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On the Detectability of Large-Scale
Flows by Asteroseismology
Markus Roth* and Wiebke Herzberg

Leibniz-Institut für Sonnenphysik, Freiburg, Germany

Large-scale convective motions are an integral part of stellar interior dynamics and might

play a relevant role in stellar dynamo processes. However, they are difficult to detect

or characterize. Stellar oscillations are affected by convective flows due to advection.

For the Sun, forward calculations of the advective effect of flows on oscillation modes

have already been conducted, but the effect has not yet been examined for other

types of stars. Suitable candidates are subgiant or red giant stars, since they possess

extensive outer convection zones, which likely feature large-scale flow cells with strong

flow velocities. We investigate the effects of large-scale flows on oscillation modes of

subgiant stars by means of forward calculations based on an exemplary subgiant stellar

model. We focus in particular on non-axisymmetric cell formations, also referred to

as giant cells. The effects are described in the non-rotating and the rotating case. By

solving the forward problem, we evaluate, if large-scale flow cells lead to signatures in

asteroseismic data that are suitable for the detection of such flows. The influence of flows

is calculated by employing perturbation theory as proposed by Lavely and Ritzwoller

(1992), where the flow is treated as a perturbation of a 1D equilibrium stellar model. The

presence of a flow leads to a coupling of the modes, which results in frequency shifts and

amixing of themode eigenfunctions. For a non-rotating star, non-axisymmetric flows lead

to degeneracies between coupling modes, which cause an asymmetry in the frequency

shifts of modes of opposite azimuthal order. If rotation is included, the degeneracy is

lifted in first order, but residual degenerate coupling and third order effects can still lead to

asymmetries, depending on whether the modes are of p- or of g-type. For rotating stars,

the mode mixing induced by non-axisymmetric flows causes the observational signal of

a perturbed mode to be multiperiodic, which becomes visible in the power spectrum. An

expression for the amplitudes of the signal’s different components is derived.

Keywords: asteroseismology, convection, stars: interiors, stars: oscillations, theory

1. INTRODUCTION

Large-scale convective motions fundamentally influence stellar structure and evolution. They
redistribute angular momentum and energy in the stellar interior, resulting in the generation
of differential rotation and meridional circulation (e.g., Ruediger, 1989). Therefore, large-scale
convection also represents one of the key ingredients to stellar dynamos, which create magnetic
field and thereby activity cycles in stars (e.g., Miesch, 2005). Many stars feature an extensive outer
convection zone, but not much is known about the more detailed organization of convection, in
particular concerning dominant cell formations or cell sizes, as well as the corresponding flow
velocities, which are related to the energy transport. This lack of knowledge is due to the fact
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that stellar surfaces are typically not spatially resolved by
observations. Here asteroseismology represents a unique
opportunity to obtain information from observations even in the
absence of spatial resolution.

For the Sun, the most prominent convective feature on
the surface are the small-scale granules. Large-scale convection
is also believed to operate throughout the solar convection
zone. Based on measurements of the Doppler velocity on the
solar surface Hathaway et al. (2013) found evidence for giant
convection cells, but its internal structure is controversially
discussed (Hanasoge et al., 2012; Hanasoge and Sreenivasan,
2014; Greer et al., 2015). For more evolved stars, such as
subgiant stars and red giants, modeling suggests that surface
convection organizes into larger cells with higher flow velocities
(e.g., Trampedach et al., 2013; Tremblay et al., 2013), rendering
these stars ideal candidates for the investigation of large-scale
convective flows. Imaging the details of large-scale flows on
supergiants supports these findings (López Ariste et al., 2018;
Montargès et al., 2018). In this work, we will focus on the effect
of large-scale flows on the observed asteroseismic signal.

In this article, we describe the influence of large-scale poloidal
flow cells on global stellar oscillation modes. Our aim is to
determine the signatures of flows in seismic data that could
be used to detect or characterize flows from observations. The
investigation is carried out by means of forward calculations,
where we employ perturbation theory as proposed by Lavely
and Ritzwoller (1992). For this, the vector flow field inside the
star is decomposed into its poloidal and toroidal components.
The poloidal component is used to describe the giant cells as it
has all three vector components. The toroidal component has
a vanishing radial component, i.e., it describes flows on the
surface of a torus, i.e., in our context on a spherical surface. In
this framework, the presence of a flow leads to a coupling of
the global stellar oscillation modes, which results in frequency
shifts and a mixing of the mode eigenfunctions. For the Sun,
forward calculations employing this method have already been
performed by Roth and Stix (2008), Chatterjee and Antia (2009),
and Schad (2013), who studied the axisymmetricmeridional flow,
and by Roth and Stix (1999), Roth et al. (2002), and Chatterjee
and Antia (2009), examining certain non-axisymmetric cell
formations. In this contribution we explore mode coupling in
an asteroseismic context. For this purpose we examine the
effects of flows on low-degree modes and estimate potentially
observable signatures. We put particular focus on axisymmetric
and non-axisymmetric poloidal cell formations, which, in the
solar context, are also referred to as merdidional flows and giant
cells, resp. The calculations presented here cover the non-rotating
and the rotating case. In an exemplary application we derive these
signatures for a subgiant stellar model.

2. METHODS

We calculate the effect of convective flows on oscillation modes
of stars by employing quasi-degenerate perturbation theory
applied to stars and their oscillations, as presented in Lavely
and Ritzwoller (1992). Complementary, the results from the

quasi-degenerate calculations are approximated by perturbation
expansions, where we utilize an ansatz presented in Schad (2011).

2.1. Equilibrium Model
Starting point of our calculations is a 1D static and non-
rotating equilibrium stellar model with oscillation modes ξ k and
corresponding frequencies ωk. Here k = (n, l,m) is a multiindex,
which consists of three indices that characterize each oscillation
mode. By considering small perturbations of the equilibrium
model due to a displacement ξ of a parcel of gas, it can be shown
(e.g., Aerts et al., 2010) that the oscillation modes ξ k of the model
are governed by the momentum equation

ω2
k ξ k = L0 ξ k, (1)

where the linear operator L0 is defined by

L0 ξ = 1

ρ0
∇p′ − g ′ − ρ′

ρ0
g0. (2)

Here p′, ρ′, and g ′ denote Eulerian perturbations of pressure,
density, and gravitational acceleration, respectively. The
subscript 0 indicates equilibrium quantities. Equation (1)
represents an eigenvalue problem for L0, which is solved
by eigenfunctions

ξ (r, θ ,φ) = ξ r(r)Ym
l (θ ,φ)er + ξh(r)∇hY

m
l (θ ,φ), (3)

where Ym
l

is a spherical harmonic of harmonic degree l and

azimuthal order |m| ≤ l, ξ r , and ξh are radial eigenfunctions
of the radial and horizontal component of ξ , er denotes the
unit vector in radial direction, and the horizontal gradient ∇h is
given by

∇h = ∂

∂θ
eθ +

1

sin θ

∂

∂φ
eφ . (4)

We normalize the eigenfunctions such that

∫ R

0
ρ0

(

|ξ r|2 + l(l+ 1) |ξh|2
)

r2dr = 1, (5)

with R as stellar radius. For the equilibrium model, which
we assume to be spherically symmetric, modes of the same
radial order n and harmonic degree l form multiplets (n, l) that
consist of modes with different azimuthal orders m but identical
frequencies ωnl, i.e., the frequencies of the modes are degenerate
inm.

2.2. Perturbation by a Global Velocity Field
A flow inside a star, such as rotation or convection, represents
a velocity field that can be treated as a perturbation of the
equilibrium model, provided the flow velocity is small compared
to the speed of sound. The velocity field moves the stellar plasma
and therefore advects waves traveling in this plasma. Hence, the
oscillation modes have to fulfill a perturbed momentum equation

ω2
k ξ k = L0 ξ k + L1ξ k, (6)
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where L1 represents the advective effect of a velocity field u,
given by

L1ξ k = −2iω(u · ∇)ξ k − 2iω� × ξ k. (7)

The second term on the right hand side of Equation (7) accounts
for the effect of the Coriolis force and only needs to be taken
into account when working in a rotating (with constant angular
velocity �) reference frame.

Following the approach of Lavely and Ritzwoller (1992), we
utilize a spherical harmonic decomposition of the velocity field
u, consisting of a poloidal part P and a toroidal part T:

u(r) =
∞
∑

s=0

s
∑

t=−s

Pt
s(r, θ ,φ)+ Tt

s(r, θ ,φ), (8)

with

Pt
s(r, θ ,φ) = uts(r)Y

t
s (θ ,φ)er + vts(r)∇hY

t
s (θ ,φ), (9)

Tt
s(r, θ ,φ) = −wt

s(r)er ×∇hY
t
s (θ ,φ). (10)

The components of expansion (8) are characterized by the radius
dependent expansion coefficients uts(r), v

t
s(r) and wt

s(r). We only
consider flows that are stationary in time and anelastic

∇ · (ρ0u) = 0. (11)

Therefore, the coefficients uts(r) and vts(r) of the poloidal
components are not independent but connected by
mass conservation

∂

∂r
(r2ρ0u

t
s) = ρ0rs(s+ 1)vts. (12)

The conditions of stationarity and anelasticity are used as an
approximation for a flow that varies on time scales longer than
the stellar oscillation periods. To construct a real valued velocity
field the conditions

u−t
s = (−1)tuts

∗
, v−t

s = (−1)tvts
∗
, and w−t

s = (−1)twt
s
∗

(13)
have to be satisfied by the expansion coefficients (Dahlen and
Tromp, 1998), which implies specifically for non-axisymmetric
flows (t 6= 0) that both, the positive and the negative t-
component are to be included in expansion (8).

2.3. Quasi-Degenerate Perturbation Theory
In the following, we briefly outline the approach of
quasi-degenerate perturbation theory as used in this
context. For details we refer to the original description by
Lavely and Ritzwoller (1992).

As shown above advection leads to a perturbation of the
oscillation equation (6). In first-order perturbation theory the
perturbed oscillation eigenfunction is described in terms of
the unperturbed eigenfunctions. To calculate the respective
expansion coefficients and the perturbed eigenfrequencies, which
mirror the perturbing effect of the velocity field on the oscillation
modes of a star, a matrix representation of the perturbation has

to be constructed. Lavely and Ritzwoller (1992) apply quasi-
degenerate perturbation theory, which can be regarded as a local
approach, since the perturbation is calculated by considering only
a limited range 1ω2 around the oscillation frequency of interest
ωref. This is expressed in the quasi-degeneracy condition

∣

∣ω2
k − ω

2
ref

∣

∣ < 1ω2. (14)

Thereby, the choice of the range 1ω2 defines a subset K of
modes contributing to the calculation. The matrix representation
of the perturbation within quasi-degenerate perturbation theory
is given by a so-called supermatrix Z, the matrix elements of
which can be calculated by

Zk′k = Hk′k + (ω2
k − ω

2
ref)δk′k, (15)

where the matrix elements Hk′k compose the matrix
representation of the perturbation operator L1, which is
called the general matrix H:

Hk′k =
∫

V
ρ0ξ

∗
k′ · (L1)ξ kdV . (16)

These general matrix elements can be calculated by
(cf. Lavely and Ritzwoller, 1992)

Hk′k = Bk′k + Ck′k. (17)

The Coriolis contribution Bk′k is given by

Bk′k = −δm′m δl′l 2ωrefm�

∫ R⊙

0
ρ0

(

ξ rξh
′ + ξ r ′ξh + ξhξh′

)

r2dr,

(18)
where � = |�| is the angular velocity of the frame of reference
in which the calculations are performed. The contribution from
advection is

Ck′k =− 8πωrefγl′γl(−1)m
′
∞
∑

s=0

s
∑

t=−s

γs

(

s l l′

t m −m′

)

·
∫ R⊙

0
ρ0
[

iuts(r)Rs(r)+ ivts(r)Hs(r)+ wt
s(r)Ts(r)

]

r2dr,

(19)

where γx =
√

(2x+ 1)/(4π) with x = s, l, l′. For the
expressions of the kernels Rs(r),Hs(r), and Ts(r), seeAppendix 1.
The symbol

(

s l l′

t m −m′

)

, (20)

occurring in Equation (19), denotes theWigner-3j symbol, which
expresses an integration over angular components, i.e., spherical
harmonics, that appears implicitly in Equation (16). TheWigner-
3j symbol determines the coupling of the angular part of two
modes via the flow. For a more detailed description of the
properties of the Wigner-3j symbol see, e.g., Edmonds (1960)
or Lavely and Ritzwoller (1992). Two modes k, k′ couple, if the
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element Hk′k of the general matrix is non-zero. Two selection
rules of mode coupling result from the Wigner-3j symbols: the
harmonic degrees have to fulfill the triangle inequality

|s− l| ≤ l′, |l− l′| ≤ s, |l′ − s| ≤ l, (21)

and the azimuthal orders have to satisfy

t +m−m′ = 0. (22)

For non-axisymmetric flows (t 6= 0), which have to be composed
of a positive and negative component of azimuthal order ±t,
selection rule (Equation 22) leads to sets of coupling modes in
which degeneracy occurs, since a mode with azimuthal order
m has two direct coupling partners m′ = m ± t from each
multiplet fulfilling Equation (21). Generally, the supermatrix for
a given reference multiplet (n, l) can be decomposed into several
independent, irreducible submatrices, where number and sizes of
the submatrices depend on the flow configuration. If two modes
of different azimuthal order m from the reference multiplet are
part of the same irreducible submatrix, we speak of a degenerate
coupling set.

To obtain the new perturbed quantities, i.e., perturbed
eigenfunctions and frequencies of oscillation modes, we solve
the eigenvalue problem for the supermatrix Z (or equivalently
for the irreducible submatrices, which is computationally
less demanding)

ZA = A3. (23)

The matrix 3 contains the eigenvalues (ω2
z )k in its diagonal and

the matrix A contains the eigenvectors in its columns, which
are composed of expansion coefficients ak

k′ that form the new

eigenfunctions ξ̃ via

ξ̃ k =
∑

k′∈K
akk′ξ k′ . (24)

From the eigenvalues (ω2
z )k, which represent squared frequency

corrections, the new frequencies ω̃k and consequently the
frequency shifts δωk can be determined. We have

ω̃2
k = ω2

ref + (ω2
z )k, (25)

therefore we obtain for the frequency shifts

δωk = ω̃k − ωk =
√

ω2
ref + (ω2

z )k − ωref, (26)

where we have used the fact that ωk = ωref, when calculating the
frequency shift for the frequency of interest ωk.

We refer to the method of obtaining perturbed quantities
directly from the solution of the eigenvalue problem of Z as the
quasi-degenerate method, or in short the QD method.

2.4. Approximation by Perturbation
Expansions
As the computational effort of the eigenvalue calculation of the
matrix Z increases with the dimensions of the matrix, Schad
(2011) and Roth and Stix (1999) describe an alternative approach
for solving the eigenvalue problem in the non-degenerate case:
Not all modes k′ contribute to the perturbation of the reference
mode k. The coupling of the modes is determined by the Wigner
3j symbols and the kernels, meaning that many matrix elements
of Z vanish. Hence, the eigenvalues and eigenvectors of Z can be
approximated by perturbation expansions. We make use of their
approach and briefly summarize this procedure, which we refer
to as the PE method.

To shorten the expressions we utilize the abstract bra-
ket notation and therefore denote eigenstates as |k〉. The
eigenfunctions ξ k introduced earlier are the corresponding
representation in position space of the eigenstates |k〉.

Following Schad (2011), the perturbation expansion for the
eigenvalues of Z up to second order is of the form

(ω2
z )k ≈ E

(0)
k

+ E
(1)
k

+ E
(2)
k
, (27)

where the Ek denote eigenvalue corrections and the zeroth order

correction is given by E(0)
k

= ω2
k
− ω2

ref. Since we generally work
with ωk = ωref, this term is equal to zero. For the first and second
order corrections, one has to distinguish between three different
cases: non-degenerate, degenerate and second order degenerate.

Due to the triangle inequality (Equation 21) and the
dependency of the kernels Rs, and Hs on l, l′ and s the non-
degenerate case occurs e.g., for any poloidal axisymmetric flow
(t = 0), but for non-axisymmetric poloidal flows only in case of
certain combinations of flow configuration and modes, namely

||m| − 2t| > l for s odd, (28)

||m| − t| > l for s even. (29)

In the non-degenerate case the first and second order eigenvalue
corrections are given by (compare with Schad, 2011, Equations
30 and 31)

E
(1)
k

= Hkk E
(2)
k

=
∑

j 6=k

|Hjk|2

ω2
ref − ω

2
j

. (30)

Extending the approach just described to the degenerate case,
let D ⊂ K be the set of degenerate oscillation modes. If the
degeneracy is lifted in first order (e.g., if a non-axisymmetric
poloidal flow is combined with rotation) we obtain

E
(1)
k

= HDd
kk , E

(2)
k

=
∑

j/∈D

∣

∣

∣

∑

n∈D cknHjn

∣

∣

∣

2

ω2
ref − ω

2
j

, (31)

whereHDd
kk

denote the eigenvalues of the matrixHD, which is the
subsection of the matrix H spanned by degenerate modes n ∈ D.
The coefficients ckn, which occur in the second order eigenvalue
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correction are determined by the components of the eigenvectors
|k〉D of HD with

|k〉D =
∑

n∈D
ckn|n0〉, (32)

where the superscript 0 denotes unperturbed states.
If degeneracy is present, but the first order correction is zero

(e.g., non-axisymmetric flows, no rotation) the degeneracy is not
lifted in first order and degeneracy of second order occurs. One
then has

E
(1)
k

= 0, E
(2)
k

= WDd
kk , (33)

where WDd
kk

denote the eigenvalues of a perturbation matrix of

second orderWD (cf., e.g., Schiff, 1968).
The perturbation expansion for the eigenvectors of Z up to

first order is of the form

|k〉z ≈
∑

n∈D
ckn|n0〉 +

∑

j/∈D
|j0〉

∑

n∈D ckn〈j0|H|n0〉
ω2
n − ω2

j

. (34)

In the non-degenerate case, the coefficients ckn are given
by Kronecker delta functions ckn = δnk. In the degenerate
cases the coefficients ckn are determined either from
the eigenvectors of the matrix HD or WD respectively,
depending on whether the degeneracy is lifted in first or in
second order.

TABLE 1 | Subgiant model parameters.

M/M⊙ Age (Gyr) Z Y αMLT Teff (K) log g

1.25 4.6 0.02 0.28 1.8 5664 3.85

3. MODELS

3.1. Stellar Models
For our exemplary calculations we focus on a subgiant star.
The model for this star was calculated with the MESA stellar
evolution code (Paxton, 2011), and has a mass of 1.25M⊙. We
started with an initial metallicity of Z = 0.02 and an initial
He abundance of Y = 0.28 and evolved the star for 4.6 Gyr
to a stage where a substantial helium core has developed, which
is not ignited yet but surrounded by a hydrogen burning shell.
At this stage, the convection zone extends roughly through the
outer 29% of the stellar radius and is quickly expanding with age.
The convective regions were determined by the Schwarzschild
criterion and—for simplicity—no overshoot was added. Table 1
summarizes the parameters of the stellar model. The unperturbed
oscillation modes of the subgiant model were computed with
ADIPLS (Christensen-Dalsgaard, 2008).

We note that in contrast to a main-sequence star such as the
Sun, which features pure p- and g-modes, a subgiant star harbors
mixed modes, which however can also be mainly of p-type or of
g-type. To distinguish between p-type and g-type mixed modes,
we calculate the mode inertia (e.g., Dupret et al., 2009) in the
convection zone

Ecz =
∫ R

rmin

(

|ξ r(r)|2 + l(l+ 1)|ξh(r)|2
)

ρ0r
2dr, (35)

with rmin being the radius of the bottom of the convection zone.
Since the eigenfunctions are normalized such that the total mode
inertia is equal to unity (cf. Equation 5), Equation (35) also
represents the relative inertia in the convection zone. Figure 1
displays Ecz for the modes of the subgiant up to harmonic degree
l = 7, including all radial orders n in the frequency range from
400 to 900µHz. For the l = 0modes, which are pure pmodes, the
inertia in the convection zone amounts to about 65% of the total
inertia. For l = 1 themodes start to separate in their inertia values
dropping to lower values when becoming increasingly mixed.

FIGURE 1 | Mode inertia in the convection zone of the subgiant for modes of harmonic degree l = 0, . . . , 7 and all radial orders n occurring in the frequency range

400− 900µHz.
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FIGURE 2 | Profiles of the poloidal flow components uts and vts (for s = 9) as a function of stellar radius. The MLT velocity profile of the stellar model is shown

for comparison.

The modes have still a significant inertia in the convection zone
and can be affected by the flow. For higher l, the modes settle to
form two clusters, one with high (p-type modes) and one with
low inertia (g-type modes) in the convection zone, where the
low inertia modes will have little to no sensitivity to convective
poloidal flow cells.

3.2. Poloidal Flow Model
To describe the fundamental effect of a flow on oscillations it
is instructive to consider different harmonic components of the
harmonic expansion (8) of the flow individually. The poloidal
flow fields we use in our calculations will therefore read

uts(r, θ ,φ) =
∑

t′=±t

ut
′
s (r)Y

t′
s (θ ,φ)er + vt

′
s (r)∇hY

t′
s (θ ,φ), (36)

where as mentioned above, both, the positive and negative
values of t appear to guarantee a real-valued flow field. The
expansion coefficients uts(r) and vts(r) of the radial and horizontal
component of the vector field represent depth dependent flow
strengths. Since the coefficients are connected by Equation (12),
only one of them has to be prescribed. We choose uts(r) to have a
sinusoidal shape, analogously to Roth and Stix (2008)

uts = ua sin

(

π
r − rmin

rmax − rmin

)

, (37)

where rmin and rmax denote the inner and outer boundary of the
convection zone, respectively. At those boundaries this simple
model ensures that the radial flow component vanishes. For the
amplitude ua = 150m/s we use for our purposes of deriving a
first estimate of the expected effect the velocities obtained from
themixing-length theory (MLT), which is used to treat convection
in the computation of the stellar model (Böhm-Vitense, 1958).

Figure 2 shows the flow profile uts(r) entering our calculations,
together with the resulting vts(r) for an example harmonic degree
s = 9. Additionally, the velocity profile obtained from the MLT is
displayed for comparison.

3.3. Rotational Flow Model
Rotation can be modeled by a toroidal velocity field (cf.
Equation 10). For simplicity we employ here only radial
differential rotation and no latitudinal variation of rotation,
which can bemodeled with a single coefficientw0

1(r) in expansion
(8). We prescribe a rotational configuration where the core of the
star, which is separated from the stellar envelope by the hydrogen
burning shell, rotates faster than the envelope. This configuration
is typical for subgiant stars (cf. e.g., Deheuvels et al., 2014). For
the subgiant model employed here, the hydrogen burning shell is
located at about r/R ≈ 0.029. Based on the results of Deheuvels
et al. (2014), we set the envelope rotation rate to 250 nHz and the
core rotation rate to 620 nHz, hence

�(r) =
{

620 · 2π for r ≤ 0.029 · R
250 · 2π for r > 0.029 · R

. (38)

The resulting depth dependent velocity profile w0
1(r) is then

obtained via (cf. Ritzwoller and Lavely, 1991)

w0
1(r) = 2

√

π

3
r�(r). (39)

In case of a rotating star, we assume that the poloidal flow cells
rotate with the envelope angular velocity. Hence, the poloidal
flow cells will be stationary in a reference frame co-rotating
with the envelope at �sys/(2π) = 250 nHz. Since the method
described in section 2 is only valid for stationary flows, the
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FIGURE 3 | Frequency shifts for three l = 1 multiplets of the subgiant star for a flow configuration with s = 9 and |t| = 0, 2, . . . , 9. Shifts of the m = 0 mode are

connected by a solid line, shifts of the m = +1 and m = −1 modes are of equal value and connected by a dashed line.

calculations have to be carried out in this co-rotating frame. The
results can then be transformed into an inertial frame of reference
to model observations carried out from Earth.

4. RESULTS FOR PURELY POLOIDAL
FLOWS (NON-ROTATING STAR)

When observing stars other than the Sun photometrically, only
modes of low degree l ≤ 3 can be detected. Modes of higher
degree are subject to canceling effects (cf. e.g., Dziembowski,
1977), since observations, up to now, generally do not resolve
the stellar surface. In this section, where a non-rotating star is
considered, we present results for dipole (l = 1) modes, since
they show, together with the l = 0 modes, the highest amplitudes
in stellar oscillation spectra. In section 5, where the more general
case of a rotating star is examined, we also present results for
exemplary l = 0 and l = 2 modes.

4.1. Frequency Shifts, Non-degenerate
Case
In Figure 3 exemplary frequency shifts δν = δω/2π for three
different dipole multiplets in a frequency range typical for
subgiant stars are presented. For these results a configuration

with s = 9 for the poloidal flow cells was used and the azimuthal
order t of the flow was varied through all corresponding values
|t| = 0, 2, . . . , 9, for which the reference modes are non-
degenerate in the coupling set of modes. The case |t| =
1 is not considered since a degenerate coupling set occurs.
From Figure 3, it is evident that the flow causes the originally
degenerate triplets consisting of three modes with m = −1, 0, 1
to split up into two components, an m = 0 and an m =
±1 component. This shows that poloidal flows shift modes of
opposite azimuthal order ±m equally, provided they are not
connected through the perturbation by the flow, i.e., they are
part of non-degenerate coupling sets. Figure 3 also shows that the
shifts exhibit a distinct pattern depending on t. For eachmultiplet
the two components cross between the flow configurations with
t = 5 and t = 6. This behavior is induced by the Wigner-3j
symbols entering the general matrix elements (cf. Equation 19).
The magnitude of the shifts varies for the different multiplets, but
in general the shift is of the order of 10−1 nHz to 1 nHz, which is
challenging with today’s observational capabilities.

To explore the dependence of the frequency shifts on the
harmonic degree s of the flow, we calculated the shifts for
different values of s for one reference multiplet at 675.6µHz.
In Figure 4, the frequency shifts for various flow degrees s =
3, . . . , 9 and the corresponding values of t are displayed. For
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FIGURE 4 | Frequency shifts for different flow degrees s and the corresponding azimuthal orders t for a dipole multiplet at ν = 675.6µHz. (Top) shifts of the m = 0

component. (Bottom) shifts of the m = ±1 component.

better visibility, shifts for the m = 0 and the m = ±1
component are plotted in separate panels. The magnitude of the
shifts fluctuates for different s values, but there is no definite trend
with s visible.

4.2. Frequency Shifts, Degenerate Case
In case of degenerate coupling sets, two or more modes of the
reference multiplet are connected by the perturbation. In this
case, the modes that experience the frequency shift are generally
not oscillation eigenstates inasmuch as they have no well-defined
azimuthal order. As an example, the frequency shifts for the
dipole multiplet at 675.6µHz for a flow configuration with s = 5
and t = 1 are displayed in Figure 5. For this flow configuration,
degeneracy occurs between the m = 1 and m = −1 oscillation
states, since they are part of the same coupling set. The two states
that the flow acts on, are here orthogonal linear combinations of
the two degenerate states with equal mixing coefficients

State 1:
1√
2
|m = −1〉 + 1√

2
|m = +1〉 (40)

State 2:
1√
2
|m = −1〉 − 1√

2
|m = +1〉. (41)

As is also evident from Figure 5, the frequency shifts of these
states are not equal, so the multiplet will split up into three
components of different frequency. The magnitude of the shifts
is comparable to the non-degenerate cases.

5. RESULTS FOR POLOIDAL FLOWS IN
ROTATING STARS

When rotation is included in the calculation, the degeneracy of
the multiplets is lifted by the effect of rotation in first order.

Since the general matrix of rotation is diagonal in the degenerate
subspaces of the multiplets, the eigenstates that the perturbation
acts on are pure oscillation eigenstates with a well-defined
azimuthal order.

As noted in section 3.3, for rotating stars, we carry out the
perturbation calculation in a frame of reference co-rotating with
the poloidal flow cells, to adhere to the required stationarity of
the flow. Therefore we will present the results for frequency shifts
in the co-rotating frame (section 5.1). In the frame of a stationary
observer, all frequencies would appear shifted by an additional
m�sys, which is but of no consequence to the discussion here.

The additional frequency shift, however, is not the only effect
that has to be considered when changing from a co-rotating
to an inertial system. Taking into account the eigenfunction
perturbations, a switch of reference frames will actually lead to
a multiperiodic signal for each perturbed mode in the inertial
frame, which is discussed in section 5.2.

5.1. Frequency Shifts in the Co-rotating
Frame
When poloidal flows occur in combination with rotation, the
resulting frequency shifts will be asymmetric for modes of
opposite azimuthal order ±m. Therefore we start the discussion
of frequency shifts by elaborating on the different origins of
asymmetries in section 5.1.1. In the following sections 5.1.2–
5.1.4, the effect of the flow on modes of harmonic degree
l = 0, 1, 2 is investigated, since these modes typically exhibit
observable amplitudes in stellar oscillation spectra. The results
are summarized in section 5.1.5.

For the calculations, we adopt for the poloidal flow a cell
configuration with s = 8 and the possible corresponding values
of t, ranging from meridional (t = 0) to sectoral (t = s)
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FIGURE 5 | Frequency shifts for the dipole multiplet at ν = 675.6µHz for a flow configuration with s = 5 and t = 1, for which a degenerate coupling set occurs. The

shifts have to be assigned to mixed states instead of oscillation eigenstates.

cells. For better visibility of the effects, the amplitude ua of
the velocity profile (Equation 37) of the flow is amplified by a
factor of five. The main calculation is performed with the QD
method (section 2.3), but the PE method (section 2.4) is used as
comparison to distinguish different effects in the results.

5.1.1. Frequency Shift Asymmetries
If the frequency shift for modes of opposite azimuthal order ±m
is of equal value, we speak of a symmetric frequency shift. In
contrast, if the shift has opposite value for modes of opposite
azimuthal order, we speak of an antisymmetric frequency shift.
For a poloidal flow combined with rotation, the occurring
frequency shifts will be asymmetric for modes of opposite
azimuthal order ±m. This is due to the fact that the first order
eigenvalue corrections are antisymmetric in m (they are given
by the diagonal elements of the general matrix (cf. Equation 31)
which originate from rotation) and the second order corrections,
which are generated by squared matrix elements of the poloidal
flow, are symmetric in m. There are, however, two additional
small effects that can lead to asymmetries in the frequency
shifts. First, the third order eigenvalue correction can gain a
notable magnitude, in particular for a rotational configuration
with a faster rotating core, as prescribed here. The third order
eigenvalue correction adapted from Sakurai and Napolitano
(2011) for a perturbation composed of rotation and a poloidal
flow, is given by

E
(3)
k

=
∑

j/∈D

∑

i/∈D

HkiHijHjk

(ω2
i − ω2

k
)(ω2

j − ω2
k
)
−Hkk

∑

i/∈D

|Hki|2
(ω2

i − ω2
k
)2
.

(42)
The second effect causing an asymmetry originates from the
fact, that rotation combined with a poloidal flow leads (in most
cases), just as a purely poloidal flow, to degenerate coupling sets.
Rotation lifts this degeneracy in first order, but the coupling of
modes by the poloidal flow within a degenerate coupling set
occurs in second order, which can lead to a notable asymmetry
in the frequency shifts for ±m, and a mixing of the eigenvectors
of zeroth order, analogously to the results presented for the
degenerate case in section 4.2. This type of asymmetry, caused by

degenerate coupling, cannot be reproduced by an approximation
with a perturbation expansion.

5.1.2. Modes of Degree l = 0
Modes of harmonic degree l = 0 are pure p modes. They
do not occur in multiplets, therefore no degeneracy can arise.
Additionally l = 0 modes are not affected by rotation. Poloidal
flows on the other hand will cause a frequency shift for l = 0
modes. This shift however does not depend on the azimuthal
order t of the flow, since theWigner-3j symbol combined with the

factor (−1)m
′
(see Equation 19) has the value (−1)s

√

1/(2s+ 1)
for all t. For an example l = 0 mode with an original frequency
of 705.6µHz and the amplified flow velocity profile and cell
configurations described above, we obtain a constant frequency
shift of about δν = 9.87 nHz.

5.1.3. Modes of Degree l = 1
Figure 6 displays the frequency shift in the co-rotating frame of
the almost pure p-type l = 1 multiplet with an original frequency
of νref = 675.6µHz for the different flow cell configurations.
Results for the individual modes, making up the multiplet, are
connected by lines to guide the eye. The upper panel shows the
frequency shifts resulting from the combined effect of rotation
and the poloidal flow

δν = 1

2π

(√

ω2
ref + ω

2
z,polrot − ωref

)

, (43)

where ω2
z,polrot denotes eigenvalues of the combined supermatrix,

while the lower panel shows frequency shifts where the effect of
pure rotation has been subtracted to isolate the shifts caused by
the poloidal flow

δνisopol =
1

2π

(√

ω2
ref + ω

2
z,polrot − ω

2
z,rot − ωref

)

. (44)

Here, ω2
z,rot denotes the eigenvalues obtained from a supermatrix

for pure rotation. The upper panel illustrates that the originally
degenerate multiplet is split by the perturbation into its three
components of different azimuthal order m. The resulting triplet
exhibits a notable asymmetry that changes in form for different
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FIGURE 6 | Frequency shifts in the co-rotating frame for the almost pure p-type l = 1 multiplet at 675.6µHz. (Upper) Shifts resulting from rotation combined with a

poloidal flow of s = 8 and different values of t. (Lower) Isolated frequency shifts due to the poloidal flow.

values of t. In the lower panel, where the effect of rotation is
subtracted, the pattern of the two crossing components, familiar
from the results presented in section 4.1 for a non-rotating
star, is recovered, meaning the shift due to the poloidal flow
is symmetric in ±m. Only a very small asymmetry results for
a poloidal flow configuration with t = 1 and the modes with
m = ±1, which is far beyond observational capabilities. For this
particular configuration, the modes with m = ±1 are part of the
samemode coupling set and the asymmetry in the shift is actually
caused by a residual degenerate coupling between the modes,
even though the degeneracy was lifted in first order by rotation
(as visible in the upper panel). Also shown in Figure 6 are the
shifts calculated with the PE method, where the perturbation
expansion for the eigenvalues was evaluated up to third order.
The results are indicated by black crosses. Apart from the small
asymmetry at t = 1, the frequency shifts obtained with the QD
method are very well-reproduced by the PE method.

5.1.4. Modes of Degree l = 2
For modes of harmonic degree l = 2 distinguishing between p-
type and g-type modes becomes necessary, since the results differ
substantially.

Figure 7 displays the frequency shifts in the co-rotating frame
for an l = 2 multiplet of g-type with an original frequency of
659.3µHz for different poloidal flow configurations. From the
upper panel, showing the shifts due to the combined effect of
rotation and the poloidal flow, it is evident that the multiplet
is strongly affected by the fast rotating core, leading to a clearly
antisymmetric splitting of the modes of different azimuthal order
m. Even in the frame of reference that is co-rotating with the
envelope angular velocity, the splitting of the multiplet is very
strong, amounting up to several hundred nHz. This causes the
contribution of the poloidal flow to be not discernible at all in

the upper panel, which is evident from the fact that the shifts
do not seem to change for different cell configurations t. In the
lower panel of Figure 7, where the effect of rotation is subtracted
(cf. Equation 44), the t-dependence of the shifts becomes visible.
The remaining frequency shifts, which are only of the order of
a few nHz, show a notable asymmetry in ±m that persists for
all configurations t. This asymmetry is well-reproduced by the
results obtained with the PEmethod and originates from a strong
third order contribution.

In Figure 8, frequency shifts in the co-rotating frame for a p-
type l = 2 multiplet with an original frequency of 701.3µHz
are displayed. In contrast to the g-type multiplet, the combined
splitting of rotation and poloidal flow is much weaker (upper
panel) and the different azimuthal order components are not
clearly separated for every t. This is due to the fact, that for
the p-type multiplet, the effect of rotation does not outperform
the effect of the poloidal flow, but instead they are of similar
magnitude, since the p-type multiplet has only a low sensitivity
to the fast rotating core. The weak rotational influence leads
to asymmetries in the frequency shifts caused by degenerate
coupling, which are best visible in the lower panel of Figure 7,
where the isolated frequency shifts due to the poloidal flow are
displayed. For most of the flow configurations t, the shifts are
symmetric in±m, but for t = 1 and t = 2 there are asymmetries
in the shifts for modes with m = ±1 and m = ±2, respectively,
which are not reproduced by the PE method. From the lower
panel it is also evident that, compared to the g-type multiplet, the
third order contribution for the p-type multiplet is small enough
to not cause any notable asymmetry.

5.1.5. Summary of the Results on Frequency Shifts
Subgiant stars harbor mixed modes that can be of p- or of g-type.
Modes with l = 0 are pure p modes, and in the subgiant model
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FIGURE 7 | Frequency shifts for the g-type l = 2 multiplet at 659.3µHz in the co-rotating frame. (Upper) Shifts resulting from rotation combined with a poloidal flow

of s = 8 and different values of t. (Lower) Isolated frequency shifts of the poloidal flow.

FIGURE 8 | Frequency shifts for the p-type l = 2 multiplet at 701.3µHz in the co-rotating frame. (Upper) Shifts resulting from rotation combined with a poloidal flow

of s = 8 and different values of t. (Lower) Isolated frequency shifts of the poloidal flow.

selected here, modes with l = 1 have sensitivity in the convection
zone. The first pronounced g-type modes start to appear at l = 2
(cf. Figure 1). From an observational point of view, however, they
might have low amplitudes. Different mode types are prone to
different causes of asymmetry in the frequency shifts for modes
of opposite azimuthal order ±m. Modes of g-type have a high
sensitivity to the conditions in the core region. For models with a
fast rotating core and a poloidal flow in the convection zone, this

leads to a significant third order eigenvalue correction, causing
an asymmetry in the shifts.

Modes of p-type are less sensitive to the core region, leading to
a smaller effect of rotation formodels wheremerely a fast rotating
core is prescribed. A small rotational effect yields an insufficient
lifting of the degeneracy in first order, so that the degenerate
coupling occurring in second order (due to the poloidal flow)
retains a notable influence and causes an asymmetry in the
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frequency shifts. This effect can only occur for modes that are
part of degenerate coupling sets.

From the examples shown in the preceding sections it is
evident that both discussed types of asymmetries are significantly
smaller than the actual frequency shifts induced by the
poloidal flow.

In general we note, that the frequency shifts calculated for
the models above are small and difficult to detect. Therefore, in
addition to the frequency shift, we take the perturbation of the
eigenfunctions in the following sections into account.

5.2. The Multiperiodic Signal in an Inertial
Frame
Since observations are typically carried out from a stationary
observer’s frame of reference, the results obtained in the co-
rotating frame have to be transformed into an inertial reference
frame. This transformation and its effect on the eigenfunctions
is discussed in section 5.2.1. The transformation of coordinate
systems will result in a multiperiodic observational signal for
each perturbed mode in the inertial frame, which is derived in
section 5.2.2. In section 5.2.3 exemplary results for this signal
are presented.

For the calculation of multiperiodic signals the amplified flow
velocity profile is adopted that was also used for the calculation of
frequency shifts (cf. section 5.1). For the cell configuration of the
poloidal flow we adopt a configuration with s = 8 and different
values of t, includingmeridional (t = 0) and sectoral (t = s) cells.

5.2.1. Transformation From a Co-rotating to an

Inertial Frame
We employ a transformation from a co-rotating reference frame
to an inertial frame as discussed in Lavely and Ritzwoller (1992).
Given a star rotating with uniform angular velocity �, we define
two sets of spherical polar coordinates, coordinates (rR, θR,φR) in
the frame co-rotating with the star and coordinates (rI , θI ,φI) in
an inertial frame. The two sets of coordinates are related by

(rR, θR,φR) = (rI , θI ,φI −�t). (45)

We now wish to transform a perturbed mode of oscillation ξ̃
R

k

from the co-rotating frame to the inertial frame

ξ̃
R

k (rR, θR,φR, t) = ξ̃
R

k (rI , θI ,φI −�t, t) = ξ̃
I

k(rI , θI ,φI , t). (46)

Perturbation theory yields perturbed modes that can be
expressed as linear combinations of the unperturbed modes
(cf. Equation 24)

ξ̃
R

k (rR, θR,φR, t) =





∑

j∈K
akj ξ

R
j (rR, θR,φR)



 e−iω̃kt , (47)

where we have assumed the simple time dependence of a
harmonic oscillation. The quantity in square brackets, which
represents the eigenfunction of the perturbed mode k, is time-
independent in the co-rotating frame,meaning the spatial pattern
oscillating with perturbed frequency ω̃k remains the same for all

time, when observed while co-rotating with the star. Inserting
Equation (46) into Equation (47) yields the expression for the
mode in the inertial frame

ξ̃
R

k (rI , θI ,φI −�t, t) =





∑

j∈K
akj ξ

R
j (rI , θI ,φI −�t)



 e−iω̃kt (48)

=





∑

j∈K
akj ξ

R
j (rI , θI ,φI)e

−imj�t



 e−iω̃kt

(49)

=
∑

j∈K
akj ξ

R
j (rI , θI ,φI)e

−i(ω̃k+mj�)t , (50)

where we have used the fact that the azimuthal dependence of
the eigenfunctions is given by eimφ , stemming from spherical
harmonics (cf. Equation 3). We added the subscript j at the
azimuthal order to indicate the corresponding multiplet. The
expressions above show that, in the inertial frame, the spatial
pattern that oscillates with frequency ω̃k actually changes with
time, since the eigenfunctions have acquired a time dependence
(Equation 49). In other words, the oscillation originating from
one perturbed mode in the co-rotating frame, is multiply
periodic in the inertial frame (Equation 50), whereby the
number of different frequencies depends on the number of
different azimuthal orders m contributing to the coupling of the
perturbed mode.

5.2.2. The Signal to Be Observed in an Inertial Frame
In the co-rotating frame, the velocity field generated by

a perturbed mode k, with eigenfunction ξ̃ k(r, θ ,φ) and
eigenfrequency ω̃k, can be written as

vk(r, θ ,φ, t) = αk(t)e
−iω̃kt ξ̃ k = αk(t)e

−iω̃kt
∑

j∈K
akj ξ j, (51)

where αk(t) is a time dependent amplitude of the oscillatory
velocity field, incorporating excitation and damping effects, and
the ξ j denote the unperturbed eigenfunctions (cf. Equation 3) of
the oscillation modes in set K. For low to intermediate harmonic
degrees l, the horizontal component of the vector field (3) at the
surface is much smaller than the radial component, ξh(R)≪ξ r(R)
(e.g., for the solar 5-min oscillations ξh(R)/ξ r(R) ∼ 0.001, Aerts
et al., 2010), so the motion is predominantly vertical. Therefore,
the velocity field at the surface is approximately given by

vk(R, θ ,φ, t) = αk(t)e
−iω̃kt

∑

j∈K
akj ξ

r
j (R)Y

m
l (θ ,φ)er . (52)

This is valid in the co-rotating frame, where the poloidal flow
cells are stationary. To calculate the signal of the velocity field
observed in a stationary reference frame, we need to employ the
transformation (Equation 46); thereby the velocity field in the
inertial frame becomes
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vIk(RI , θI ,φI , t) = vk(RI , θI ,φI −�t, t) (53)

= αk(t)e
−iω̃kt

∑

j∈K
akj ξ

r
j (R)Y

m
l (θI ,φI −�t)er

(54)

= αk(t)e
−iω̃kt

∑

j∈K
akj ξ

r
j (R)Y

m
l (θI ,φI)e

−im�ter .

(55)

We now discard the unit vector er and further examine merely
the scalar value of the velocity field, which is tantamount to ideal
observation conditions, where the full stellar surface would be
observed. For realistic observation conditions, further projection
effects and consideration of mode visibilities have to be taken into
account (cf. Dziembowski, 1977; Schad, 2011). Additionally, we
merge the exponential time dependences. This yields

vIk(RI , θI ,φI , t) = αk(t)
∑

j∈K
akj ξ

r
j (R)Y

m
l (θI ,φI)e

−i(ω̃k+m�)t . (56)

Projecting the velocity field vI
k
(RI , θI ,φI , t) onto the different

occurring Ym
l
, by multiplying Equation (56) with the

corresponding complex conjugate spherical harmonic (Ym
l
)∗

and integrating over the full solid angle, we obtain the signal
component of each spherical harmonic comprising the surface
velocity signal in the observer’s frame

yklm(t) = αk(t)
∑

j∈Klm

akj ξ
r
j (R) e

−i(ω̃k+m�)t . (57)

Here, the set Klm ⊂ K now consists only of modes that
have the same harmonic degree l and azimuthal order m, but
different radial orders n. Each spherical harmonic component
of the velocity signal, as given by Equation (57), essentially
consists of an amplitude and frequency. Since the time dependent
amplitude αk(t) in general might not be known, it is more
convenient to work with relative, instead of absolute amplitudes
for the different components. Therefore, we define a new
quantity ψk

lm
(t) that is obtained by dividing Equation (57) by the

amplitude αk(t) a
k
k
ξ r
k
(R) of the reference mode component of the

signal, yielding

ψk
lm(t) =

∑

j∈Klm

Akj

ξ rj (R)

ξ r
k
(R)

e−i(ω̃k+m�)t , (58)

where theAkj are so-called coupling ratios as introduced by Schad
(2011), which are defined as

Akj =
akj

ak
k

. (59)

Applying a Fourier transform to Equation (58), we obtain explicit
frequency positions and corresponding relative amplitudes of the
different signal components:

ψ̂k
lm(ω) =

∑

j∈Klm

Akj

ξ rj (R)

ξ r
k
(R)

δ(ω − (ω̃k +m�)). (60)

Here, δ(ω) denotes the Dirac delta function, which is non-zero
only at ω = 0. We will use the quantities in the equation above,
to showcase the effect of the flow which is to be observed in an
inertial frame. Specifically, we will display the absolute value of
the complex relative amplitude

ηklm : =

∣

∣

∣

∣

∣

∣

∑

j∈Klm

Akj

ξ rj (R)

ξ r
k
(R)

∣

∣

∣

∣

∣

∣

(61)

for the different spherical harmonics and frequencies that
compose the multiperiodic signal in the observer’s frame.

5.2.3. Multiperiodic Signal of an l = 1 Multiplet
The multiperiodic signal, or more specifically the frequencies
and relative amplitudes ηk

lm
of the different spherical harmonic

components of the multiperiodic signal, which are generated by
a perturbed multiplet of harmonic degree l = 1 in a stationary
observer’s frame, are shown in Figure 9. Each panel shows the
result for a different flow cell configuration t, including also a
meridional flow (t = 0, top panel) and sectoral cells (t = s =
8, bottom panel). The signal components (dots) are separated
by harmonic degree l, which is given on the ordinate, and by
frequency given on the abscissa. The dot size (area) expresses
the modulus of the complex amplitude ηk

lm
(cf. Equation 61) of

the different signal components relative to the reference modes.
The three largest dots represent the reference mode components
of the signal with l = 1 and m = −1, 0,+1, plus three further
coupling modes of the same l and m but different radial order n
that are part of the coupling set. The azimuthal order m, which
causes the multiperiodicity of the signal, is indicated by the dot
color. The frequency of the unperturbed multiplet is marked by a
vertical dotted line.

For an axisymmetric (meridional) flow, given in the top panel
of Figure 9, we see that the originally degenerate multiplet is split
into its three azimuthal order components m = −1, m = 0,
and m = +1 in frequency. Note, that this frequency splitting
is not equal to the splitting shown for t = 0 in the upper panel
of Figure 6, but is much stronger, since the transformation into
the observer’s frame adds an additional m�sys to the frequency
shift of each mode. The asymmetry induced by the poloidal
flow, which is visible in the co-rotating frame (cf. Figure 6,
upper panel), is almost undetectable in the observer’s frame.
There, the frequency shifts are dominated by the contribution
to the shift arising from the switch of reference frames, which is
antisymmetric in±m.

As s = 8 and because of Equation (21), apart from the
dominant referencemode component, the signal in the observer’s
frame of each of the three perturbed modes contains additional
components with harmonic degree l = 7 and l = 9, which are of
lower amplitude. For t = 0, these components oscillate with the
same frequency as their respective reference mode component
(cf. Figure 9, top panel). This is due to the fact that axisymmetric
flows couple only modes of the same azimuthal order m, and m
determines the frequencies observed in the stationary observer’s
frame (cf. Equation 60). So, even though the multiplet splits into
three modes of different azimuthal order due to the perturbation
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FIGURE 9 | Frequencies and relative amplitudes ηklm (dot size) of the multiperiodic signal for the perturbed l = 1 multiplet in a stationary observer’s frame for a poloidal

flow with s = 8, t = 0, 2, 4, 6, 8 and an amplified flow profile. Dot colors indicate different values of m. The dotted line marks the unperturbed multiplet frequency

νref = 675.6µHz.

and the frame switch, each of these three individual perturbed
modes remains monoperiodic in the observer’s frame for t = 0.

For non-axisymmetric flows (t 6= 0), shown in the remaining
panels of Figure 9, the additional l = 7 and l = 9
components acquire frequencies different from the reference
mode components, so the signal of each reference mode becomes
multiperiodic. For each reference mode, there are two dominant
ancillary signal components per harmonic degree l, and several

minuscule components. The two dominant components, one
of which has a higher frequency than the reference mode
component and one has a lower frequency, correspond to modes
of azimuthal order m = mref ± t, which couple directly to
the reference mode. The minuscule components result from
secondary and higher order couplings. With increasing t, the
dominant ancillary components migrate away from the reference
mode components, to higher and lower frequencies, respectively.
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This migration is due to the fact that, with increasing t, the
poloidal flow couples the reference mode to modes whose
azimuthal order m differs more strongly from the azimuthal
order of the reference mode [cf. selection rule (22)].

Overall we find, that due to mode coupling the individual
perturbed modes have frequency contributions from all modes
in the coupling set. Hence, high-degree modes add frequency
contributions to the signal of low degree modes and vice versa
in the presence of a suitable velocity field. As a result, the
perturbed oscillation will be a beating. This leads to sidelobes
in the respective power spectrum. Those sidelobes, which are
then appearing due to mode coupling to high-degree modes
are potentially measurable signatures in the power spectra
obtained from asteroseismic time series. These sidelobes carry
characteristic information about the large-scale flow components
present inside a star.

6. SUMMARY AND DISCUSSION

By means of forward calculations we investigated the effects of
large-scale poloidal flows on the frequencies and eigenfunctions
of stellar oscillation modes for a subgiant star, in the non-
rotating and the rotating case. The work focused in particular
on axisymmetric (t = 0) and non-axisymmetric (t 6= 0) flow
configurations, associated with meridional flows and giant cells,
respectively. The results were obtained by applying perturbation
theory based on Lavely and Ritzwoller (1992), where the flow is
treated as a perturbation of an equilibrium stellar model, which
leads to a coupling of the oscillation modes, which in turn results
in frequency shifts and a mixing of the mode eigenfunctions.

6.1. Non-rotating Case
For the non-rotating case, we find that the frequency shifts
caused by any poloidal flow (axi- and non-axisymmetric) are
symmetric for modes of opposite azimuthal order ±m, provided
no degeneracy occurs, i.e., the modes in the reference multiplet
form non-degenerate coupling sets. If the reference modes form
degenerate coupling sets, a circumstance which can only arise
for non-axisymmetric flow configurations, the frequency shifts of
modes of opposite azimuthal order ±m are asymmetric, and the
modes that experience the shifts are mixtures of oscillation states
that do not possess a well-defined azimuthal order.

We investigated the behavior of the frequency shift depending
on the flow’s azimuthal order t and harmonic degree s. The
parameter t changes the position of the shifted modes within the
multiplet relative to each other, a behavior which is governed by
the Wigner-3j symbols. The parameter s causes an overall change
in the frequency shift for the entire multiplet, but there is no
distinct trend of the shift with s visible.

For the low degree modes considered here, the frequency
shifts caused by the flows are predominantly positive. The
magnitude of the shifts is of the order of 10−1 nHz to 1 nHz,
varying for different frequencies. Unfortunately, this magnitude
is one to two orders of magnitude lower than typical errors on
measured oscillation frequencies. For example, the frequency
errors obtained from Kepler data for several subgiant and
young red giant stars (Deheuvels et al., 2014) are of the order
of 10−2 µHz. We therefore could conclude that the small

shifts induced by purely poloidal flows will not be detectable
in subgiant stars, considering current analysis methods and
assuming flow velocities comparable to the ones prescribed in
this work. Nevertheless, considering modes in subgiants with
partial g-mode behavior, that therefore have a narrower peak in
the power spectrum and smaller errors of frequencies might be
close to the detection of the frequency shifts.

6.2. Rotating Case
In the rotating case, it is possible for the frequency shifts of
modes of opposite azimuthal order ±m to show two different
types of asymmetries of different origin. If the star possesses a
fast rotating core, the frequency shift of g-type modes acquires a
significant third order contribution, causing an asymmetry. For
p-type modes, on the other hand, substantial residual degenerate
coupling can lead to an asymmetry, which occurs when rotation
is not able to lift an existing degeneracy sufficiently. The
frequency shifts remain of the same order of magnitude as in
the non-rotating case and are therefore not a suitable measure
to detect large-scale flows.

However, in a stationary observer’s frame, the mode mixing
induced specifically by non-axisymmetric poloidal flows causes
each perturbed mode to appear as a multiperiodic observational
signal. We derived an expression for the amplitudes of the
different signal components and presented the pattern of
the signal as a function of frequency and harmonic degree.
Apart from the reference mode component of the signal,
which possesses the highest amplitudes, several low-amplitude
ancillary signal components with different frequencies appear
(two dominant ancillary components per reference mode and
coupling harmonic degree). The amplitudes of these ancillary
components are sensitive to the flow. For distant stars, only low-
degree modes (l ≤ 3) can be observed in oscillation spectra.
The ancillary components of low-degreemodes are, for most flow
configurations, of harmonic degree l′ > 3 [cf. selection rule (21)]
and are therefore, due to unresolved stellar surfaces, most likely
undetectable in current stellar data. However, the problem can
be considered the other way around: Due to mode coupling the
higher degree modes leave their imprint in the lowest degree
modes, too. The degrees best visible in stellar data are l = 0
and l = 1. For a poloidal flow of given degree s, the triangle
inequality (Equation 21) yields that the perturbed multiplets of
degrees l′ = s, l′ = s − 1, and l′ = s + 1 will create ancillary
signal components in the time series of the modes with degrees
l = 0 or l = 1. Therefore, the most promising procedure to detect
signatures of a specific poloidal flow field in stellar oscillation
spectra would be to search for unidentified peaks (ancillary signal
components) at frequencies belonging to the aforementioned
modes of degrees l′ = s, s− 1, s+ 1.

Generally, this study could be expanded to other stars of
different masses and evolutionary stages. Obviously, real large-
scale stellar velocity fields are a superposition of several flow
components, which therefore all of them would lead to side lobes
in the power spectrum of low-degree modes. Supported by more
realistic models of stellar convection, actual potential detection
limits of large-scale flows in stars by asteroseismology could be
derived. We defer such studies to later investigations.
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We would also like to note that in turn, if such side lobes in
the power spectrum could be detected, they would provide hints
on the frequencies of the high-degree modes, too. This would
therefore support the modeling of the respective star.
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7. APPENDIX

7.1. Flow Kernels
Expressions for the flow kernels as given by Lavely and Ritzwoller
(1992):

Rs(r) =
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ξ r
′ dξ

r

dr
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where the coefficients B(N)±
ijk

are defined by Woodhouse (1980):
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The coefficients B
(N)±
ijk

satisfy several useful identities, in

particular we employed
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with6 = i+ j+ k.
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