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Astrochemistry and molecular astrophysics are often used as synonyms to define an
interdisciplinary field that involves chemistry and astronomy, (astro)physics, as well as a “flavor”
of biology and geology. Even if it is difficult to define an unique goal, it can be surely affirmed
that the main aim is to understand the chemical evolution occurring in space: from diatomics
to molecules of a certain degree of complexity and beyond. In other words, this research area
studies how molecules are formed and destroyed in different astronomical environments as well
as how they interact with radiation. To summarize (and, at the same time, simplify), the focus of
astrochemistry is the investigation of chemical processes taking place in space, including molecular
evolution and complexity. Molecules have been (and still are being) found everywhere in space: in
the interstellar medium, in circumstellar shells, in pregalactic gas, in protostellar disks, and in the
atmospheres of planets and stars. Molecules are thus ubiquitous and they can be considered unique
probes of molecular excitation mechanisms, radiative transfer, and kinematics.

As is well-known, most of the matter-energy content of the Universe is composed of dark energy
and dark matter. Indeed, atoms and molecules contribute <5% of the total. Focusing on atomic
elements, the contribution of hydrogen and helium amounts to about 98%; therefore, that of heavier
elements (such as carbon, nitrogen, and oxygen) is only about 2%. Nevertheless, this small fraction
of heavy elements makes possible a great variety of chemical compounds. In the disk of our Galaxy
(the Milky Way), about 90% of the atomic/molecular mass is in stars, and the remaining is in the
interstellar matter, mainly in the form of clouds. These consist of gas and tiny dust particles and are
the components out of which new stars and planets are born.

When do we place the birth of astrochemistry? At the time of the discovery of interstellar
gas (Hartmann, 1904) and dust (Trumpler, 1930), it has thought that the extreme conditions
(temperatures ranging between 10 and 106 K and densities from 10−4 to 108 particles/cm3) of the
interstellar medium (ISM) would only allow the presence of atoms. In the early forties, however,
McKellar identified spectral lines attributable to diatomicmolecules (McKellar, 1940), undermining
the belief in the absence of molecular reactivity in the ISM. It was only in the late sixties, after the
birth of radioastronomy, that the first polyatomic molecules were identified. The first molecules
discovered were: ammonia (NH3) in 1968 (Cheung et al., 1968); water (H2O) (Cheung et al., 1969)
and formaldehyde (H2CO), the first organic molecule (Snyder et al., 1969), in 1969; hydrocyanic
acid (HCN) (Snyder and Buhl, 1971), carbon monoxide (CO) (Wilson et al., 1970) and methanol
(CH3OH) in 1970 (Wilson et al., 1970); formic acid (HCOOH) (Snyder and Buhl, 1971) and
formamide (H2NCHO) (Snyder and Buhl, 1971) in 1971. Since then, more than 200molecules have
been detected in the ISM and circumstellar shells and the rate of discovery continues at rapid pace.
Interestingly, the molecules detected by radioastronomy, which range in size from diatomics up to
13 atoms, are overwhelmingly organic in nature. Particularly fascinating are the so-called “complex
organic molecules” (COMs) (Herbst and van Dishoeck, 2009), which are defined as molecules
containing more than 5 atoms and including at least one carbon atom.

By the late 1960s and the early 1970s, it had become clear that the ISM is host to a rich chemistry,
leading to the emergence of a new branch of science: Astrochemistry. Over the years, the discovery
of new molecules has led to questions about how these molecules could be formed in such hostile
environments and how far chemical complexity can go. In parallel, further questions arose: How
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are molecules incorporated into stars and planets? Is the
chemistry occurring in the ISM related to the origin of life on
Earth? All these questions and the related need to deepen our
knowledge represent the current frontiers in astrochemistry.

The considerations above lead to the definition of two grand
challenges. (1) The census of the interstellar molecules and
beyond, where “beyond” means the search for molecules in
(exo)planets and other astronomical objects (e.g., comets). (2)
The mechanisms of formation of molecules and the chemical
evolution of astronomical objects. Together with these two grand
challenges, we can envisage a third one: (3) the origin of life.
Indeed, understanding the chemical evolution can help to gain
insight into the emergence of life on Earth. The list above is
not exhaustive but, rather, a selection of major themes that
intrinsically contain (or are related to) further challenges. In this
respect, a comprehensive overview is presented in van Dishoeck
(2017).

1. GRAND CHALLENGE 1: ON THE HUNT
FOR MOLECULES

The progress of observational studies revealed chemical diversity
in space, the source-to-source variation in chemical composition
which led to the concept of chemical evolution. In order to
derive the chemical composition of an astronomical object
a synergic interplay of radioastronomical observations and
laboratory spectroscopy is required (see e.g., Müller et al., 2005;
Belloche et al., 2014; McGuire et al., 2016; McGuire, 2018;
Melosso et al., 2018). Indeed, the unequivocal proof of the

FIGURE 1 | Grand challenge 1: The stakeholders and their interplay.

presence of a given molecule in the astronomical environment
under consideration is provided by the astronomical observation
of its spectroscopic features (Tennyson, 2005; Yamamoto, 2017),
with the overwhelming majority of gas-phase chemical species
being identified via their rotational signatures (McGuire, 2018).
The intensity of the observed/assigned lines needs then to
be converted into a species abundance (Arthurs et al., 1960;
Nash, 1990; Goldsmith and Langer, 1999), whose interpretation
requires comparison with model predictions (e.g., Garrod
et al., 2008; Holdship et al., 2017). These processes and their
interconnection are sketched in Figure 1, and require a strong
interplay of different communities: astronomy, astrophysics, and
chemistry; experimentalists and theoreticians.

Despite the more than 200 molecules that have been
discovered in the ISM and circumstellar shells, a significant
number of features in radioastronomical spectra are still
unidentified. This means that we are far from a complete census
of the interstellar molecules. How many molecules have escaped
our knowledge? And what about chemical complexity? Among
the molecules discovered in space, those of prebiotic character
are of particular relevance. In the last two decades, a great effort
has been put in order to demonstrate the presence of biological
building-block molecules in the ISM, because they can provide
important information on the Galactic chemical evolution. To
give an example, glycine (NH2CH2COOH), the simplest amino
acid, has been intensively searched for in the ISM (see Kuan
et al., 2003 and references therein). While it has been found
(together with many other amino acids and nucleic bases) in
some meteorites fallen on Earth (e.g., Murchison meteorite;
Kvenvolden et al., 1970) and in the coma of comets (e.g., the
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67P/Churyumov-Gerasimenko comet; Hadraoui et al., 2019),
efforts to detect it in the ISM have so far failed. However, this
has largely been interpreted as meaning that glycine is indeed
present in the ISM, but its rotational transitions are just too weak
for identification in the confusion limit of astronomical surveys.
Can we find indirect ways to confirm its presence? To answer
this question, a deep knowledge of chemical reactivity in space
might help.

A class of compounds that deserve a special mention is
that of polycyclic aromatic hydrocarbons (PAHs), a broad class
of aromatic hydrocarbons made up of fused benzene rings.
They have been discovered in the most disparate astronomical
environments, including, e.g., interstellar dust grains, icy moons,
comets and carbonaceous meteorites. Within the so-called
“PAH world hypothesis,” PAHs have also been assumed to be
involved in the abiogenic synthesis of biological molecules.
Although this hypothesis has been largely criticized, PAHs
clearly play a role in the chemical evolution of the universe
(d’Ischia et al., 2019). However, we are far from a complete
understanding, which presents a multifaceted challenge for the
astrochemical community.

2. GRAND CHALLENGE 2: CHEMICAL
REACTIVITY

As already mentioned, understanding the chemical processes
in space is one of the main aims of astrochemistry. Molecular
complexity and the formation of a star proceed hand in hand.
Concerning the latter, the evolution can be summarized as
follows: the primordial cloud leads to a protostellar envelope,
which evolves into a protoplanetary disk and then a planetary
system. This star-formation process is paralleled by an increasing
complexity in the chemical composition of the gas.

In the early 1970s, gas-phase ion-molecule reactions were
employed to (successfully) explain the molecular abundances
observed in interstellar clouds. Later on, it was recognized
the importance, even in low-temperature regimes, of gas-phase
neutral-neutral reactions. However, the advance of observational
capabilities has led to the detection of molecules in regions
where gas-phase reactions could not contribute significantly to
chemical reactivity. This marked the beginning of grain-surface
chemistry, i.e., the modeling of chemical reactions occurring on
dust grains. However, there is still much to be understood about
the formation of molecules and, often, the proposed reaction
mechanisms are controversial and inconclusive (Garrod et al.,
2008; Herbst and van Dishoeck, 2009; Codella et al., 2017). Both
theoretical (e.g., Fernández-Ramos et al., 2006; Puzzarini and
Barone, 2020) and experimental (e.g., Abeysekera et al., 2015;
Parker and Kaiser, 2017) efforts, and possibly their synergic
interplay (Balucani et al., 2010), are thus required.

The formation routes of each individual molecular species
can be thoroughly investigated. However, it is necessary to
treat a large number of chemical reactions simultaneously in
order to model the chemical evolution of a given astronomical
environment. For setting up the complex network of elementary
reactions taking place, e.g., in interstellar clouds or planetary
atmospheres, a large number of physico-chemical parameters
is also required. Then, kinetic models including thousands
of reactions that involve hundreds of species are needed to
simulate the chemical evolution over time. This has led to
the growth of different astrochemical databases [such as KIDA
(Wakelam et al., 2015)] to collect the kinetic parameters required
for the relevant reactions. However, the data gathered in
these catalogs are incomplete, and sometimes the assumptions
included in the models are questionable. We are in the presence
of a gigantic puzzle with a huge number of pieces that are
still missing.

3. GRAND CHALLENGE 3: THE ORIGIN OF
LIFE

Shedding light on the chemistry occurring in space, i.e.,
understanding how molecules are formed and evolve, might
help to set the stage for understanding the emergence of life
on Earth and elsewhere. This aspect of Astrochemistry has
attracted a lot of interest in all scientific community, but
knowledge is still at a rather primitive stage. Two theories
have been suggested so far on the emergence of life on
our planet (Chyba and Sagan, 1992), exogenous delivery and
endogenous synthesis, and we are far from stating with
confidence if one or both of them are correct. Regardless of
whether they were delivered to Earth from space or synthetized
from simpler molecules, prebiotic species then evolved toward
biological complexity, with astrochemistry then moving toward
astrobiology. Then, it becomes impossible to place a dividing line
between astrochemistry and astrobiology, with astrochemical and
astrobiology challenges merging together.
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