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Challenges in 2D Stellar Modeling
Catherine C. Lovekin*

Physics Department, Mount Allison University, Sackville, NB, Canada

Traditionally, stellar structure and evolution have beenmodeled with a series of concentric

spherical shells. This description allows the star to be modeled in 1 dimension, greatly

simplifying the calculations. However, as our understanding of stars becomes more

advanced, the effects of non-symmetric effects must be included, which necessitates

2 or even 3 dimensional simulations. In this work, I discuss how 2D stellar models can

help understand stars, improving our models of their pulsation frequencies, and allow us

to place better constraints on their internal convection.

Keywords: stars: evolution, stars: interiors, stars: mass-loss, stars: oscillations, stars: rotation, stars: variables:

general, stars: magnetic

1. INTRODUCTION

The standard technique for modeling stars takes a 1-dimensional approach, and assumes the stars
are relatively close to spherical. However, a large number of stars, especially high mass stars, are
known to be rapid rotators (Huang and Gies, 2006; Huang et al., 2010), which breaks the spherical
symmetry. In addition, a large fraction of stars are members of binary or multiple star systems,
which can introduce tidal distortion. This distortion in surface shape and resulting variation in
effective temperature has now been measured interferometrically for a number of stars (van Belle
et al., 2001, 2006; Domiciano de Souza et al., 2003; Aufdenberg et al., 2006; Peterson et al., 2006;
Monnier et al., 2007; Zhao et al., 2009; Che et al., 2011). To reproduce the observations requires 2D
models of stars.

The effects of distortion are also becoming important as recent space missions like Kepler,
CoRoT, MOST, BRITE, and TESS allow us to measure pulsation frequencies with very high
precision over long times. These more precise frequencies make it easier to measure the effects
of rotation and other distorting effects on the pulsation frequencies of the stars. Advances in
spectropolarimetry have also given us a wealth of information on the magnetic fields of stars other
than the Sun (Grunhut et al., 2017), which has triggered a number of new studies on the effects
of magnetic fields on stellar evolution (Keszthelyi et al., 2018). As a result of these advances, it
is becoming ever more important to improve our stellar models to be able to account for these
multi-dimensional effects.

In the most general case, a static stellar structure model must obey four basic equations:
Poisson’s equation:

∇
2φ = 4πGρ (1)

where φ is the gravitational potential and ρ is the density; mass conservation:

∇ · (ρv) = 0 (2)

where v is the fluid velocity; the momentum equation:

ρv · ∇v = −∇P − ρ∇φ + Fv (3)
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where P is the pressure and Fv is the viscous force; and an entropy
(or energy) equation:

ρTv · ∇S = −∇F+ ǫ∗ (4)

where S is the entropy, T is the temperature, F is the heat flux, and
ǫ∗ is the energy generation rate. This set of equations, combined
with an equation of state and prescriptions for F and Fv fully
define the behavior of the gas in the stellar interior, and are
applicable for any rotation law.

Rather than use the full equations of fluid dynamics above,
another approach uses the Roche approximation to get the
pressure gradient:

1

ρ
∇P = −∇φ +

1

2
�2 (r sin θ)2 (5)

where φ is the gravitational potential, unmodified by rotation.
This gives a purely radial gravitational acceleration g = ∇φ.
Very little is known about the internal rotation profiles of stars,
but arguments are often in favor of either cylindrical or shellular
rotation laws. For conservative rotation laws like these, where �

depends only on the distance from the rotation axis (cylinderical)
or center of the star (shellular), the centrifugal acceleration can be
derived from an effective potentialV . Indeed, if the rotation is not
conservative, it is impossible to define an effective potential, and
it is not clear how the total potential should be determined. For
conservative rotation laws, the centrifugal acceleration, potential,
and rotation rate are all functions of the distance from the
rotation axis, ̟ = r sin θ and the total potential is given by
8 = φ + V . This potential still follows Poisson’s equation, so
∇28 = ∇2φ + ∇2V . For conservative rotation laws, ∇2V =

−2�2, so the total potential is given by ∇28 = 4πGρ − 2�2,
and the equation of hydrostatic equilibrium becomes:

1

ρ
∇P = −∇8 = geff. (6)

The other equations of stellar structure must be written in 2D
in the presence of rotation or other distortion, but the equations
themselves take the same form as in the 1D case.

In 1D models, the equations can easily be written in terms
of mass instead of radius. In 2D models, this is not generally
possible. In the case of shellular rotation (Zahn, 1992), the radius
is associated with isobars, and since most quantities are constant
on isobars, the problem becomes a pseudo-1D calculation, and
the equations can be written in terms of the mass as for the
non-rotating case. For a fully 2D calculation, the mass inside a
spherical shell of radius r is difficult to define, and is less useful
as a coordinate. In general, 2D calculations either use the radius
r and colatitude θ as coordinates, or map these coordinates to
spheroidal coordinates r(ζ , θ).

As in the 1D problem, 2D models of stellar structure must
apply boundary conditions at the surface, but in 2D, it is more
difficult to determine what the appropriate conditions are. In 1D,
the mass is used as the coordinate, and the surface is given by the
radius where the enclosed mass is equal to the total mass of the
star. As discussed above, in 2D the radius and colatitude (or some

mapping of these variables) is used, and it is difficult to define the
mass inside a radius r since the density is a function of colatitude
θ as well. Some other method must be used to determine the
radius at the surface of the star. Generally it is assumed that the
surface of the star is an equipotential (Deupree, 1990; Maeder
and Meynet, 2012; Espinosa Lara and Rieutord, 2013), but this
still leaves the problem of how the location of the equipotential
is determined.

When stars are not spherically symmetric the surface becomes
distorted, the temperature varies with colatitude (discussed
below) and this introduces large-scale meridional currents. The
best-known of these is the meridional circulation introduced by
rotation, but tidal or magnetic distortions can also introduce
flows (Tassoul, 1978). These currents are expected to be slow,
with theoretical velocities on the order of 3 × 10−10 cm s−1

(Sweet, 1950). Despite the slow velocities, they are a significant
source of mixing within the star. For shellular rotation laws, the
effective chemical diffusion depends on the square of the velocity
of the meridional circulation, so the contribution to chemical
mixing is expected to be small in most cases (Zahn, 1992).
The angular momentum transport is governed by an advection
diffusion equation which can be horizontally averaged in the case
of shellular rotation to give:

ρ
d

dt

(

ρr2�̄
)

=
1

5r2
∂

∂r

(

ρr4U(r)
∂�̄

∂r

)

+
1

r2
∂

∂r

(

ρDr4
∂�̄

∂r

)

(7)

where �̄ is the horizontally averaged angular rotation rate, U(r)
is the radial velocity of the meridional circulation, and D is the
total vertical diffusion due to all transport mechanisms (Zahn,
1992; Ekström et al., 2012). However, because the velocity of the
meridional circulation is so slow, it is very difficult to model these
flows self-consistently on an evolutionary time scale.

Indeed, one of the biggest challenges to 2D modeling is the
variety of timescales involved. To model the meridional flows
or the details of internal convection requires high resolution
simulations with short time steps, but these requirements are
not possible with the computational power currently available.
Modeling of multidimensional stars has so far taken two
approaches: either to model the detailed structure and ignore the
longer evolution timescales; or to neglect many of the internal
processes and model the evolutionary timescales. However,
unless we can find good models for the internal processes,
the evolution problem is not completely separable from the
short timescale simulations. To fully understand the evolution
of distorted stars, we will need to understand how both angular
momentum and internal composition gradients are transported
through convection and turbulence, how the distortion affects
radiatively driven winds and subsequent angular momentum
loss, and the influence of magnetic fields.

In this review, I discuss some of the recent progress in
modeling the structure, evolution, and pulsation frequencies of
stars in 2D in section 2. In section 3 I summarize the effects of
rotation on stellar evolution, highlighting the importance of 2D
modeling. In section 4 I briefly discuss 2D modeling of binary
stars, and in section 5 I discuss the challenges that 2D modeling
still faces. A brief summary is presented in section 6.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 January 2020 | Volume 6 | Article 77

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lovekin 2D Modeling

2. A BRIEF HISTORY OF 2D MODELING

2.1. Stellar Modeling
The first attempts to model stellar structure in 2D were
performed by Sweet and Roy (1953), using first order
perturbations to Cowling models. They assume that the stars
were uniformly rotating, so that the total effective potential
is given by ∇28 = −4πGρ + 2�2. They then introduce
the dimensionless variable λ = �2/2πGρc(0), where ρc(0)
is the central density of the non-rotating star. All of the
structure equations can then be expanded as a power series in
λ. This method only worked for slowly rotating stars, or the
perturbations become too large for the method to apply.

More realistic models were developed by Roxburgh et al.
(1965), which divided the star into two regions. The innermost
region, which contained most of the mass, was treated as
spherical, while the outer, low density region is allowed to
deform. This works since the innermost region is relatively
unaffected by rotation, while the gravitational potential in the
low density region depends primarily on the potential due to the
inner region, which is approximately a Roche potential. Once
the potential is known, the other structure equations can be
integrated as for 1D stars. This method was found to work best
for uniformly rotating stars.

Two dimensional static models have also been produced using
the self-consistent field (SCF) method (Ostriker andMark, 1968),
later extended by Jackson (1970). This method uses an iterative
approach to solve the equations of hydrostatic equilibrium and
the gravitational potential to determine the stellar structure. Early
implementations encountered convergence problems for stars
below 9 M⊙, limiting the applicability. Later implementations
reformulated the method, and were able to avoid this problem
(Jackson et al., 2005; MacGregor et al., 2007).

Eriguchi (1978) calculated the structure of rotating polytropes
by transforming the equations of stellar structure to a complex
plane. This work was expanded to include relativistic polytropes
(Eriguchi, 1980), non-axisymmetric polytropes (Hachisu et al.,
1982) and binary systems (Hachisu and Eriguchi, 1984a,b).
However, this method still faced many limitations. In particular,
the method breaks down if there are any discontinuities in the
physical properties inside the star. Such discontinuities can be
caused by a change in the composition or ionization state, which
means this method cannot be used to study evolution.

However, Eriguchi and Sugimoto (1981) came up with
another method, this time mapping the equation of hydrostatic
equilibrium and Poisson’s equation onto a 2D grid such that
rij = ri(θj). This allows the radial grid to adjust to the shape of
the star at each angle. Using this method, it is possible to calculate
the structure for a number of rapidly rotating, axisymmetric
polytropes (Eriguchi and Sugimoto, 1981; Eriguchi and Mueller,
1985). Themethod can also be extended to piece-wise polytropes,
which can then be used to approximate the structure of real stars.

A different approach to solving the equations of stellar
structure used a 2D finite difference technique (Clement, 1974,
1978, 1979, 1994) on a 2D grid in colatitude θ and total potential.
Rather than radius, the equations are rewritten to relate the mass
and volume of the star, with the constraint that in the outermost

zone, the enclosedmass must equal the total mass of the star. This
technique was still limited to relatively slowly rotating stars, and
is restricted to equilibrium models.

In recent years, 2D hydrostatic models have been calculated
for use in asteroseismology (Roxburgh, 2004, 2006). These
models use spectral methods to model the angular dependence of
the physical quantities, and depend on knowing the density along
one particular angle as a reference point. In this way, the density
profile produced by 1D models that assumes shellular rotation
can be expanded to provide a 2D hydrostatic model as input to
stellar pulsation codes. This technique is important since several
2D codes have been developed in recent years to calculate stellar
pulsation frequencies (Lignières et al., 2006; Reese et al., 2006;
Ouazzani et al., 2012).

The first 2D evolution calculations with no theoretical rotation
limit were performed by Deupree using ROTORC (Deupree,
1990, 1995, 1998). This code uses the fractional radius and
the colatitude θ as the independent variables. One colatitude
(typically the equator) is chosen to be a reference colatitude,
and the surface location there has a fractional radius of 1. This
defines the potential at the surface, and at each angle, the surface
is defined to be the radial zone with the total potential closest
to the value of the reference potential. Once the structure of the
star is determined, the radius at the equator is determined by
integrating over the density and requiring the total to equal the
total mass of the star. In this way, the surface deformation caused
by rotation can be modeled without including assumptions like
von Zeipel’s law (von Zeipel, 1924).

The ESTER code (Espinosa Lara and Rieutord, 2013; Rieutord
et al., 2016) has been developed to model the internal processes
of a rapidly rotating star in two dimensions. They use a modified
coordinate system which can adapt to the shape of the star. These
spheroidal coordinates (ζ , θ) are scaled such that ζ = 1 at
the stellar surface, and then divide the star into several discrete
radial domains. The transformation from spherical to spheroidal
coordinates is given by:

r = aiζ + Ai (ζ )
[

Ri+1(θ)− aiηi+1
]

+ Bi(ζ )
[

Ri(θ)− aiηi
]

ηi ≤ ζ ≤ ηi+1 (8)

where Bi(ζ ) = 1−Ai(ζ ), and Ri+1 and Ri are the inner and outer
boundaries of the domain. The functions Ai(ζ ) and ai are chosen
to satisfy properties at the boundaries between the domains.
Each of the radial domains is discretized into a spectral grid,
so the horizontal dependence is expanded in terms of spherical
harmonics. However, this code focuses on the shorter time-scale
processes like meridonial circulation, rather than attempting to
model the long-term evolution of a star.

A new code under development, 2DStars (Halabi et al.,
2017) is intended to solve the stellar structure equations in
2D, assuming an axisymmetric geometry. Development of this
code is still in the very preliminary stages, but if successful,
it will be able to model the evolution of stars in a variety of
axisymmetric environments, including the effects of binarity,
disks, and rotation.
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2.2. Pulsation Modeling
Fewer attempts have been made at modeling pulsation
frequencies in 2 dimensions and these attempts have focused on
the effects of rotation. Normally, eigenfrequencies of rotating
stars are calculated using perturbation theory (Dziembowski
and Goode, 1992; Soufi et al., 1998), but this is generally limited
to slow rotation rates (see, for example Soufi et al., 1998, and
references therein). Exactly how slow rotation is defined depends
on the application, but it has been found that rotation rates as
small as 50–75 km/s require more realistic calculations (Reese
et al., 2006). Few people would argue that perturbation theory
remains valid above rotation rates of 200–300 km/s.

The earliest attempts at 2D calculations were done by Clement
(1981, 1989, 1998), and involved solving the linear pulsation
equations on a 2D grid. This program, Non-Radial Oscillations
(NRO) uses the degree ℓ to determine the parity of the mode,
and odd modes are scaled by a factor of cos θ to make them
symmetric. This allows the same method of solution to be used
for both even and odd modes. The pressure perturbation is then
described as expansion of k spherical harmonics, where k is the
number of angular points in the grid. All other components of
the eigenfunction can be expressed the same way, and the final
solution is scaled to some fixed value at the surface, typically
δr/r = 1 at the equator. While the initial attempts were limited
to slow rotation, NRO (Clement, 1998) was able to solve the
pulsation equations for very rapidly rotating stars. As initially
developed, this method was restricted to uniform rotation but
was later extended to include the effects of differential rotation
(Lovekin et al., 2009).

Another approach uses spectral methods to calculate the
eigenfunctions in 2D, including the effects of the Coriolis force
and centrifugal distortion (Lignières et al., 2006; Reese et al.,
2006). Using acoustic ray tracing of the frequencies calculated
using this method, the resulting modes can be classified into
chaotic modes, island modes, and whispering gallery modes
based on their behavior in phase space (Lignières and Georgeot,
2009). Initially, this code was only applicable to polytropic
models, but has since been expanded to more realistic stellar
models (Reese et al., 2009). ACOR (Adiabatic Code of Oscillation
including Rotation) (Ouazzani et al., 2012) has been developed
using similar techniques, but has been designed to work with
realistic stellar models.

For post-main sequence models, a number of attempts have
been made to use full hydrodynamics to model the convection-
pulsation interactions. This interaction is particularly important
for classical pulsators, as the red edge of the instability strip
is determined by the interaction between convection and
pulsation (Tuggle and Iben, 1973). Early attempts focused on
the interaction in one dimension, as was done in DYNSTAR
(Ostlie, 1990). DYNSTAR has been used to model outbursts in
Luminous Blue Variables (Guzik and Lovekin, 2014; Lovekin
and Guzik, 2014). However, convection is inherently a multi-
dimensional process, and the applicability of 1D models is
limited. For this reason, a number of groups have developed 2
and 3D codes to model convective processes in pulsating stars.
Cepheids have been modeled in 2D using the ANTARES (A
Numerical Tool for Astrophysical RESearch) code (Mundprecht

et al., 2013, 2015), focusing on the energetics of the convective
zone and the possibility of developing descriptions that can
be implemented in 1D models. Similarly, RR Lyrae have been
modeled using SPHERLS (Stellar Pulsation with a Horizontal
Eulerian Radial Lagrangian Scheme) (Geroux andDeupree, 2011,
2013, 2014, 2015). SPHERLS is able to model stars in either 2
or 3 dimensions, and has been used to calculate full pulsation
amplitude models. The results agree well with observed RR
Lyrae light curves. Although both ANTARES and SPHERLS are
promising, calculations are time consuming, and neither has been
widely used for modeling stellar pulsation.

3. EFFECTS OF ROTATION

3.1. Effects on Evolution
The most pronounced effect of rapid rotation is the deformation
of the stellar surface. The centrifugal force causes the star to
become oblate in shape, and both temperature and emitted flux
vary from pole to equator as a result. The first calculations of
this effect found that the effective temperature is related to the
effective gravity by:

Teff ∝ g
β

eff (9)

where β is theoretically predicted to be 0.25 for purely radiative
stars (von Zeipel, 1924). As a result of the rapid rotation, this
gravity darkening will cause the equatorial regions to be cooler,
and hence appear dimmer than the polar regions of the star.
This effect has been directly measured using interferometry
in several stars, including Achernar, Alderamin, Altair, Vega,
Regulus, Rasselhague, α Cephei, α Leonis, α Ophiuchi, and β

Cassiopeia (van Belle et al., 2001, 2006; Domiciano de Souza et al.,
2003; Aufdenberg et al., 2006; Peterson et al., 2006; Monnier
et al., 2007; Zhao et al., 2009; Che et al., 2011). All of these
studies have found that gravity darkening does occur, but the
observed temperature variation is inconsistent with β = 0.25.
For example, a best fit value of β = 0.22 was found for α Cephei
(Zhao et al., 2009). Values derived for other stars are similarly
lower than the traditional β = 0.25 value given in von Zeipel’s
law (von Zeipel, 1924). One explanation for this difference is that
these stars have thin surface convection zones, where the value of
β is expected to be much lower, β ≈ 0.08 (Lucy, 1967).

The original gravity darkeningmodel required the assumption
of barotropicity, and is actually incompatible with solid body
rotation in a radiative zone. To address these problems, a more
realistic model for gravity darkening was derived (Espinosa Lara
and Rieutord, 2011). This model relaxes von Zeipel’s assumption
of barotopicity, and is thought to be more applicable to real stars,
particularly in cases of extremely rapid rotation. This new model
was compared to calculations using 2D models constructed with
ESTER (Espinosa Lara and Rieutord, 2011) which calculates the
gravity darkening naturally as a result of the stellar structure
equations, and the results were in good agreement with the new
theoretical model. These results were later extended to include
differential rotation (Zorec et al., 2017).

As a consequence of the flux variation, the flux seen by
an observer varies with the inclination angle i, between the
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rotation axis and the line of sight to the observer. Inclination is
very difficult to measure directly. Spectroscopic measurements
give the Doppler broadening of spectral lines, which gives the
component of the rotational velocity along the line of sight,
v sin i. It is possible to decouple v and i (Stoeckley, 1968;
Stoeckley and Buscombe, 1987; Reiners and Schmitt, 2003), but
these methods depend on high-precision spectroscopy and very
accurate synthetic line profiles. However, these techniques do not
work well for slowly rotating stars (veq ≤ 200 km/s). As a result
of the large quantity of high resolution photometric data from
space missions including Kepler, CoRoT, and TESS, techniques
have been developed to measure stellar rotation periods using
asteroseismology, as discussed in more detail below.

The variation in observed flux as a function of inclination
makes it difficult to assign an exact effective temperature and
luminosity to a rapidly rotating star. The observed magnitude is
a function of inclination, and the star is observed as a single point
on a curve in the HR diagram, parameterized by the inclination.
This effect is well known (Collins, 1963, 1966; Hardorp and
Strittmatter, 1968; Maeder and Peytremann, 1970), but has
recently been improved using more realistic stellar structure and
atmosphere models (Lovekin et al., 2006; Gillich et al., 2008).

Rotation increases mixing through shear-layer instabilities,
likely driven by differential rotation (e.g., Mathis et al., 2004).
This mixing is likely to be latitude dependent, an effect that is not
modeled by 1D parameterizations. The extra mixing introduced
by these instabilities results in changes in the evolutionary tracks.
Close to the Zero Age Main Sequence (ZAMS), rotation makes a
star appear cooler and less luminous than a non-rotating star of
the samemass. On the later main sequence, the behavior depends
on how angular momentum transport is treated in the star, with
some models finding that the rotating star remains cooler and
dimmer (Deupree, 1995) while others find the rotating models
become brighter (Ekström et al., 2012). In stars with M > 2M⊙,
rotation has also been found to extend themain sequence lifetime
by about 25%, which in turn increases the observed width of
the main sequence. This effect is illustrated in Figure 1 for 2.0
M⊙ 1D-models calculated with MESA. Models with moderate
amounts of rotation show good agreement with the observed
width of the main sequence (Ekström et al., 2012). The rotation
provides a source of extra mixing inside the star, increasing the
amount of hydrogen available, and also potentially changing the
surface abundances of other elements. In extreme cases, models
suggest that high levels of rotation can produce so much mixing
that the star evolves in a chemically homogeneous fashion (Szécsi
et al., 2015; Song et al., 2016).

Although stars generally spin down as they evolve, the effects
of rotation can persist into later phases of evolution (Anderson
et al., 2014). This is particularly evident for Cepheids, which
have main sequence progenitors that typically rotate at v/vcrit =
0.3 − 0.4 (Huang et al., 2010). During the post main sequence
evolution, the effects of rotation give these stars a luminosity that
corresponds to that of a non-rotating model of higher mass. As
a result, rotating stellar models have been used to resolve the
Cepheid mass discrepancy (Anderson et al., 2014, 2016). Models
indicate that rotating Cepheids are also older than non-rotating
Cepheids, as rotation increases the main sequence lifetime of a

FIGURE 1 | Evolution tracks along the main sequence for 2.0 M⊙ models

calculated with MESA. Shown are non-rotating models (blue) and models

rotating at 0.3 vcrit (orange) and 0.5 vcrit (green). Initially, rotating models appear

cooler and dimmer than non-rotating counterparts. As the star evolves, the

rotating models become brighter, and spend a longer time on the main

sequence.

star. This affects the period-age relationship, which in turn has
implications for the use of Cepheids in Galactic archaeology.
Finally, rotation extends the blue loop, and so rotating Cepheids
traverse the instability strip more slowly than their non-rotating
counterparts (Anderson et al., 2014).

The effects of rotation can be detected observationally via
surface abundances. Models predict that the surface abundances
of certain isotopes of nitrogen (14N) and helium (4He) should be
enhanced, while light elements like lithium and boron should be
depleted (Heger and Langer, 2000). Rotationally-induced mixing
brings the lighter elements down to layers that are hot enough
for these elements to be destroyed. These layers are also hot
enough for the first steps in the CNO cycle to occur, converting
the 12C and 16O to be converted into 14N, which is then
brought to the surface. The theoretical predictions are generally
in good agreement with the observations. For example, in this
model, stars that have enhanced nitrogen abundances should also
show depleted boron abundances, as was found by Venn et al.
(1996). This model was also tested by comparing the surface
abundance of 14N to the projected rotational velocity (v sin i)
of stars observed as part of the VLT-FLAMES survey (Hunter
et al., 2008). These results (see Figure 2) show that the nitrogen
enhancement does correspond well with rotation velocity for
most stars. Two populations, one with low rotation velocity and
high nitrogen enhancement, and one with high rotation velocity
and low nitrogen enhancement are thought to be the result of
binary evolution, or possibly the presence of magnetic fields
(Hunter et al., 2008).

The nucleosynthetic yields of a rotating star are also expected
to differ from that of a non-rotating star, increasing the amount
of metals produced. This effect is especially pronounced for
carbon and oxygen, which increase by a factor of 1.5–2.5 for
models with M . 60M⊙ (Maeder and Meynet, 2012). As
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FIGURE 2 | The observed nitrogen enhancement plotted as a function of

v sin i. The background density contours are predicted enhancements from

population synthesis models, with individual stars plotted as either circles or

triangles. The evolution tracks are for 13 M⊙ stars at various initial velocities.

Taken from Brott et al. (2011). Reproduced with permission.

discussed above, rotation provides a source of extra mixing,
which increases the size of the convective core, so a rapidly
rotating model will have yields similar to a more massive star.
Above 60M⊙, the total mass lost is the same in both rotating
and non-rotating models, and this effect disappears (Maeder and
Meynet, 2012).

3.2. Effects on Mass Loss
Stars with initial masses above ∼ 10M⊙ lose significant
amounts of mass through radiatively driven winds. However,
mass loss rates are highly uncertain, even when rotation is not
considered. Mass loss rates can be derived from spectroscopic
observations of wind speeds, can as high as 10−5M⊙/yr
in hot OB stars. These derivations often assume the winds
are smooth, and detailed observations and simulations now
suggest that the mass loss may be clumpy, which lowers
the mass loss rates significantly. Mass loss rates calculated
using Monte Carlo simulations (Vink et al., 2001) have
been found to be in good agreement with observations
(Mokiem et al., 2006). However, there are many indications
that radiatively driven winds are clumpy rather than smooth,
and this can reduce mass loss rates by a factor of 2 or 3
(Maeder and Meynet, 2012).

Many massive stars are rapid rotators, and so rotation is
expected to have a significant impact on the way mass and
angular momentum are lost from a star. Theoretical mass
loss rates are sensitive functions of luminosity and effective
temperature (Castor et al., 1975; Vink et al., 2001; Kudritzki,
2002), and so the variation in surface effective temperature
and flux discussed above can be expected to cause variations
in mass loss rates as a function of colatitude. Investigations
into rotating winds have shown that there are two solutions:
a classic Castor, Abbott & Klein (CAK) model (Castor et al.,

1975) or fast wind solution (FWS) and a slow wind solution
(SWS) which exist when the rotation speed is a significant
fraction of the critical velocity (Curé et al., 2011). However, these
models still assume that the mass loss from the star can be
effectively described in 1D. Much work has been done on the 2D
hydrodynamics of rotating stellar winds (e. g., Müller and Vink,
2014), but here I will discuss the effects on the star rather than the
circumstellar environment.

The effect of gravity darkening on wind-driven mass loss
has been investigated using stellar evolution codes in both 1D
(Maeder, 2002; Georgy et al., 2011) and 2D (Lovekin, 2011).
Initial investigations showed that rotating stars could be expected
to produce a bipolar nebula, as the increased temperature near
the poles enhances the mass loss rate in this region (Maeder,
2002). These models use a mass loss prescription that is based
on the standard radiatively driven wind model of Castor et al.
(1975) and Kudritzki (2002). An updated version of this model
found an increase in the global mass loss rate as the rotation
rate increased, and as expected, more mass was lost from the
polar regions than the equatorial regions. This effect increased
with the rotation rate (Georgy et al., 2011). Lovekin (2011) used
fully 2D stellar structure models and mass loss rates calculated
using Castor et al. (1975), Vink et al. (2001), Kudritzki (2002). In
these 2D models, the surface is assumed to be an equipotential
surface rather than relying on the Roche approximation, as is
done in the Geneva models (Georgy et al., 2011). In the 2D
models, the global mass loss rate actually decreased slightly
as the rotation rate increased, as the increase in mass loss
at the pole was offset by the decrease in mass loss from the
equator. This ran counter to the conventional scaling relations
for mass loss as a function of rotation rate (Bjorkman and
Cassinelli, 1993). However these scaling relations are for stars
at constant temperature and luminosity, while Lovekin (2011)
used a fixed mass and allowed the temperature and luminosity
to vary.

The differential mass loss can also affect the evolution of
the angular momentum of the star. Georgy et al. (2011) and
Lovekin (2011) found that the majority of the mass is lost
from the polar regions of the star, however, the majority of
the angular momentum is in the equatorial regions. The mass
loss rates at the equator will have a significant effect on the
angular momentum evolution. According to the 1D models,
the majority of the angular momentum is lost from regions
close to the equator, ranging from θ = 0 in the non-
rotating models to θ ∼ 70◦ at critical rotation (Georgy
et al., 2011). As a result, they find that rotating models with
anisotropic mass loss lose less angular momentum than those
with uniform mass loss. They were able to evolve their models
until the surface reached critical rotation, and found small
differences in the evolution, with rotating models generally
slightly cooler than their non-rotating counterparts. Lovekin
(2011) also found that the angular momentum loss peaks near
∼ 70◦ in the most rapidly rotating models, and that the rate
of angular momentum loss increases overall as the rotation
rate increases. In general, the 2D models lose less angular
momentum than those with isotropic mass loss, as was found by
Georgy et al. (2011).
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3.3. Effects on Pulsation Frequencies
In non-rotating models, pulsation frequencies are described by
two quantum numbers, n and ℓ. The first identifies the number
of radial nodes in a particular eigenfunction, and ℓ determines
the number of horizontal nodes in the latitudinal direction. The
modes can be modeled as spherical harmonics, which have a
third (azimuthal) quantum number, m, where m ≤ ℓ. For non-
rotating models, the pulsation frequencies are independent of m
for a given (ℓ, n) combination. In rotating stars, the degeneracy
between modes of different m is lifted, and the modes are visible
as multiplets in the pulsation spectrum. In the simplest case, the
splitting is expected to follow:

νnℓm = νnℓ +m1ν (10)

where 1ν is given by:

1ν =
1

2π

∫ R

0
Knℓ(r)�(r)dr (11)

where � is the angular rotation velocity of the star and Knℓ(r)
is a rotation kernel, which depends on the real and imaginary
components of the eigenfunction. Since the azimuthal number
m can range from ℓ to −ℓ, the splitting should be uniformly
spaced to first order. However, rapid rotation can complicate
the spectrum by introducing non-uniform mode splitting (Reese
et al., 2006). In extreme cases, the difference in frequency between
members of a rotational multiplet can become larger than the
difference in frequency between successive degrees ℓ, further
complicating the interpretation of the spectrum. In cases where
a rotational multiplet can be identified, the rotation frequency of
the star can be determined, independent of the inclination. This
type of analysis has been done for stars across the HR diagram
(Charpinet et al., 2018; Paparó et al., 2018). If multiple triplets are
detected, they can be expected to probe different radii inside the
star, and it may be possible to probe the rotation profile (Aerts
et al., 2003; Suárez et al., 2010).

Rotation is also known to decrease pulsation frequencies
overall (Lignières et al., 2006; Reese et al., 2006; Lovekin
and Deupree, 2008; Lovekin et al., 2009). As this difference
depends on the order and harmonic degree (ℓ) of the mode, the
rotation also changes the large and small frequency separation.
However, one of the biggest challenges lies in identifying the
correspondence between observed and theoretical modes for use
in asteroseismology (Deupree, 2011).

A further challenge to interpretation of observed frequencies
in rotating stars is the destruction of the regular frequency
patterns expected for both p-mode and g-mode pulsators. For p
modes, the frequencies are predicted to be regularly spaced, with
a large separation that is approximately constant (Tassoul, 1980):

1ν = νn+1,ℓ,m − νn,ℓ,m. (12)

According to the ray-tracing 2D models developed by
Lignières et al. (2006), the regular patterns seen in the p-modes of
non-rotating stars disappear, and modes are instead divided into
three categories: island modes, chaotic modes, and whispering

gallery modes. Regular patterns do seem to exist for the island
modes (Lignières et al., 2006), and these patterns have been
successfully tested for more realistic models (Ouazzani et al.,
2015).

Similarly, for g−modes, it is predicted that the periods will
show regular spacings (Miglio et al., 2008). The g-mode patterns
are less affected by rotation, but some new patterns do appear
(Ballot et al., 2012). The regular period spacings in the g-modes
do show the effects of rotation quite clearly, as shown in Figure 3.
While the m = 0 modes are expected to have completely
regular period spacings, the slope of the pattern is affected by
the rotation rate. Retrograde modes (m = −1) show an upward
slope, as shown in Figure 3, while prograde modes (m = +1)
show a downward slope. In both cases, the effects are increased
by rotation (Van Reeth et al., 2016; Lovekin and Guzik, 2017;
Ouazzani et al., 2017). These patterns can bematched to observed
g-mode spacings to determine stellar rotation rates, as has been
done for many of the Kepler γ Doradus stars (Li et al., 2019).

4. BINARY SYSTEMS

In close binary systems, the stars are distorted as a result of the
gravitational pull of the companion, and this is not currently
accounted for in most work on the evolution of binary stars.
For example, de Vries et al. (2014) use 1D stellar models up
to the point of Roche Lobe Overflow, and then convert to
a 3D hydrodynamics simulation. Using a 2D stellar structure
code, Deupree and Karakas (2005) have shown that the shape
of both the surface and the convective core are distorted in a
binary system, although the total mass of the convective core is
essentially unchanged. For the closest binaries, they found that
the shape of the surface differs slightly from the Roche potential
usually used in 1Dmodels. However, this assumes that the binary
star system is coplanar and tidally locked. To fully simulate the
distortion in a binary star system is a 3D problem.

FIGURE 3 | Period difference as a function of period for ℓ = 1, m = −1

g−modes in a 1.6 M⊙ model. As the rotation rate increases, the upward slope

in the period spacing becomes more pronounced. Taken from Lovekin and

Guzik (2017) ©AAS. Reproduced with permission.
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Indeed, observations of heartbeat stars with the Kepler
telescope have shown that even in close eccentric binaries,
the rotation period can be different from the orbital period
(Hambleton et al., 2018). In close systems like this, the
gravitational field can even produce tidally excited oscillations,
and pulsations have also recently been detected in η Carinae,
which have been proposed to be tidally excited (Richardson et al.,
2018). Tidally excited oscillations were first suggested in binary
stars where the rotation period of the components is different
from the orbital period of the system (Cowling, 1941), so these
systems will necessarily be at least spheroidal, and are highly
likely to be triaxial.

5. THE FUTURE: CHALLENGES AND
NEEDS

Multi-dimensional models are common in simulations of short-
timescale events inside stars. Several groups have modeled the
internal convection of stars (Woodward et al., 2018; Arnett et al.,
2019), but even these simulations often don’t include rotation.
Typically, convection simulations model a part of a star, either
a wedge or a shell. In either case, these simulations are much
shorter in timescale than evolution calculations, and the base
structure is effectively static. Rotation also breaks the symmetry
between the latitudinal an azimuthal (θ and φ) directions, so
the simulations must be 3D to capture all the details (Viallet
et al., 2013). The rotation also changes the way the composition
of the star changes, introducing non-local effects (Arnett and
Meakin, 2010). Although great progress is being made in these
3D convection simulations, the computational power required to
model both short and long timescales in a single simulation does
not exist. Much work is being done on determining algorithms
that can be used to replace the standard Mixing Length Theory
(MLT) (Böhm-Vitense, 1958), in 1D stellar models, but this will
still only approximate some of the effects.

In most 1D stellar evolution codes, rotation is included using
a shellular approximation, which essentially reduces the problem
to 1D (Zahn, 1992). This type of rotation law is thought to arise
from strong horizontal turbulence, which forces the rotation rate
to be constant along isobars. Transport of material and angular
momentum via the meridional circulation can be modeled as an
effective diffusion in this model. Models suggest that shellular
rotation is probably a good approximation at low rotation
rates, while at higher rotation rates, models produce rotation
profiles that do depend on latitude (Kitchatinov and Rüdiger,
1999; Espinosa Lara and Rieutord, 2013; Rieutord et al., 2016).
Nevertheless, this is the approximation made by the vast majority
of stellar evolution codes in use today. The exceptions are ESTER
(Espinosa Lara and Rieutord, 2013; Rieutord et al., 2016), which
fixes a surface velocity Veq and allows the angular momentum to
evolve, and ROTORC (Deupree, 1990, 1995, 1998), which accepts
an initial rotation profile, and then evolves the star with local
conservation of angular momentum.

It is reasonable to expect that stars are uniformly rotating,
at least initially, but as they evolve, angular momentum will
be transported inside the star. Models that are created with a

uniform rotation profile on the ZAMS will quickly evolve to a
differential rotation profile with the core rotating more rapidly
than the surface (Denissenkov et al., 1999). This profile is in
good agreement with the few stars that have had core to surface
rotation rates measured using asteroseismology (Aerts et al.,
2003; Lovekin and Goupil, 2010). Internal transport mechanisms
like meridional circulation tend to bring angular momentum
from the core to the surface, where it can be carried away with the
stellar winds (Ekström et al., 2012). Since themass loss is so much
more efficient in more massive stars, these models spin down
more rapidly, which in turn affects the size of the core, effective
temperature, and luminosity of the star. In order to accurately
model these properties, the details of internal transport must be
correctly included.

In massive stars, many observed magnetic fields are
approximately dipolar, the magnetic axis is frequently offset from
the rotation axis of the star, making this a 3D problem (Grunhut
et al., 2017). In lower mass stars, magnetic fields are produced
by a dynamo, which is also a 3D problem, and needs to be
parameterized to include the effects in 1 or 2D models. This
remains challenging to implement, and at present can only be
done for simplified systems (Jennings et al., 1990). Nevertheless,
magnetic fields have been included in a few 1D codes (see, for
example Feiden, 2016; Keszthelyi et al., 2018).

The effects of magnetic fields on stellar evolution can be
significant. Magnetic fields couple with the rotation of a star,
and so affect the internal transport and mass loss of a star. The
effects on internal energy transport are particularly pronounced
in the convective regions, and this has been suggested to be
the origin of the radius inflation problem in M dwarfs (Jackson
et al., 2018). One promising line of inquiry uses post-common-
envelope binaries as probes of the magnetic field (Navarrete et al.,
2019). In this case, it appears that the magnetic field can have
a measurable effect on the stellar structure. Clearly, magnetic
fields are an important part of stellar evolution and need to be
accounted for in the models. This remains a challenging problem
though, as magnetic fields are intrinsically 3D and act and evolve
on timescales much shorter than typical stellar evolution.

Magnetic fields are also responsible for the roAp stars,
where the oscillations arise from magneto-acoustic waves (Elkin
et al., 2008) which will require both 2D structure and pulsation
calculations to understand fully. In addition, a number of
chemically peculiar stars show horizontal inhomogeneities in
the surface abundance patterns (Khokhlova, 1976). Some work
has been done on the effect of magnetic fields on the pulsation
frequencies in roAp stars (Saio, 2014), but the 2D effects of
magnetic fields on rotation have not been investigated in detail.

Of course, many groups are working on the 2D and 3D
properties of stellar convection and turbulence (Davis et al.,
2018; Arnett et al., 2019), but these simulations usually cover
only a small fraction of the star, and cover a timescale that is
short compared to the evolutionary timescale. The ESTER code
described above (Espinosa Lara and Rieutord, 2013; Rieutord
et al., 2016) models the stellar structure in 2D, and includes
the effects of meridional circulation and rotation, but is not
capable of modeling the longer timescales required to describe
the evolution in 2D.
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To date, there is no code capable of modeling the evolution
of a star in 2D, while also taking into account the effects of short
term processes likemeridional circulation and convection. This is
a serious gap in our abilities, and limits our ability to model stars
with strong magnetic fields, in tidally distorted systems, or with
rapid rotation. In order to progress, models for the short term
processes that can be included in the evolutionary calculations
need to be developed. Since 2D calculations will intrinsically take
longer than their 1D counterparts, it would be appropriate to
develop scaling laws that can be used in 1D, as has been done
for pulsations in rotating stars (Castañeda and Deupree, 2016).

6. CONCLUSIONS

The equations of stellar structure in 1D have been well
understood for nearly 100 years, but almost immediately, it was
realized that the effects of rotation, binarity, and magnetic fields
would introduce 2D or 3D effects that needed to be taken into
account. The first attempts were made in the 1950s (Sweet and
Roy, 1953), yet 70 years later, we still do not have a way of
realistically modeling the evolution of a star in 2D. This remains
a challenging problem, and trade-offs must be made between the
ability to model detailed internal processes and the long-term
evolution of the star. This multi-dimensional structure becomes
ever more important as improved observations give us more
details about the surface properties, binary interactions, magnetic
field strengths, and pulsation frequencies. In order to accurately
reproduce these observations, our models must be able to take
into account the multi-D effects in a self-consistent fashion.

From a variety of box-in-star simulations, as well as structure
simulations with ESTER (Espinosa Lara and Rieutord, 2013;
Rieutord et al., 2016) we know that convection and rotation
produce 2D effects, and that these will in turn change the
evolution of the rotating stars when compared to non-rotating
stars. From the nucleosynthesis in the core to the mass loss
from the surface, these multidimensional processes influence the
evolution of the star. A good understanding the process of stellar
nucleosynthesis and the nature of supernova progenitors are the
building blocks for Galactic archaeology, as well as the history
of the universe. Previous studies have shown that the details of
stellar evolution can influence stellar population synthesis and
the derived masses of galaxies, affecting the way we understand
the history of our universe (Conroy, 2013).

The evolution of a star in 2D is a very challenging problem,
and requires improvements in both theoretical underpinnings

and computational resources. At the same time, the disparity
in size and time scales required to calculate the internal
processes and the evolution suggests that no improvement in
computational resources is going to make it possible to include
all aspects of the multi-D structure in a single calculation. Further
complicating the problem, convection, rotation, and magnetic
fields are all coupled, and will interact in ways that are likely non-
linear. Rather than hoping to create an ideal multi-D calculation,
we must focus on finding better models for these internal
processes that can be incorporated into models that include
their 2D effects on evolutionary timescales. In particular, a better
model for convection is needed to replace the current MLT
theory, as well as a better understanding of angular momentum
transport inside stars. This is an active area of research, and
several groups are working on an updated convection model to
replace MLT in 1D models (Garaud et al., 2010; Canuto, 2011;
Arnett et al., 2019). Magnetic fields have been included in 1D
models, but the details of their 2D influence on chemical mixing
and angular momentum transport cannot be ignored. Many
groups are working on large-scale simulations of these processes,
with a goal of better understanding how they work, and how
they can be modeled in evolution simulations. We are starting
to progress in all of these areas, and computational resources are
becoming faster, and more widely available (more cores), which
will make it feasible to run 2D or 3D evolution simulations in the
near future.
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