manifold at the intersection exists in this
scenario. The second and final step is to use the 3-burns trajectory
as a first guess for a 4-burns trajectory design with a lambert arc
connecting the extremities of both manifolds. Figure 4 presents
an example of the methodology used in this work for a Halo-
to-Halo rendezvous about EML2 (target and chaser amplitudes
AT
z = 30, 000 km and AC

z = 8, 000 km, respectively). On
the upper hand (A), the 3-maneuvers strategy is presented, while
on the lower hand (B), the connection between the manifolds is
depicted for the 4-maneuvers refinement: the two burns (1v21)
and (1v22) replace the single burn (1v2) of the 3-maneuvers
scenario.

3-Maneuvers Scenario
The total 1v for the 3-maneuvers scenario is, as defined
previously:

1v = 1v1 +1v2 +1v3 (8)

The main challenge of this study case is to find the right
location and best moment to perform the intermediate maneuver
(1v2), to compute a trajectory that resembles a free connection.
This leads to finding a compromise between the time of flight
(duration of the transfer) and the cost (quantified by the total
1v).

Assuming that the chaser leaves its parking orbit at time, t1,
reaches the intersection between both manifolds at time, t2, and
is inserted in the target parking orbit at time, t3, the rendezvous
trajectory of the chaser is split into three arcs:

• From t1 to t2, the chaser travels on the unstable manifold of the
chaser parking orbit,WC

u , after the first maneuver (1v1)
• At t2 the second burn (1v2), the chaser leaves W

C
u , and gets

into the stable manifold of the target parking orbit,WT
S .

• From t2 to t3, the chaser travels on WT
S before the last

maneuver (1v3).

As mentioned previously, only physical intersections between
manifolds in the (x,y,z) subspace are sought. The resulting gap in
the velocity subspace will provide the intermediate required burn,
(1v2). Writing

(

xCu , y
C
u , z

C
u

)

the position vector on the unstable

manifold issued from the chaser parking orbit and
(

xTs , y
T
s , z

T
s

)

the position vector on the stable manifold issued from the target
parking orbit, the rendezvous problem can be stated as:

- t ∈ [t1; t2[,
d8(t,t1 ,X

C
0 )

dt
= f

(

8(t, t1,X
C
0

)

with 8(t1, t1,X
C
0 ) =

XC
0

- at t= t2,






xCu (t2) = xTs (t2) = x2
yCu (t2) = yTs (t2) = y2
zCu (t2) = zTs (t2) = z2

(9)

- ∀t ∈ [t2; t3],
d8(t,t3 ,X

T
0 )

dt
= f

(

8(t, t3,X
T
0

)

with 8(t3, t3,X
T
0 ) =

XT
0

Solving the problem is equivalent to finding the three unknown
variables, (t1, t2, t3) that satisfy system (9). This is equivalent to
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finding three others variables
(

θCi , θ
T
f
,ϕPM

)

, where θCi defines

the angular parameter of the chaser on its parking orbit at time
t1 (defined as an angular fraction of the period of the orbit), θT

f

defines as well the angular parameter of the chaser on the target
orbit at time t3. With this parameterization, the NRHO aposelene
corresponds to θ = π, while the periselene corresponds to θ =0.
ϕPM is the angle defining the Poincaré map, used to determine
the location of spatial intersections of the two manifolds. The
manifold propagation stops at its spatial intersection with the
plane defined, by the angle ϕPM .

Figure 5 depicts examples of possible connections between
stable (blue) and unstable (purple) manifolds for part (A) with
EML2 Southern Halo orbit (with for the chaser, in purple
AC
z = 8,000 km andAT

z = 10,000 km) and for part (B), with EML2
northern NRHO (with for the chaser, in purple AC

z = 70,000 km
and AT

z = 74,960 km). ϕPM is set equal to 2◦ for Halo orbits and
3◦ for NRHO.

The selected Poincaré map is a plane perpendicular to the xy-
plane, forming an angle ϕPM with the x-axis from EMLi, where
i= 1 or 2 depending on the considered Lagrangian point. As a
summary:

- θCi is determined by
(

xCu , y
C
u , z

C
u

)

at t= t1,

- θT
f
is determined by

(

xTs , y
T
s , z

T
s

)

at t= t3,

-







x2 =
√

x22 + y22 × cos (ϕPM)

y2 =
√

x22 + y22 × sin (ϕPM)

As the problem cannot be solved analytically, the following
numerical methodology is applied:

- Generating the target orbit and the chaser parking orbit.
- Propagating the stable manifold, WT

s

(

θT
)

issued from each

angular location θTon the target orbit until the Poincaré map,
PM .

- Propagating the unstable manifold, WC
u

(

θC
)

, from each
angular location θC on the chaser parking orbit until the
Poincaré map, PM.

- Computing for each pair
(

WT
s

(

θT
)

,WC
u

(

θC
))

, the distance
gap,1X, and the velocity gap,1v2.

The integration of the equations of motion must be performed
using a numerical solver. This work relies on Runge-Kutta
propagators, ODE45 (or even ODE113), implemented in Matlab.
The solver implies that all components (time and state) have been
discretized. As a consequence, the concept of exact intersection
in the spatial sub-space is replaced by the minimization of the
distance between the positions on both manifolds at the Poincaré
map location.

To select the best
(

θCi , θ
T
f
, ϕPM

)

candidate, the following

optimization process has been applied, so as to:

- Find a compromise between cost (total 1V) and duration
(time of flight,1T).

- Ensure feasibility (distance gap, 1X), that is to say, to
define numerically the acceptable distance between the two
manifolds at the intersection.

The problem to be optimized is:

min J = ‖1V2‖

subject to ‖1X‖ ≤ d (10)

‖.‖ denotes the quadratic norm: ‖1X‖ refers to the gap in
position between the position of the chaser on the unstable
manifold and the position of the chaser on the stable manifold, at
the intersection, ‖1V2‖ refers to the gap in velocity between the
position of the chaser on the unstable manifold and the velocity
of the chaser on the stable manifold, at the intersection and
d = 50 km is the maximum distance allowed between the two
spacecrafts at the Poincaré section.

4-Maneuvers Trajectory Refinement
Results from the 3-maneuvers strategy are used as an initial
guess, feeding a local optimization process based on the variation
the time of flight in both the unstable and stable manifold.
The connection between the manifolds is not considered as a
simple discontinuity in the state space anymore but is “patched”
by means of a Lambert’s arc computed in the CR3BP. In this
scenario, the PM intersection constraint at the manifold end
points is relaxed.

The cost function of the new optimization problem, using
the terminology presented in the introduction of section Far
Rendezvous Strategy, is:

J = ‖1V21‖+‖1V22‖ (11)

The outputs of this process are the new positions of the end
points of both manifolds, the total ‖1V‖ and the time of flight
required to perform the transfer between both manifolds. An
entire continuous trajectory can then be built, for the chaser to
rendezvous the target, starting from its parking orbit, passing
by an unstable manifold, Lambert arc and stable manifold and
finishing on the target parking orbit. The far rendezvous strategy
now includes an additional trajectory arc that connects properly
the unstable and stable manifolds.

Figure 6 provides an example of the procedure detailed in
this section. The study case is between two Halo orbits of the
Southern family about EML2, with an elongation of 8,000 km for
the target orbit and 7,800 km for the chaser parking orbit The
chaser transfer trajectory from its parking orbit to the chaser
orbit is plotted in bold dark blue solid line. The chaser initial
angular location is θCi = 330 and the target final location is θT

f
=

80. Performances are obtained for ϕPM = 4.46. Figure 6A shows
the result of the 3-burn strategy as an initial guess, and Figure 6B
showcases the continuation of the solution and relaxation of the
ToF constraint. The total velocity increment in that particular
case is 0.374 .s−1 km with a Lambert’s time of flight of∼ 1.39 h.

Close Rendezvous Strategy
The main goal of the close rendezvous phase is to conduct
gradually the chaser from its insertion location closer to the
target so as to allow berthing or docking operations. This
time, unlike for the far rendezvous phase, chaser and target are
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traveling on the same trajectory, but with a gap in position.
For safety considerations, the close rendezvous trajectory is split
into several legs, delimited by hold points (HP), as security
checkpoints. In this phase, maneuvers are considered impulsive,
performed instantaneously at the HPs and the motion on the
arcs is ballistic. The proposed strategy is based firstly on the
selection of breakpoints, then on the calculation of the arc-by-arc
trajectory from the equations of motion. Finally, safety aspects
are discussed. Actually, trajectory design must take into account
an assortment of random errors acquired while in orbit, such as
the initial condition dispersions or inaccurate thrust velocities.
Free drift motion may occur if the thrusters of the chaser cease to
operate. This phenomenon has been simulated while assuming
dispersion on maneuver. Safety analyses must verify that the
selected trajectory of the chaser will not enter the safety region,
in case of a missed maneuver, so as to avoid collision with the
target in case of failure.

Hold-on Points Determination
In close rendezvous scenarii, the HP are significant locations on
chaser’s trajectories where to perform maneuvers after security
checks (missions parameters, chaser health status), as the chaser
is not permitted to approach freely the target. In case of failure,
braking may become impossible and the failure could jeopardize
the mission. The chaser must thus follow a precise path, meeting
all the hold points. Similarly to Mand (2014), two geometrical
strategies are proposed to define their positions: line-of-sight
corridor (LoS-C) and line-of-sight glide (LoS-G). With them,
the chaser is always approaching the target along its docking
port direction within the field of view of its rendezvous sensors
modeled by a cone. The target attitude is not taken into account,
as its attitude is assumed to be perfect. The implemented
strategies are:

- LoS-C, characterized by three angles: two trigger angles (α, β)
and an offset angle, ϕ as φ < α and φ < β . Each time the
chaser’s trajectory (assumed to be locally rectilinear) intersects
one side of the cone, a maneuver is performed to reorient the
chaser inside the field of view. Hold points are then located at
this intersection.

- LoS-G, characterized by two angles: one trigger angle α and
one offset angle φ as φ < α. Within LoS-G, the chaser does not
cross the line of sight as in LoS-C, but remains on the same side
of the cone.

Figure 7 represents both strategies, with a definition of the angles,
in the LVLH (Local-Vertical/Local-Horizontal) reference frame,
defined in section Clohessy-Wiltshire Equations.

The process outputs the number of required hold points.
In addition to HP, two safety regions are defined around the
target, as an extension of concepts developed in Keplerian
dynamic (mainly in LEO). They are identified as two spheres:
the Approach Sphere (AS) and the Keep Out Sphere (KOS), both
centered on the target.

Trajectory Arcs Computation
Dealing with close rendezvous means an analytic description of
the relative motion of the chaser according to the target, referring

FIGURE 7 | Line of Sight Corridor and Line of sight Glide scenario strategies in

the LVLH. (A) Line of Sight Corridor, (B) Line of sight Glide.

to two relative reference frames and one inertial frame, presented
on Figure 8.

In blue, the Earth-Moon synodic reference frame is a
rotating frame centered on the center of gravity of Earth-
Moon system, with Moon and Earth fixed on the x-axis.
The z-axis is orthogonal to the plane of motion of the
celestial bodies. The y-axis completes the right-hand rule. In
black, the Moon-Centered inertial (MCI) frame is defined
such that the origin is at the center of the Moon. An
Earth-Centered inertial (ECI) reference frame could also have
been selected. x-axis and y-axis are selected so as to overlap
at initial conditions. In red, the LVLH reference frame is
presented.

The equations of motion of both vehicles and their relative
motions are described in the CR3BP in (Mand, 2014) and
(Campolo et al., 2017). Their expression leads to a complete
set of non-dimensional non-linear relative equations. As the
distance between chaser and target is very low compared to the
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FIGURE 8 | Reference frames definition for close rendezvous.

FIGURE 9 | Close Rendezvous with failure at HP n◦7 in the LVLH for Halo-to-Halo case.

dimensions of the system (for example, distance between the two
primaries), the expression of the relative motion can be linearized
to simplify the problem, as a first approximation.

The expression of the simplified equations of the relative
motion will all be presented in a state-space form as Ẋr =

AiXr where i denominates the selected simplified method. Three
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models are compared: Linearized Relative (LR), Clohessy—
Wiltshire (C–W), and Straight-Line (SL).

Since the matrix A is time-dependent, the trick consists
in dividing each transfer in smaller arcs, where A can be
considered as constant. The approach to compute the trajectory
arc between two HP corresponds to solving arc-by-arc small
Lambert problems. It lies in finding a trajectory between an initial
and final position given a specific time of flight, (1T). For each
arc, the time of flight is fixed and the HP provide initial and final
points.

The algorithm is divided into two steps:

- Linear targeting: computation of the maneuver 1vHPi_linear

first guess
- Shooting method: computation of final1vHPi to be performed
by the chaser with 1vHPi_linear as a first guess. The shooting
algorithm cycles with a full non-linear relativemodel in CR3BP
until the final position error is considered acceptable.

For certain families of orbits (above all for NRHO), the accuracy
of linear models depends on the orbital regions where the
computation is performed. As a consequence, the first section
compares the three methods to estimate the error introduced
by the three relative linear models with respect to the non-
linearmodel and consequently, to assess their ability to accurately
model the dynamics during close rendezvous operations. For
each arc of the trajectory, an approximation of the solution of
the system is computed numerically with the three previously
linearized methods. The linear method that presents the lowest
error in terms of final position (distance from the target) is then
selected to perform the second step. This two-steps algorithm
is an iterative process to compute the entire close rendezvous
trajectory of the chaser.

Non-linear relative equations
The non-dimensional non-linear relative equations of motion
written in the synodic reference frame can be obtained by the
difference of the absolute equations of motion (2) of the chaser
and the target, respectively, in the CR3BP:































































ẍr − 2ẏr − xr = (1− µ)

[

xT+µ
∥

∥rT1
∥

∥

3 −
xT+xr+µ
∥

∥rT1 +ρ
∥

∥

3

]

+µ

[

xT+µ−1
∥

∥rT2
∥

∥

3 −
xT+xr+µ−1

∥

∥rT2 +ρ
∥

∥

3

]

ÿr + 2ẋr − yr = (1− µ)

[

yT
∥

∥rT1
∥

∥

3 −
yT+yr

∥

∥rT1 +ρ
∥

∥

3

]

+µ

[

yT
∥

∥rT2
∥

∥

3 −
yT+yr

∥

∥rT2 +ρ
∥

∥

3

]

z̈r = (1− µ)

[

zT
∥

∥rT1
∥

∥

3 −
zT+zr

∥

∥rT1 +ρ
∥

∥

3

]

+ µ

[

zT
∥

∥rT2
∥

∥

3 −
zT+zr

∥

∥rT2 +ρ
∥

∥

3

]

(12)

where the relative state is Xr = X
C−X

T =
(

xr , yr , zr, ẋr , ẏr , żr
)

,
the absolute state of the target is given by

X
T=

(

xT , yT , zT , ẏT ˙, zT
)

, the absolute state of the chaser is

given by XC=

(

xC, yC, zC, ˙xC, ˙yC, żC
)

. The position vector of the

target to M1 is rT
1
=

(

xT + µ, yT , zT
)

, the position of the target

to M2 is r
T
2
=

(

xT + µ− 1, yT , zT
)

and the relative position is
ρ=

(

xr , yr , zr
)

.
The absolute distances of the target from M1 and M2 are

respectively:







rT1 =

√

(

xT + µ
)2

+ yT
2
+ zT

2

rT2 =

√

(

xT + µ− 1
)2

+ yT
2
+ zT

2

Linearized relative equations
The Linearized Relative equations can be adapted from formation
flight studies (Luquette, 2006), while linearizing the dynamics
about the target as a reference vehicle, taking into account a
canonical CR3BP synodic frame. From (12), assuming that ‖ρ‖≪
rT1 „ ‖ρ‖ ≪ rT2 and applying a second order Taylor expansion

(1+ ε)−3 ≈ 1 − 3ε + o (ε) to linearize relative equations of
motion in the synodical frame:

Ẋr=

[

03 I3
4− nn −2n1

]

Xr = ALRXr (13)

where4 = −

(

1−µ

rT1
3 +

µ

rT2
3

)

I3 +
3(1−µ)

rT1
5

[

rT1 r
T
1

t
]

+
3µ

r
T
2

5

[

r
T
2
r
T
2

t
]

with r
T
1

t
the transpose vector of rT

1
and r

T
2

t
the transpose

vector of rT
2
, I3=





1 0 0
0 1 0
0 0 1



 ,

03 =





0 0 0
0 0 0
0 0 0



 , nn=





−1 0 0
0 −1 0
0 0 0



 and n1=





0 −1 0
1 0 0
0 0 0



 .

Clohessy—wiltshire equations
The Clohessy-Wiltshire equations (Clohessy andWiltshire, 1960)
describe relative motion in a 2-Body environment. This model
assumes only one primary mass, the target’s orbit is circular
and that the relative distance between target and chaser is small
with respect to target-attractor distance. These assumptions are
not usually valid in the CR3BP, and can only be applied locally
to generate a first guess. The model is given in the local-
vertical/local-horizontal (LVLH) reference frame of the primary
M2, centered on the center of gravity of the target. The x-axis
points along the direction of the velocity of the target. The z-
axis points the direction from the target to M2. The y-axis is
mutually perpendicular to the x- and z-axes so as to form a right-
handed coordinate frame. An example of LVLH is given in red on
Figure 8 for motion description of an NRHO in cis-lunar space.
The Earth-Moon synodical reference frame Rem is represented
in blue, while, the Moon-Centered Inertial (MCI) frame Rm is in
black.

The C-W equations, written in the LVLH reference frame are:







ẍr − 2nżr = 0
ÿr + n2yr = 0

z̈r + 2nẋr − 3n2zr = 0
(14)
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Where n represents the mean angular motion of the M2-centered
keplerian circular orbit with a radius of rT2 and is given by n =
√

µ

rT2
3 .

The C-W equations can also be written in state-space
representation:

Ẋr =

[

03 I3
� −2n× n2

]

Xr = ACWXr (15)

where� =





0 0 0
0 −n2 0
0 0 3n



 and n2 =





0 0 1
0 0 0
−1 0 0



.

Straight line equations
In the Straight-Line approach, the velocity vector of the chaser
points to the target at time, ti, after a maneuver 1vi, disregarding
any gravitational effect. The expression of 1vi in the LVLH
reference frame is, during the period of time1ti = ti+1 − ti

1vi =
1

1t
× (ri+1 − ri)−vi (16)

Where ri and vi indicate the initial position and velocity at
time, ti, and ri+1 the final position at time, ti+1. The state-space
representation of the system is:

Ẋr=

[

0 I3
0 0

]

Xr = ASLXr (17)

STUDIED CASES

The objective of this paragraph is to assess the feasibility of the
proposed strategies for far and close rendezvous, then to study
the safety aspects of an end-to-end scenario. The output is the
entire trajectory of the chaser from its parking orbit to the target
orbit, in a three-steps process (far and close rendezvous and safety
analysis). Guaranteeing the safety aspects requires going through
an intermediate orbit, which is the final objective of the far
rendezvous and the starting point of close rendezvous. Two study
cases have been selected to illustrate the proposed strategies, in
order to be consistent with the results of the historical study of the
bibliography. They both lie in the Earth-Moon system, modeled
by the CR3BP. Chaser parking orbit and target parking orbit
belong to the same family. The first part of Table 1 summarizes

TABLE 1 | Study cases input parameters.

Parameter Symbol Units Value

Earth-Moon system parameters Gravitational constant G km3.kg−1.s−2 6.67428. 10−11

Earth mass m1 kg 5.97219. 10+24

Moon mass m2 kg 0.07346. 10+24

Earth-Moon mass ratio µ – 0.012150581623434

Scenario step Parameter Units Halo NRHO

End-to-end scenario inputs Parking ACz km 7000 70000

mC – Northern Northern

ATz km 9000 75000

mT – Northern Northern

Far rendezvous dM km 50 50

θ I ◦ 2 2

θC ◦ −2 −2

AIz km 8980 74960

mI – Northern Northern

ϕPM
◦ 0 0

WC
u direction – Interior Interior

W I
sdirection – Exterior Exterior

Close rendezvous θT ◦ 0 0

duration h 10 10

Line-of-Sight – corridor corridor

α ◦ 15 15

β ◦ 15 15

Safety rKOS m 200 200

rAS m 2000 2000

Error in magnitude (3σ) % 1 1

Error in pointing (3σ) mrad 1 1

Number of Monte Carlo simulations – 100 100
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the parameters of the Earth-Moon system. The name of a study
case is composed by:

“NAME_of_chaser_parking_orbit-to-NAME_of_target_orbit.”

For example, HALO-to-HALO means that the chaser parking
orbit is a Halo orbit and the target orbit is a Halo orbit. The
considered study cases are: Halo-to-Halo and NRHO-to-NRHO.

At the end of this chapter, further conducted analyses are
presented: a systematic analysis for far rendezvous (paragraph
5.4) within different orbit families and a close rendezvous on a
DRO (paragraph 5.4 and section 5.5).

Scenario Algorithm
The final angular location, θT , of the chaser on the target orbit
being fixed, the corresponding scenario is divided into four
steps:

- Parking orbit: the chaser parking orbit at the beginning of the
scenario is defined by its maximal elongationAC

z and its family
mC ∈ {1; 3}. The target orbit is also defined by its maximal
elongation AT

z and its familymT ∈ {1; 3}.
- Far rendezvous strategy: at this stage, the chaser leaves its

parking orbit and targets an angular location θ I , on the
intermediate orbit, defined by its maximal elongation AI

z and
its family mI ∈ {1; 3}. θ I is forced to be equal to θT . An
optimization process is run to identify the best θC to minimize
criterion (10). The outputs are: θC, TOF and v, where TOF is
the time of flight, necessary for the chaser to travel from θC

to θ I .
- Close rendezvous strategy: the chaser then approaches the

target situated at θT on the target orbit defined by
(

AT
z ,m

T
)

from its intermediate angular location θ I on the intermediate
orbit defined by

(

AI
z ,m

I
)

. The outputs are the number of HP
(nHP), the position of the HP and the total velocity vclose.

- Safety analysis: A failure is injected at the selected HP with
dispersion of velocity in magnitude and in direction. A Monte
Carlo process models the influence of random dispersion on
the trajectory. Chaser trajectory is propagated for a time of
24h starting with new conditions of velocity. The output is
a label that indicates if there is a risk of collision. Lessons
learnt from ISS resupply cargo missions lead to defining two
spheres centered on the target identified as the safety regions:

TABLE 2 | Study cases results.

Scenario step Parameter Units Halo NRHO

End-to-end scenario

outputs

Far rendezvous 1v1 km/s 0.0182 0.0046

1v2 km/s 0.1772 1.2606

1v3 km/s 0.0018 0.0045

1vfar km/s 0.2134 1.2697

1T h 05h00 02h26

Close rendezvous nHP – 7 6

1vclose km/s 0.0168 0.0018

the Approach Sphere (AS) with radius rAS and the Keep out
Sphere (KOS) with radius rKOS. The values of rAS and rKOS
are selected from operational missions like the European cargo
ATV (Automated Transfer Vehicle) and the Japanese HTV
(H-1 Transfer Vehicle).

Scenario Input Parameters and Results
The second part of Table 1 presents input parameters for the
two study cases. Selected values for (α,β) correspond to actual
navigation sensor field-of-view equal to 30◦, which imposes a
relative distance of 20 km (resp. 40 km) between the intermediate
Halo (resp. NRHO) orbit and the target Halo (resp. NRHO) orbit.
′′WC

u direction” represents the chosen direction to propagate the
unstable manifold issued from chaser parking orbit, while "WI

s

direction” corresponds to the propagation direction for the stable
manifold that converges to the intermediate orbit. Direction can
take two values: “interior” or “exterior” for interior realm or
exterior realm. Proposed variation ranges for θC and ϕM come
from preliminary exploratory analyses. Chaser and target angular
locations are computed with respect to EML2 (resp. the center
of the Moon) for Halo case (resp. for NRHO case). The angle
reference is set on the Earth-Moon axis in the synodic frame.
The angle value grows clockwise: 0◦ is on the side of the Earth.
The angle ϕM is also measured from the same reference axis and
origin, but anti-clockwise.

For the studied scenario, the selected angular location for
rendezvous is (θT = 0). In the case of the close rendezvous on
a NRHO, it corresponds to the periselene. Consequentially, it is
an interesting location for ISRU (In-Situ Resource Utilization) or
Moon sample return missions. Preliminary analyses conducted
in this orbital zone have shown that the LR method appears
less reliable than C-W or SL. Performances were thus obtained,
by computing the difference in position, at the HP, between
the arc generated by the linearized model and the Lambert’s
arc. Result can mainly be explained by the particularity of the
observed zone. On the one hand, as LR equations are designed
in the CR3BP problem, their validity is quite limited when the
Moon influence is very predominant . On the other hand, the
CW model evaluated under a Two-Body problem is the most
suitable method in the periselene zone. As a consequence, it is
recommended to select the LR model only for very large Halo
orbits or in aposelenic zones. The selected initial angular location
of the chaser on its parking orbit is (θC = −2), since the
chaser and target must be in a same proximity area. The location
of the PM, ϕPM , is set equal to 0◦ to minimize the transfer
distance.

For close rendezvous, the chaser starts its trajectory on the
intermediate orbit defined by

(

AI
z ,m

I
)

, at angular location θ I .
The algorithm computes the number of HPs, their location, the
maneuver to be performed at each HP and the arc of trajectory
between two of them, so as to comply with a maximal duration of
10 h and following the LoS-C strategy. Results highly depend on
the location on orbit where the rendezvous will take place.

Table 2 provides syntheses of main results computed for the
entire RDV scenario in both study cases, for far and close
rendezvous. Results obtained for far rendezvous in the Halo
study case are very encouraging, with a total duration about
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5 h and a total cost about 0.21 km/s. In the NRHO case, the
duration is even more affordable with about 2h26, but with the
cost > 1.27 km/s. The selection of the rendezvous location at
periselene can explain these performances. Actually, in this zone,
the gravitational influence of the Moon cannot be neglected.
The out-of-plane component of the maneuver between both
trajectories is thus very expensive. Those results are coherent with
the ones presented in (Campolo et al. (2017), recommending to
perform close rendezvous at the aposelene.

Those far rendezvous simulations support the use of invariant
structures for low-cost transfer from the chaser parking orbit
to the target, extended with a Lambert arc at the connection.
Parametric analysis on the angular location of both vehicles could
then be conducted to propose best scenarios compliant with
operational constraints of ground segments.

For close rendezvous, with a fixed duration of 10 h, computed
cost is affordable, for both scenarios. At this stage, the most
important criteria are the safety performances, because of
the highly non-linear dynamics. Actually, the proposed far
rendezvous strategy tries to take advantage to reduce fuel
consumption. On the contrary, safety analysis seeks to prevent
collision when the chaser motion becomes ballistic, after a failure.
For both study cases, one injects a failure at each HP. The chaser
trajectory is then propagated during 24 h, taking into account
the dispersion (1% in magnitude (3σ) and an error of 1 mrad

in pointing direction (3σ). In the particular Halo-to-Halo case, it
results that when the failure takes place between HP n◦1 and HP
n◦4, there is no risk of collision between the chaser and the target,
as the chaser doesn’t not get into the AS. When the failure occurs
at HP n◦5 or HP n◦6, the chaser trajectory with dispersion may
enter the AS but not the KOS. Finally, when the failure happens
beyond the 6th HP, the chaser enters the KOS and thus, there is
a risk of collision. Figure 9 presents the dispersion (in red) of the
chaser trajectory when a failure is injected at HP n◦7 in the Halo-
to-Halo study case. The green circle represents the AS, while the
purple one is the KOS. In the NRHO-to-NRHO study case, there
is no risk of collision from the first HP to the third one. When
there is a failure at HP n◦4, the chaser enters the AS, but not the
KOS. If the failure occurs at HP n◦5 or HP n◦6, the collision is
certain. Figure 10 presents the dispersion of the chaser trajectory
when a failure is injected at HP n◦7 (in red) in the NRHO-to-
NRHO study case. This safety analysis emphasizes the necessity
for an accurate definition of safety areas as AS or KOS. Inside
these zones, the HP should not only be maneuver locations, but
also safety check-points, where decision are made with Go/No-
Go to continue close rendezvous approach, depending on the
vehicle heath status.

Two additional studies were conducted to analyze the impact
of orbits from different families and close rendezvous on a DRO
orbit and are presented in the two next sections.

FIGURE 10 | Close Rendezvous with failure at HP n◦7 in the LVLH for NRHO-to-NRHO case.
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FIGURE 11 | Far rendezvous systematic algorithm.

Exploration n◦1: Far Rendezvous
Systematic Analysis
Actually, some exploration missions (vehicle coming back from

Mars, Asteroids, or the Moon) can include parking orbit issued
from other periodic families so as to take into account the
inclination. The far rendezvous proposed strategy has been

applied extensively to three rendezvous scenarios, so as to
compare their performance cost (1vfar), duration (1T), and

feasibility (1X), in the Earth-Moon system, to extend the
preceding studies cases to others libration periodic orbits

families. It is assumed that the target is on a Halo orbit with
a maximal elongation, AT

z . The chaser parking orbit can be a
Halo orbit, a Horizontal Lyapunov orbit or Vertical Lyapunov

orbit. For each type of chaser parking orbit, performances are
computed with interior or exterior manifolds. A wide simulation

campaign was run based on an inclusive Matlab-based tool
whose algorithm is presented on Figure 11. For each category

of simulation, a first set was run so as to refine the range of
variation of the parameters: amplitude of the chaser parking orbit
AC
z and angular location of the intermediate maneuver (ϕPM) at

the Poincaré map. This first step was followed by two successive
sets so as to further refine the results. The preliminary scenarios

present a 5◦ step in ϕPMwhile the refined ones present a 1◦ step.
Figure 12 presents the best results obtained for three scenarios

(Halo-to-Halo, Halo-to-Planar Lyapunov and Halo-to-Vertical
Lyapunov) with interior and exterior directions, ϕPMǫ [0 : 1 : 5]

in deg., AT
z fixed equal to 8,000 km, AC

z ǫ [8, 000 : 500 : 9, 000] in
km,

(

θC, θT
)

ǫ [0 : 1 : 5] × [0 : 1 : 5] in deg. On this figure, the
plot depicts the duration “Rendezvous time” in days and the
cost “Total delta v” in km/s for three scenarios (Halo-to-Halo
in red, Halo-to-Planar Lyapunov in blue and Halo-to-Vertical
Lyapunov in green), for interior (+) and exterior (o) manifolds
at three different value of AT

z (AT
z = 8, 000 km in solid line, in

AT
z = 8, 500 km in dot line and AT

z = 9, 000 km in dashed
line). The plot makes it easy to infer the variation of cost and
duration required as the parking orbit changes. Best results are
obtained for Halo-to-Halo rendezvous with a AT

z = 8, 500 km on
interior manifold with a1vfar = 0.83m / s and a1T= 2,47 days.
Being only initial guesses, these results do not take into account
the Lambert arc to connect the manifolds. The doubly iterative
process, proposed in this paper, can improve them. From this
graph, it can be observed that obtained performances belong to
four distinct groups, depending on the type of chaser parking
orbit and type of manifold. It can obviously be deduced that
cost increases largely from Halo to Planar Lyapunov and Vertical
Lyapunov, for both interior and exteriormanifolds. This confirms
initial intuition that the best option is a Halo-to-Halo rendezvous,
which can help for decision-making duringmission design phase.

However, this study remained within the context of periodic
orbits. It could be interesting to further investigate Lissajous
and other quasi-periodic orbits, but it would require a different
approach in term of procedures, that could be part of future
research work.
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FIGURE 12 | Far Rendezvous duration vs. delta-v for the three scenarios.

Exploration n◦2: Close Rendezvous on a
DRO
First planed mission for Orion will take place on a DRO (Whitley
and Martinez, 2016). Figure 13 presents on the left the 14 first
orbits computed from Henon (1969) data and on the right the
enlarged family obtained by the continuation process.

As a consequence, it seems relevant to envisage rendezvous
on this kind of orbit. Lunar DRO cannot be related to invariant
structure such as stable or unstable manifolds (Ueda et al., 2017).
The proposed strategy for far rendezvous cannot be applied. This
exploratory analysis therefore focuses on the close rendezvous,
applying a simplified algorithm compared to the one presented in
5.1. with only three steps: parking orbit (the chaser parking orbit
defined by its maximal elongation AC

z and target orbit defined
by its maximal elongation AT

z ), close rendezvous strategy (the
chaser approaches the target situated at θT on the target orbit
from its initial location θC on its parking orbit defined byAC

z ) and
safety analysis (with Monte Carlo simulations to model failure
occurrence).

In this analysis, the rendezvous is assumed to take place on
DRO at θT = 180, on the target orbit defined by AT

z =

70, 000 km. The chaser initial conditions are: AC
z = 69, 930

km and θC = 178. The reference angle is the x-axis (i.e., the
Earth-Moon axis in the synodic reference frame), and the origin
is the center of the Moon. Angles are measured clockwise. The
Line-of-Sight corridor strategy is applied with a cone with a half

top angle of±15. The same parameters as Halo and NRHO study
cases are taken into account for safety analysis. The AS is a sphere
with a radius, rAS, equal to 2km, and the KOS with a radius, rKOS,
equal to 200m. Both spheres are centered on the target position.
100 simulations are run to model an error of 1% in magnitude
(3σ) and an error of 1 mrad in pointing direction (3σ).

As far as the accuracy obtained along the chaser trajectory arcs
is concerned, the differences in position, at the HP obtained by
the three linearized model and the Lambert’s arc are compared.
From this simulation campaign, it appears that, in the particular

case of close rendezvous on a DRO, the LR algorithm is far more
precise, than C-W and SL, with even a wider validity domain.

In fact only C-W can lead to better performance when the
rendezvous occurs on a DRO with an elongation AT

z < 50, 000
km. However, the length of the elongation is not the only
influencing parameter. The angular location of the final point for
the rendezvous on the DRO plays a major role.

Coupled analyses for close rendezvous and safety aspects are
then conducted. As a result, sevenHP are obtained, with a vclose =
8, 92 m/s, within 10 h and LOS-C strategy. When a failure occurs
at HP n◦1 to HP n◦4, there is no risk of collision as the chaser
trajectory does not intersect neither AS, nor KOS. For a failure
injected at HP n◦5, the rendezvous is still safe as the chaser enters
the AS, but not the KOS. From HP n◦6 and HP n◦7, the chaser
trajectory becomes dangerous for the target as the chaser enters
the KOS after the failure injection.
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FIGURE 13 | DRO family in the Earth-Moon synodic frame. (A) 14 first DRO in the Earth-Moon synodic frame, (B) Enlarged DRO family obtained with the continuation

process.

It can be concluded that the proposed strategy for close
rendezvous on a DRO is applicable. Close rendezvous and safety
analyses performed at DRO lead to results similar to the ones
obtained for Halo orbits and NRHO. Further research will be
necessary to propose a generic strategy, including an innovative
far rendezvous strategy.

PERSPECTIVES AND CONCLUSION

In a context of growing interest of the international space
community to design Human spaceflight missions to Earth-
Moon Lagrangian point, the strategy for rendezvous in the
vicinity of the Moon becomes an actual challenge. This paper
studies a scarcely explored field of astrodynamics, dealing with
relative motion in highly non-linear dynamics. The intrinsic
complexity of the three-body problem demands a departure from
the standards of relative motion in the two-body problem, while
still ensuring a smooth transition between far rendezvous and
close proximity operations. This paper has first summarized
the bibliographical context and a description of the theoretical
background for rendezvous strategy in the vicinity of Lagrangian
point in the CR3BP. Then, it has discussed strategies for far
and close rendezvous. As far as far rendezvous was concerned,
a three-maneuvers strategy based on natural connection between
manifolds of the target orbit and the chaser orbit was presented.
Then a close rendezvous strategy was described, composed of
two main steps to obtain the chaser’s approach trajectory arcs:
a first guess computed from the best-adapted linearized model,
then a second iteration with a non-linear model as a solution of
the Lambert’s problem. Afterwards, safety aspects were discussed,
adapted from lessons learned from cargo missions to resupply
the ISS. Finally, two studies cases were introduced to illustrate
the end-to-end scenario from parking orbit to close rendezvous,
with safety criteria. Complementary analyses were presented to
explore different rendezvous scenario when the chaser and target

orbits belong to different periodic solution family and to study
close rendezvous on a DRO.

Studies cases and exploratory analyses have shown that, for a
given mission stating target and chaser initial conditions, an end-
to-end scenario can be established, based on two-steps scenario,
chaining sequentially far rendezvous and close rendezvous. The
scenario will be unique for each given mission. The methodology
will recommend locations for maneuvers (angular location for far
rendezvous and HP number and position for close rendezvous).
This study also highlighted the sensitivity of the close rendezvous
performance to the performance of navigation sensors. Finally,
it also emphasized the definition of safety zones such as the
Approach Sphere and the Keep-Out Sphere, which should be
standardized for better collaboration in international programs
such as the future Lunar Orbital Platform-Gateway.

Complementary studies could be conducted so as to compare
this methodology to other ones. A first option could be to
elaborate a systematic process to find spatial intersections
between the manifolds, without using Poincaré map. A second
option could be based on a direct Lambert arc between chaser
and target parking orbits, without the utilization of stable and
unstablemanifolds. To go even further the exploratory systematic
analysis should be completed with planar (like DRO) and quasi-
periodic solutions. The close rendezvous strategy is almost
mature. It would now be interesting to see the possibilities of
embedding it in flight software, taking into account the actual
characteristics of flight equipment.
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