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Neural networks (NN) provide a powerful pattern recognition tool, that can be used

to search large amounts of data for certain types of “events”. Our specific goal is to

make use of NN in order to identify events in time series, in particular energy conversion

regions (ECRs) and bursty bulk flows (BBFs) observed by the Cluster spacecraft in

the magnetospheric tail. ECRs are regions where E·J 6= 0 is rather well-defined and

observed on time scales from a fewminutes to a few tens of minutes (E is the electric field

and J the current density). BBFs are high speed plasma jets, known to make a significant

contribution to magnetospheric dynamics. Not surprisingly, ECRs are often associated

with BBFs. The manual examination of the Cluster plasma sheet data from the summer

of 2001 provided start-up sets of several ECRs and, respectively, BBFs, used to train

feed-forward back-propagation NNs. Subsequently, larger volumes of Cluster data were

searched for ECRs and BBFs by the trained NNs. We present the results obtained and

discuss the impact of the signal-to-noise ratio on these results.

Keywords: neural networks, feedforward backpropagation, cluster, energy conversion region, bursty bulk flow

INTRODUCTION

As sensor resolutions and sampling frequencies increase, data available from space missions is
steadily increasing. For example, the SMILEmission will generate 30 Gbits/orbit of data (Raab et al.,
2016). Processing these data requires large amounts of time spent by researchers in order to identify
interesting events. For example, Paschmann et al. (2018) assembled a database with thousands of
manually selected events from the MMS mission.

Pattern recognition tasks can be handled very well by the human brain which has a highly
complex, non-linear and parallel structure (Haykin, 2009). Such an information processing system
is able to perform these tasks much faster than today’s computers. An artificial neural network is
based on a simplified model of the biological neural network and brings the pattern recognition
power of the brain into the world of computers.

As another example, Wing et al. (2003) showed the application of a multilayer feedforward
neural network in the classification of radar signals from ionospheric irregularities. The neural
network implementation correctly classified 98% of the signals.

In this paper we show results obtained by using a feedforward neural network for automatically
locating regions of interest in time series. We searched for events in data from the Cluster mission,
consisting of four identical spacecraft launched in pairs in July and August 2000, with a perigee
of 4 RE and an apogee of 19.6 RE (Escoubet et al., 2001). The mission, whose operational phase
started in February 2001, allows for in situ exploration of particle and field data, with emphasis
on investigations that require multi-point data and techniques—for example, analysis of vector
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fields, like deriving current density from magnetic field data, or
examination of magnetospheric boundary layers, like, e.g., the
magnetopause. While in the following we concentrate on Cluster
data, the broader goal of the paper is to investigate and illustrate
the potential benefits of applying neural networks to time series
of space physics interest. We aim to provide examples of using
NN algorithms to quickly identify specific events, and by doing so
to enable automated build-up of event databases. This can help a
better exploitation of big volumes of data, much of which are time
series, and by that a better view over the phenomena under study
and a better insight to the relevant physics.

In the next section we present the type of neural networks
architecture used in this paper and detail the software
implementation of the algorithm. In section Neural Network
Identification of ECRs: Key Questions, we describe several
difficulties encountered during the application of the algorithm
and the solutions to overcome those. In sections Neural Network
Identification of ECRs: Comparison With an Algorithmic
Approach and Neural Network Identification of BBFs, we
present the application of this algorithm on two types of
time series data provided by instruments onboard Cluster
spacecrafts, namely energy conversion regions (ECRs) and
bursty bulk flows (BBFs). These two examples illustrate the
cases of low and high signal to noise ratio, for ECRs and
BBFs, respectively, and provide qualitative information on
the impact of this parameter, as well as a test bed for an
upcoming quantitative assessment. In the last section we present
our conclusions.

NEURAL NETWORKS

Introduction: Various NN Types
Depending on the interconnection between the artificial neurons,
neural networks can have different architectures. We further
present three main classes:

• Single-layer feedforward networks: contain just an input and
an output layer. The information is passed from the input
directly to the output. This network architecture contains only
one layer of processing neurons, as the input layer does not
perform any computations.

• Multi-layer feedforward networks: contain more than one
processing layer. Information is passed from the input layer
to the output layer via one or more hidden layers.

• Recurrent networks: these networks contain at least one
feedback loop connecting the output to the input.

Neural networks can learn either helped by a “teacher” or without
one. The first case is called supervised learning and it involves a
previously known set of input-output pairs that can be presented
to the network. When learning without a “teacher,” the method is
called unsupervised learning. In this case, the network attempts
to split the input data in different classes. A combination of the
two methods is reinforcement learning, where the network is
just presented with the consequences of its actions. In this case,
the network attempts to minimize a given criterion by modifying
the decisions it makes.

Feedforward Back Propagation NN
In order to identify the regions of interest in time series, we
make use of a feedforward back propagation neural network,
which is of single or multi-layer feedforward network type. The
feed-forward direction refers to the traveling of the processed
input toward the output when the trained network is used. The
back propagation refers to the traveling of the error backwards
through the network as part of the training of the network.

During the training phase, the network learns to map a series
of input vectors to the corresponding, known, output vectors.
The learning process modifies the values of the inter-neuron
connection weights.

The first layer of the network, the input layer, has the size
equal to the size of the input vector and does not perform any
computations. Its function is to feed the input information to the
network. The next layers, one or more hidden layers or directly
the output layer, process the information.

As data travel through the network, it is adjusted via the inter-
neuron connection weights. Based on these inputs, each neuron
computes its activation function. The usual types of activation
functions are sigmoid and linear, and both of them are used in
this paper.

The forward mechanism involves the processing of the input
data by the neurons, through use of weights and transfer
functions. While the latter are fixed, the weights of the network
are adjusted during the training process. Data are multiplied
with the corresponding weights and the input of each neuron is
computed as the sum of the weighted input values:

I
(1)
j =

m
∑

i=1

ωjiO
(0)
i

Where

• I
(1)
j is the input of neuron j from layer 1

• ωji is the weight of the connection from input i to neuron j

• O
(0)
i is the output of the i-th element of the previous layer

(input value in the case of the first layer of neurons)
• m is the number of elements of the previous layer (input in the

case of the first layer of neurons).

The computed weighted sum I
(1)
j is further passed to the

activation function of the neuron j and the corresponding
output computed:

O
(1)
j = f (I(1)j )

Where

• O
(1)
j is the output of neuron j from layer 1

• f is the activation function of the neuron

In case of the last layer, the output (O(1)
j ) of the neuron is an

element in the output vector of the network.
During training, the values of the corresponding output vector

for a given input vector are known. The error vector (e) is
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computed as the difference between the desired output and the
actual output:

e = D− O

Where

• D—desired output vector
• O–actual output vector.

The aim of the algorithm is to minimize the error, so the weights
are adjusted backward from the output, in an iterative process:

ωji (n+ 1) = ωji (n) + α
[

1ωji (n− 1)
]

+ ηδj (n) Ii(n)

Where

• ωji (n+ 1) is the adjusted weight (step n+1)
• ωji (n) is the unadjusted weight (step n)
• α is the momentum constant
• η is the learning rate
• δj is the local gradient—takes into account the error and the

derivative of the activation function.

Essentially, the training phase represents the non-linear
optimization of the weights, by using specific functional forms
for the activation functions and interconnection between
neurons. The learning rate and momentum constant are fixed
parameters for a given instance of the network, that can be
adjusted during the training phase. Together with the number of
layers and the number of neurons in each layer, they represent
the global parameters of the network. The user has to tune
these parameters during the training phase in order to improve
the results of the network. As detailed under Section Neural
Network Identification of ECRs: Key Questions, the key tasks of
the training phase are both the training per se and identifying the
network configuration that optimizes the results.

The training stops when one of these conditions is met:

• The error drops below a certain value
• The specified number of training epochs was reached
• The error decrease rate is slow enough.

Key Features/Parameters
The sizes of the input and output layers are determined by the
sizes of the input and corresponding output, respectively. The
hidden layer size is determined experimentally by the user. There
is no fixed rule that specifies the size or even the presence of the
hidden layer.

In general, an increase in the size of the hidden layer can help
the network to better learn the features of the training set. On the
other hand, if the network size is increased too much, it might
lose its ability to generalize and therefore to address data sets
which are different from the training set—which is the actual
goal of the training. A correctly configured and trained NN must
be able to accurately evaluate new data, based on key features
learned from the training set.

The neural network architecture presented in this paper
relies either on none or one hidden layer and can be tuned
to better perform the task at hand by adjusting the size of

this hidden layer, the learning rate (η) and the momentum
constant (α). Further degrees of freedom that need to be handled
are the intrinsic variability of the network results and setting
the training stop condition—all detailed under Section Neural
Network Identification of ECRs: Key Questions.

Software Implementation
We implemented a feedforward neural network algorithm
(private communication by Simon Wing) in C. The C
programming language gives more flexibility in choosing the
platform where to run the software (Linux or Windows). For
switching between platforms, the program requires only a
recompilation on the target platform.

The program configuration parameters are read from a file,
whose name is given at runtime as a command line parameter.
Inside the parameter file, the user must specify:

• Number of layers of the network
• Transfer function for each layer
• Number of neurons for each layer
• Number of training pairs
• Name of the file containing training data (input-output pairs)
• Number of testing pairs
• Name of the file containing testing data (input data)
• Name of the file containing the evolution of the error rate
• Name of the file containing the response of the network to the

testing data.

The parameters that control the evolution of the network during
training, the learning rate and the momentum, are specified
inside the C code and can be modified if needed. This setup
gives the user the possibility to explore in parallel multiple
network configurations. A simple script can start the predefined
configurations, each with its separate output file. A batch system
allows the execution of multiple instances in parallel, each with
different parameters and input data. This allows the user to search
the parameter space more efficiently.

NEURAL NETWORK IDENTIFICATION OF
ECRs: KEY QUESTIONS

The manual examination of the Cluster plasma sheet data from
the summer of 2001 provided a first set of energy conversion
regions (ECRs; Marghitu et al., 2010), where E·J 6= 0, with E the
electric field and J the current density. Estimates of E are typically
available on Cluster from more than one instrument, providing
a necessary redundancy when the electric field is low, while J is
inferred from the magnetic field, B, measured by the four Cluster
satellites, as a direct application of Ampère’s law.

More specifically, the electric field, was derived as E = –V ×

B, with plasma velocity, V, inferred from the Hot Ion Analyzer
(HIA) and Composition and Distribution Function (CODIF)
sensors of the Cluster Ion Spectrometer (CIS) experiment. At
each time, the electric field was obtained as an average value, by
using ion data from Cluster 1, Cluster 3, and Cluster 4, where one
or both sensors were operational (no CIS sensor was operational
on Cluster 2). Data from the Electric Field and Wave (EFW)
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experiment were only used to cross-check the CIS estimates.
EFW provides just the spin plane projection of the electric field
and the assumption E·B = 0 is needed to derive the full electric
field vector. In the tail plasma sheet, where we searched for
ECR events, the angle between the magnetic field vector and
the Cluster spin plane was in general too small for inferring
the missing electric field component (perpendicular to the spin
plane) from the condition E·B = 0. Therefore, EFW data were
just used to cross-check the spin plane electric field, in particular
the dawn-dusk, Ey component (Ex, typically small and affected by
a Sun offset, is less reliable). The current density, J, was computed
from magnetic field data of the FluxGate Magnetometer (FGM)
experiment, by using the Curlometer method (Dunlop et al.,
2002), taking care of the spacecraft separation, as well as planarity
and elongation of the Cluster tetrahedron (see below). For further
details on the electric field and current density estimates, used to
derive the power density E·J, the reader is referred to Marghitu
et al. (2006).

Among the observed ECRs, some were concentrated
generator regions (CGRs), E·J < 0, where mechanical energy
is converted into electromagnetic energy, while others, more
numerous in the geomagnetic tail, were concentrated load
regions (CLRs), E·J > 0, where the sense of energy conversion
is reversed. As illustrated in Figure 1, in both cases energy
conversion is rather well-defined and observed for a relatively
short time (a few minutes to a few tens of minutes). Since energy
conversion is associated with interesting signatures in the plasma
parameters (notably plasma velocity and related BBFs), and is
known to be an important ingredient of key plasma processes, it
appeared as useful to replace the time-consuming manual search
with an automated procedure.

An algorithmic procedure has been developed byHamrin et al.
(2009a) which led to the identification of 151 ECR events, of
which 116 CLRs and 35 CGRs, in the Cluster crossings of the
plasma sheet from 2001. The adjusted and refined procedure was
applied later on to Cluster plasma sheet crossings from 2001,
2002, and 2004 (Hamrin et al., 2010), resulting in a total of 555
ECRs, of which 428 CLRs and 127 CGRs. A broader set of events,
extended to cover also 2003 and 2005 (with due care to the small
Cluster tetrahedron size in 2003 and multi-scale configuration
in 2005), was used to select the NN training base, consisting of
81 CLRs and the testing set consisting of 326 CLRs (see section
Selection of the Training Set).

The 81 CLRs selected for training had the following
distribution over 2001–2005: 11 of 2001, 28 of 2002, 19 of 2003,
21 of 2004, and 2 of 2005. The testing set consisted of 326 events,
distributed as follows: 59 of 2001, 107 of 2002, 46 of 2003, 108
of 2004, and 6 of 2005. As indicated by Hamrin et al. (2009a),
for all selected ECRs the tetrahedron was reasonably regular
(elongation and planarity<0.4), which applied also for the events
of 2003 and (few) of 2005. Moreover, ECR events that were too
short (<100 s), too weak (absolute value of average E·J < 0.4
pW/m3, absolute value of integrated power density <200 pJ/m3),
or too close to the kinetic regime (duration multiplied by plasma
velocity <5 proton gyro-radii) were not selected. Further details
of the event selection algorithm are provided by Hamrin et al.
(2009a). While specific thresholds of this procedure were tuned

manually, its application provided a fair selection of ECR events,
whose features could be examined subsequently in a consistent
manner (Hamrin et al., 2009a,b, 2010).

In a first stage, the trained NNs were used to identify both
CLRs and CGRs. Accordingly, the NN output was a vector of the
same size as the input data, populated with one of three values: 1
for CLRs,−1 for CGRs, and 0 in rest. Later on, as described below
(sections Sliding Window Approach, Selection of the Training
Set), we concentrated just on CLRs.

Size of the Input/Output Layer
Our first approach to identify energy conversion events with
neural networks consisted of dividing the data into fixed size
intervals (of about 100 elements). For each input interval, we had
a corresponding output interval of the same size. This approach
resulted in a highly complex network architecture, with 100
input neurons, a hidden layer of various sizes, and 100 output
neurons. Since the feed-forward backpropagation NN we used
was fully connected (every neuron in a layer was connected
to all the neurons in the next layer), the training algorithm
had to compute a large number of weights, which required
significant training time and computer resources (memory, cpu).
The trained network was also not very good in identifying
the events. The data used to train the network consisted of
concatenated intervals of satellite readings, containing both event
(1 or −1 desired output) and non-event data (0 desired output),
of which non-event data were by far dominant, therefore the
trained network regarded the non-event data as the “right” ones
and mostly ignored the event data.

Use of Synthetic Data for Training and
Testing
Using real E·J data raised additional problems: the training
set was limited and the data used for training could not be
explored later—in a consistent manner—for the presence of
CLRs and CGRs. In order to overcome these problems, we tried
to use synthetic data for training and testing the NN. When
building the synthetic data sets, we randomized the intensity,
duration, and sign. During the tests with synthetic data, we
noticed an improvement in detection for less complex network
configurations. The network worked better for a smaller number
of neurons on the hidden layer, but after training with more
input data.

For simplicity, we further considered only the search for CLR
events (E·J > 0), as presented in section Selection of the Training
Set. This search is also similar to the case of BBFs (section
Neural Network Identification of BBFs), where events are as
well-positive and NN output is accordingly just 1 (event) and 0
(non-event). Moreover, in the tail plasma sheet CLRs dominate
over CGRs, consistent with the large-scale load character of
this region.

Sliding Window Approach
In order to decrease the training time and the complexity of
the network, we opted eventually for another structure of the
NN by implementing a sliding window algorithm. The sliding
window consists of a certain number of input neurons, typically
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FIGURE 1 | Left: CLR Event, Right: CGR event—after (Marghitu et al., 2010).

more than one, and just one output neuron; which implies a
great decrease in the complexity of the NN and accordingly of
the training time (from days to tens of minutes). As the window
moves across the time series, the output is 1 when the window
slides over the CLR event.

Selection of the Training Set
During the tests with real and synthetic data we noticed the
importance of a heterogeneous and representative selection of
input data for training the network. By including many non-
event data points (associated with an output value of 0), the
network is biased toward false negatives (more values of 0 in the
output), therefore a balanced input selection is required (see also
Section Size of the Input/Output Layer).

Starting from the dataset of ECRs observed in 2001, 2002, and
2004, analyzed by Hamrin et al. (2010), extended to cover also

2003 and 2005 (as described above), we constructed training sets
with equally distributed events, in duration or intensity. In the
data presented to the network during training, onemustmaintain
a balance between event and non-event intervals. Given that the
quality of the network training is judged by the mean error of
the output (difference between desired and actual output), if one
uses mostly non-event intervals (i.e., mostly 0 desired output) a
network trained to supply mostly 0 will be wrongly considered
well-trained. By using a better tuned training set, we managed to
improve the detection accuracy of the NN.

A key question for this better tuning was the uniform selection
of training data. For this aim, we sorted the events considering
their duration, as well as their intensity, quantified by the median
E·J value (similar to Hamrin et al., 2009a). The median was
computed over the length of each event, consisting of at least
25 points (minimum duration 100 s, with 4 s per point—see also
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the brief description of the event selection algorithm above).
After sorting the events, we tested two selection methods: a
linear sampling, 1 out of n, and a logarithmic sampling, to
take into account that most events are weak, i.e., of short
duration and low intensity While the linear sampling selects
mostly weak events, and thus is essentially biased comparable
to the case of dominant non-event intervals, the logarithmic
sampling emphasizes longer/stronger events, which turns out
to compensate this bias and to provide better results. Hamrin
et al. (2009a) found that intensity is indeed distributed close
to logarithmic, while Hamrin et al. (2009b) found the same for
duration, in particular of CLRs, therefore logarithmic sampling
appears to be a better choice.

While the linear selection 1 out of n is self-explanatory (every
nth event), in the case of logarithmic sampling we used the
natural logarithms of the respective values andmade the selection
according to the following formula:

Index = 1+ (N − 1) ·

ln

(

y1+j
yN−y1

M
y1

)

ln
(

yN
y1

)

Where

• Index is the index of the element to be selected from the input
set, comprising in our case 407 CLR events.

• y1, N are the elements of the input set (of size N, in our case
407), from which we select elements of the training set; y1 is
the first element of the input set and yN the last one.

• j is the index in the destination (selected) training set,
containing selected elements, and runs from 0 to M; in our
case M is 80 and the training set comprises 81 events.

In Figure 2 we present the duration of the events in the training
set, selected by linear sampling 1 out of 5 (top panel-red line) and
logarithmic sampling (top panel-blue line), as well as the duration
of the events used for testing (bottom panel). The full set of events
includes 407 CLRs, the training sets 81 events, and the testing
set 326 events. For logarithmic sampling, 81 was the maximum
number that ensured distinct indices after rounding at the low
index end. For the linear selection, 1 out of 5 provides a training
set of similar size with the logarithmic selection. As expected,
the logarithmic sampling provides a more uniform selection as
compared to the linear sampling, that a is, a somewhat better
representation of the longer events. The plots are similar (not
shown) when duration is replaced by intensity, in agreement with
the distributions observed by Cluster (Hamrin et al., 2009a,b).

Other Parameters: Momentum Constant,
Learning Rate, Stop Condition, Initial
Conditions
One difficulty encountered in the tests with ECR data was the
unstable NN behavior, with fast growth of the weights (defining
the connections between neurons) and error (i.e., the difference
between the actual response of the NN and the target response)
sometimes leading to numerical overflow.

The momentum constant (α) controls the adjustment of the
network’s weights, based on the previous evolution of the weight.
The value of α must be kept >-1 and smaller than 1. A value of 0
means nomomentum influence during training the network. The
momentum constant can prevent the network from stopping in
a local minimum during training. In our tests, we found that a
momentum constant of 0.5 favors the stability of the network.

A smaller learning rate parameter (η) determines a smaller
change in the synaptic weights of the network from one iteration
to another. If the learning rate parameter is too large, in order to
speed up the training, the resulting large changes of the weights
may render the evolution of the network unstable during the
training phase. The value of the learning rate parameter should
be kept above 0 and less or equal to 1. In practice, we found
appropriate a small η value, of 0.0001.

Two more important features proved to be the stop condition
and the intrinsic variability of the network. Thus, the stop
condition had to be formulated in terms of relative decrease in
the error, as opposed to a fixed number of iterations. The intrinsic
variability of the network was related to the randomly selected
initial weights. In practice, the network was trained several times,
and the best instance selected for further operation.

NEURAL NETWORK IDENTIFICATION OF
ECRs: COMPARISON WITH AN
ALGORITHMIC APPROACH

The detailed examination of the results on real E·J data (not
concatenated individual events) shows that the NN identifies
neighboring events as separate ones, while the semi-automatic
algorithmic procedure set up by Hamrin et al. (2009a) includes a
post-processing that merges such neighboring events into a single
one. As detailed below, since post-processing introduces further
degrees of freedom, we decided to skip it for the time being and
to compare the results in a way that is less sensitive to this step,
by using the cumulative sum of E·J.

In Figure 3 we present a sample output of the NN search for
ECR events over a time interval of ∼3 h. The NN configuration
in this case included no hidden layer and the sliding window
(Section Sliding Window Approach) had five points. During
our tests, we explored the use of different window sizes, from
5 to 101 points, with various hidden layer sizes, from 0 (no
hidden layer) to 71. Following the evaluation detailed below, the
NN configuration behind Figure 3 provided the results that we
regarded as the best match to the algorithmic approach, used
for reference. This means that most events identified by the
algorithmic approach were also detected by the NN (which does
not exclude additional events detected by the NN).

In order to evaluate the multiple network configurations, we
compared the NN output with the results of the algorithmic
approach by building pie charts and scatter plots for all network
configurations, as illustrated in Figure 4. This allowed a quick
and overall visual comparison of the events selected by the
NN with those selected by the algorithmic approach. Figure 4
corresponds to a NN with no hidden layer and an input sliding
window of five elements. The events used for training were
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FIGURE 2 | CLRs sorted by duration—training selection (top), testing selection (bottom). The top panel shows both the logarithmic selection (blue) of 81 events and

the linear selection (red) 1 out 5, which provides a similar number of events with the logarithmic one. The x axis shows the event index in the respective set, while the y

axis shows the event duration in Cluster spin periods of 4 s (the number on y axis should be multiplied by four to get the duration in seconds). See text for details.

FIGURE 3 | NN output on E·J data: NN output (rounded) in red, E·J in green (normalized to the maximum value of the time interval, here 17.4 pW/m3). Events found

by the algorithmic approach are shaded in blue.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 August 2020 | Volume 7 | Article 51

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Constantinescu and Marghitu NN Identification of ECRs and BBFs

FIGURE 4 | Comparison between the algorithmic approach and NN output. Pie chart representation of the total cumulative sum of E·J (left) and scatter plot of the

cumulative sum of E·J for individual events, as derived by the two procedures (right). The unit for the cumulative sum of E·J is pW/m3. The scatter plot is presented on

logarithmic scale, in order to emphasize the more numerous weak events (compare with Figure 2). The points on the x and y axis are identified just by the algorithmic

and NN approach, respectively, and the actual cumulative sums are 0. In order to make these points visible in logarithmic representation, the value of 0 was changed

artificially to 10. See text for details.

logarithmically distributed in duration and selected from Cluster
data between 30th May 2001 and 30th December 2004.

The left plot of Figure 4 shows the cumulative sum of E·J
over the selected events. As hinted at above, we picked the
integrated magnitude of the events since this is less sensitive to
the exact definition of an event—whether the individual spikes
identified by the NN are merged together, as in the algorithmic
approach, or not. We also selected the pie chart for the visual
representation, even if in this case the whole pie does not have
the usual meaning, namely it is not equal to the sum of the
slices. Nevertheless, it provides a useful tool to quickly assess the
matching of the two procedures. More exactly, dark/light blue
indicates events found only by the neural network/algorithmic
approach, while light green/yellow shows the cumulative sum
for the common events, computed over the results of the neural
network/algorithmic approach. For the first, the small light blue
and large dark blue slices show that the NN events is essentially
a super-set of the events derived by the algorithmic approach,
which looks promising. For the latter, the positive difference
between yellow and light green is consistent with the visual
impression of Figure 3, that the “elementary” events identified
by the NN do not fully fill the merged events obtained by the
algorithmic approach after post-processing.

A complementary view is provided by the scatter plot on the
right side of Figure 4, which helps to substantiate further the
comparison of the results by an event-oriented perspective. Each
event is indicated by an empty bullet, with the cumulative sum
of E·J as derived by the algorithmic/NN approach on the x/y
axis. Most bullets indicate values of< ∼1,000 pW/m3, consistent
with the point made before that most events are observed to be
short and weak (Figure 2). Most of the bullets identified by both

the algorithmic and the NN approach are also slightly under the
first bisector, consistent with the larger yellow slice compared to
the light green one, and the respective cumulative sums of the
algorithmic approach are larger than 50 pW/m3, as required by
the threshold of 200 pJ/m3, indicated in Section Neural Network
Identification of ECRs: Key Questions (which, when expressed in
terms of cumulative sum, should be divided by the 4 s duration
of each sample). Several bullets are aligned along the x and y
axes, consistent with the light blue and dark blue slices of the
pie chart, respectively, in the left plot of Figure 4. For these
latter bullets, 10 pW/m3 were artificially added, to make them
visible in logarithmic representation—whose origin here is the
point (10, 10) pW/m3.

Since typical magnitudes of E and J are in the range of a few up
to several mV/m and nA/m2, respectively, the power density unit
for E·J, and for the cumulative sum of E·J in Figure 4, is pW/m3.
Note that by scaling E·J with 4 s (the duration of the sampling
interval), one can derive the energy density profile along Cluster
crossing of the CLR, in pJ/m3. From this perspective, by scaling
the cumulative sum of E·J with 4 s and by dividing the result
through the number of points (i.e., 4 s intervals), one can derive
a proxy for the average energy density of each CLR event. While
Cluster data provide some information on the size and lifetime
of the CLR events (Hamrin et al., 2009b), the precise relevance
of this proxy depends on the particular geometry of the Cluster
crossing with respect to the CLR. For this reason, we prefer
to show the cumulative sum of E·J and refrain from scaling
this result.

The visual information provided by the pie chart and scatter
plot can aid in quickly assessing the performance of the NN
and is preferred here against the standard evaluation in terms
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FIGURE 5 | NN output for ion velocity data. Velocity is normalized to a maximum value of 1,000 km/s. Actual BBF events are shaded in blue.

of false positive and false negative events. As described above
(section Neural Network Identification of ECRs: Key Questions),
the definition of the “event” in the algorithmic approach—
which provides our comparison benchmark—is to some extent
empirical, and cannot be regarded as an “absolute” reference.
The identification of the events allows for jitter in the start
and end time, the NN approach can select individual smaller
events corresponding to a larger, singular event of the algorithmic
approach, and several new events are detected by the NN
(the dark blue slice of the pie chart and the points on the y
axis of the scatter plot in Figure 4). Therefore, comparing the
results in terms of “events” is not straight forward and, in this
case, performance assessment by means of the more flexible
cumulative sum looks better suited than the classical manner.

NEURAL NETWORK IDENTIFICATION OF
BBFs

Using the software developed to search for ECRs, we considered
testing the functionality of the selection tool provided by the
neural network implementation on other time series. We decided
to explore the possibility of using this setup to locate Bursty
Bulk Flow (BBF; Angelopoulos et al., 1992) events in ion velocity
observed by the HIA instrument (Rème et al., 2001) on Cluster.
In qualitative terms, BBFs are better defined than ECRs, meaning
less weak events and a better signal-to-noise ratio. Intuitively,
one can expect that an automatic pattern recognition tool will
work better with BBFs. Unlike for ECRs, in the case of BBFs
we did not benefit from an event database at hand, to provide

the training set. On the other hand, the definition of BBF
events is documented in several studies (even though there is
some variability in the relevant criteria), therefore assembling a
training set is significantly easier compared to ECRs. Moreover,
observation of BBFs requires just single-s/c ion data, compared
to multi-s/c, multi-instrument data for ECRs. This has a positive
effect on the errors and on the signal-to-noise ratio.

In order to assemble the training set, we manually selected
39 events, with duration between 500 and 3,000 s and a velocity
threshold of 400 km/s. The actual training set was built by
extending the selection around the events to include also non-
event data points and by finally concatenating the data. Similar
to the ECR case, we tested several network configurations with
this training set and eventually selected once again the one used
with ECRs (window size 5, no hidden layer).

Figure 5 shows a representative sample output of the trained
network over a ∼5 h Cluster crossing of the plasma sheet.
Compared to the ECR sample in Figure 3, covering a shorter
interval, the NN output is less abundant (fewer red events per
unit time), which is a consequence of the better signal-to-noise
ratio. The event selection seems reasonably accurate, but it still
requires further post-processing (i.e., joining short, neighboring
events; rejecting events below the velocity threshold). For this
particular time interval, the actual number of BBF events is 4
(shaded in blue), while the NN output is ∼20 (counting the red
rectangles/spikes). This suggests a rough multiplication factor
of five, between the actual number of events and the network
result. Implementing the post-processing will also make possible
a quantitative assessment of the NN performance, in the standard
terms of false positive and false negative events.
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The test data was built by using Cluster plasma sheet
measurements from the tail seasons of 2001–2004, 1st of August
to 10th of October. The actual tail seasons were actually
somewhat longer, but we made a conservative choice, to avoid
contamination with magnetosheath data on the dawn flank
(before 1st of August) and on the dusk flank (after 10th of
October). A preliminary count provided about 4,150 NN events,
namely some 800 actual events for the roughmultiplication factor
of five estimated above. Compared to the training set of 39 events,
the gain in the number of events is of the order of 20, which
consolidates the case for using NNs in exploring time series.
Obviously, in a particular case like this, the human effort to build
up a large event data base, appropriate, e.g., for statistical studies,
is tremendously decreased.

CONCLUSIONS

The NN approach explored in this paper provides an efficient
tool to automatically identify specific events in time series.
When using supervised learning, as illustrated here, a key
stage is building a representative training set, to be extended
by the network later on, during its nominal use. Another
essential feature is that the user must explore different network
configurations, by training and testing, in order to find the right
setup for the problem at hand.

The effort spent on finding the proper NN setup can be
considerable, as illustrated with the case of the weaker/noisier
ECRs, which are also harder to identify. In such cases, the benefits
of using the NN approach may appear questionable. On the other
hand, for the stronger/clearer BBF events, detection is both easier
and more reliable. Opposite to ECRs, the benefits of using NNs
to build up large event data bases are in such cases obvious.
In the future, we plan to further explore and try to quantify
the connection between the noise level and the results of neural
networks approaches.

Time series data are generously supplied nowadays by a broad
spectrum of high-resolution satellite (and ground) experiments.

Searching such data for specific events, as well as assembling
relevant statistical sets, are notoriously time-consuming in space
physics research. By taking advantage of machine learning tools,
like neural networks, to automate such operations, the time share
for creative (and rewarding) research will increase, to the benefit
of both event-oriented and statistical studies.
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