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Solar-Terrestrial Data Science: Prior
Experience and Future Prospects
Daniel N. Baker*

Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States

Acquisition of relatively large data sets based on measurements in the interplanetary

medium, throughout Earth’s magnetosphere, and from ground-based platforms has

been a hallmark of the heliophysics discipline for several decades. Early methods of time

series analysis with such datasets revealed key causal physical relationships and led

to successful forecast models of magnetospheric substorms and geomagnetic storms.

Applying neural network methods and linear prediction filtering approaches provided

tremendous insights into how solar wind-magnetosphere-ionosphere coupling worked

under various forcing conditions. Some applications of neural net and related methods

were viewed askance in earlier times because it was not obvious how to extract or

infer the underlying physics of input-output relationships. Today, there are powerful new

methods being developed in the data sciences that harken back to earlier successful

specification and forecasting methods. This paper reviews briefly earlier work and looks

at new prospects for heliophysics prediction methods.
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INTRODUCTION

Modern information and communication technologies have created an interoperable era in which
access to data can be essentially universal. Open access to these data and related services enables
the research and applications community to meet new challenges of understanding Earth and
its space environment (Baker, 2008). Given the complex system, understanding the Earth and
near-Earth space requires managing and accessing large data sets. It also requires acquisition of
progressively higher spatial and temporal resolution measurements. In the modern era, there is
particular need for very rapid (near real-time) response modalities. In many instances, acquired
data must be assimilated into empirical or physics-based models. Such work often requires crossing
of disciplinary boundaries in order to achieve the ultimate research and applications goals.

Traditionally, science has been viewed as being based on two fundamental pillars:
Experimentation (i.e., observations) and theory. In the past century or so, computational methods
and related modeling have been added as an essential pillar of basic science. In fact, most domains
of science today could simply not be viable without the availability of computational modeling.
In recent times, it has been further recognized that “informatics” —the science of processing data
for storage and retrieval—is an indispensable fourth pillar of modern science (Baker et al., 2008).
Thus, for the present-day purposes of understanding and predicting the behavior of the coupled
Sun-Earth system, information science is as much a key foundation as are the more traditional
elements of science (see Figure 1).

In this brief review, the goal is to use the coupled solar wind-magnetosphere-ionosphere system
to illustrate the application and utilization of various data analysis methods. Many topics to
be discussed were based on time series analysis and prediction filter methods. This work led
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naturally to the understanding that the magnetosphere-
ionosphere system often evolves toward highly non-linear states
that must be examined carefully. Methods employed decades
ago have now become quite relevant again in the present era of
machine learning. Appreciation of the roots of solar-terrestrial
data science are important looking toward the future.

THE DRIVEN
MAGNETOSPHERE-IONOSPHERE
SYSTEM

Figure 2 is a schematic diagram of the Earth’s magnetosphere
and some of its key plasma physical regions. The diagram

FIGURE 1 | The pillars supporting basic science have long been considered to

be experimental observations and theory. In more recent times, computation

has also been an integral part of most scientific disciplines. Today, informatics

(that bridges between information and communication technology on the one

hand and the use of digital data on the other) must also be considered as a

fundamental pillar of the science enterprise (From Baker et al., 2008).

FIGURE 2 | A schematic design showing the overall structure of Earth’s magnetosphere and some of the key plasma regions and current systems comprising the

geospace domain.

also illustrates the external solar wind flow and many
of the large-scale current systems that shape the overall
magnetospheric cavity. From this picture, we see that the
Earth’s magnetosphere-ionosphere system is a large, highly-
coupled plasma domain. In its ground state, the magnetosphere
is characterized by a relatively stable configuration standing
off the solar wind at ∼12 RE (Earth radii) at its sub-
solar point. It extends into an elongated magnetotail on
the nightside. The basic steady-state relationship with the
interplanetary magnetic field (denoted BIMF) during quiet
times gives rise to a coherent global structure with persistent
boundary features.

As the solar wind impinging on the magnetosphere
changes velocity or density and, notably, when the IMF
changes magnitude or direction, the magnetosphere undergoes
substantial evolution. The size of the magnetospheric cavity
changes, strong ionospheric currents are set up, and large
configurational changes can be seen throughout the magnetotail.
The elemental and repeatable sequence of events that occurs
starts with a southward turning of the interplanetary magnetic
field. This causes enhanced coupling from the solar wind into
the magnetosphere.

Figure 3 shows the commonly accepted picture of the
resulting magnetospheric substorm sequence (Baker et al., 1993,
1996). Figure 3A shows a cross-sectional view of the magnetotail
and illustrates its relaxed or quiescent state. The plasma sheet is
rather thick and there is little excess “free energy” in the system.
Figure 3B shows the magnetotail as the interplanetary field has
turned southward and a large amount of magnetic energy has
been added to the tail. This growth phase is characterized by
considerable excess stored energy in the magnetotail lobes and
a thin, stressed plasma sheet. Finally, in Figure 3C we show
the explosive onset of near-Earth magnetic reconnection (x-line
formation) which gives rise to a plasmoid that pinches off and
leaves the system. This entire sequence constitutes a magnetic
“loading-unloading” system. As such, it can be modeled using
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FIGURE 3 | Cross-sectional views of the Earth’s magnetosphere showing the

solar wind interaction and dynamical evolution. (A) The quiet time or “ground

state” configuration showing weak solar wind energy coupling to the

magnetosphere. (B) The growth phase of the magnetospheric substorm

showing increased solar wind energy coupling (due to dayside magnetic

reconnection) and a plasma sheet thinning on the nightside. (C) Explosive

reconnection at a near-Earth magnetic neutral line in the plasma sheet and

plasmoid formation at substorm onset.

non-linear dynamic methods (Sharma et al., 2005) in analogy
with concepts developed in statistical physics and in branches of
applied mathematics.

The magnetospheric energy unloading process early on was
considered to be analogous to a dripping faucet (Hones, 1979)
(see Figure 4): The plasma sheet in the magnetotail distends as
part of the substorm growth phase. Then a portion of the plasma
sheet pinches off to form the separated plasmoid at substorm
onset. The plasmoid moves tailward and leaves the magnetotail
and the Earthward part of the plasma sheet snaps back toward
the Earth, in analogy with a dripping faucet.

Figure 5 illustrates conceptually the steps of the solar
wind-magnetosphere coupling process. Basically, the coupling
effects are controlled by the dawn-to-dusk component of the

FIGURE 4 | An illustration of the analogy between a dripping faucet and the

formation of large-scale plasmoid in Earth’s magnetotail during a

magnetospheric substorm (from Hones, 1979). This concept has been

extended to develop non-linear analog models of substorms.

interplanetary electric field ESW (=-VSW × BIMF) with VSW the
solar wind speed. Therefore, taking into account this “rectifier”
effect, many studies have shown that the main parameter driving
substorms is the solar wind speed (VSW) multiplied by the
southward IMF component (Bs) (Bs = –BIMF for BIMF < 0,
and Bs = 0 for BIMF > 0). Changing of VBS (=VswBs) causes
variations in the dayside magnetic merging rate. As shown by
Figure 5, this change in dayside reconnection directly drives
ionospheric currents which show up in the auroral electrojet
(AE) indices. The westward electrojet (AL) index is particularly
indicative of the coupling process (Baker et al., 1996).

As energy is transferred to the magnetosphere, merged flux
is transported from the dayside to the nightside. This leads to
enhanced magnetotail flux and enhanced convection from the
distant x-line toward the Earth. The addition of tail flux is
indicative of an intensification of the cross-tail electrical currents
flowing in the plasma sheet. After about 1 h of tail flux loading,
(i.e., a 1-h substorm growth phase) there normally is a substorm
expansion phase onset. In the near-Earth neutral line (NENL)
model of substorms (Baker et al., 1996), the expansion phase
onset is produced by the sudden appearance of a new x-line
which causes strongmagnetic reconnection in the relatively near-
Earth portion of the plasma sheet. The reconnection process and
the accompanying cross-tail current disruption drives further
flow of currents through the nightside ionosphere to form the
“unloading” currents. These energy-dissipation processes show
up prominently in the AE index.

It is worth noting that there can bemany variants of substorm-
like activity in the magnetosphere. There can be so-called
steady convection events and other energy dissipation events
that may not clearly exhibit all the “phases” noted above (see
Shukhtina et al., 2014). Nonetheless, the basic pattern of energy
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FIGURE 5 | A notational sketch of an isolated substorm as seen in a time series of auroral electrojet (AE) values vs. time. The boxes in the flow chart around this

schematic describe the key, repeatable physical phenomena occurring during substorms. BBFs are bursty bulk flows of plasma. These are localized, high-speed

particle transport regions.

loading, rapid energy dissipation, and relaxation back toward a
ground state seems clearly established in many cases. Obviously,
there is great value in examining events that depart from the
classic pattern.

The energy flow from the solar wind through the
magnetosphere into the ionosphere has been addressed in
terms of a global-scale convection process. This has been
modeled in terms of linear filter relationship between VBS as
an input time series and AL as a magnetospheric output time
series (Blanchard and McPherron, 1992). As shown here in
Figure 6, the transfer (or filter) function g(t) can be viewed
as a general linear relationship between the solar wind driver
and the magnetospheric response (Bargatze et al., 1985). When
many different intervals of geomagnetic disturbance were
considered, Bargatze et al. (1985) found that periods of weak or
moderate disturbances showed linear response filters with two
peaks (Figure 7). These were interpreted as the directly-driven
response (at 20-min lag time) and the unloading response (at
60-min lag). During high geomagnetic activity periods, the
60-min response peak was seen to disappear or even to merge
into the 20-min peak. This was interpreted by Baker et al. (1990a)
as evidence of a non-linear evolution of geomagnetic activity as
the system moved from weak to strong disturbance levels.

LOW-DIMENSIONAL ANALOG MODELS

Taking into account observed evolution of linear prediction filters
with increasing geomagnetic activity (Bargatze et al., 1985), Baker
et al. (1990a) developed a mechanical analog model of substorm
dynamics. As shown in Figure 8A, the model considered a mass
on a spring. The mass increases at a fixed loading rate, dmL/dt,
until a critical distention D = DC is reached. Then a portion
of the mass is released from the spring at a rate (dmu/dt) that
is governed by the velocity of the mass (dD/dt = p/m) at the
critical displacement point. In this formulation, p represents the
momentum of the weight on the spring. The movement of this
mass on the spring is described by dp/dt=Gm – κD – ηp/m. The
spring constant, κ and the frictional coefficient, η, are assumed
fixed. The set of equations for dD/dt and dp/dt, as closed by
the conditions on the dm/dt, give rise to a set of non-linear
equations. When dmL/dt increases toward large volumes, the
system moves from weak periodic unloading to highly chaotic,
non-linear behavior. In essence, the addition of mass and its
subsequent unloading gives rise to complex interactions as the
loading rate changes.

The mechanical analog model of Baker et al. (1990a) was
inspired by a similar model of drippy faucets developed by Shaw
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FIGURE 6 | The response of the magnetosphere to the solar wind IMF. In this diagram, the global configuration and magnetic topology are shown and currents are

illustrated. The magnetosphere is treated as a linear filter relating VBS to AL (adapted from Blanchard and McPherron, 1992).

FIGURE 7 | A pair of linear prediction filters (or impulse response curves)

showing the time-lagged response between the interplanetary electric field

(VBS) and the AL geomagnetic activity index. The linear prediction filters are

chosen for a weak average activity interval and a strong activity period. An

evolution from double-peaked (bimodal) filter to single-peaked filter suggests a

non-linear dynamical behavior of magnetospheric activity (adapted from

Bargatze et al., 1985).

(1984). Baker et al. took rather literally the analogy between
substorm unloading processes and a dripping faucet (Hones,
1979). As noted, the plasma sheet distends considerably and in
the substorm growth phase. During the near-Earth reconnection
onset, a part of the plasma sheet pinches off to form the substorm
plasmoid. The remaining plasma sheet snaps back sunward. The
upper part of Figure 4 illustrates that the dripping faucet behaves
analogously to the Earth’s plasma sheet during substorms.

The mass-on-spring analog model of Baker et al. (1990a) was
capable of reproducing aspects of magnetospheric substorms;

the sequence shown above in Figure 3 were reproduced rather
well. Moreover, when a loading rate increased, the analog system
exhibited non-linear behavior: period doubling and “bifurcation”
resulted such that fully developed chaotic behavior ensued. Given
the elementary, 2½ dimensional nature of the model, this was a
quite successful simulation. Nonetheless, the mechanical analogy
was limited. As a follow-on approach, Klimas et al. (1992)
developed the Faraday loop model (Figure 8B) which was based
more on a plasma analog.

The Faraday loop approach was a dynamical convection
model with three degrees of freedom: (1) The average cross-tail
electric field in the near-Earth current sheet, Ey; (2) The variation
of Ey due to solar wind input, noted E0 on Figure 8B, and Esw
earlier in the text, to the tail near the X-line position; and (3)
variable magnetic flux content of magnetotail. The Faraday loop
model was very much like the drippy faucet model. Flux was
loaded into the tail at a rate determined by the (solar wind) input,
E0. In the model, the tail unloads by forming a plasmoid, thereby
dumping much of the tail flux in the tail (as in Figure 3 above).

One of the most important findings of the early linear
prediction filter analysis was the “bimodal” response behavior
(see Figure 7). The 20-min driven response time scale and the
60-min unloading time scale emerged as clear features during
moderate activity periods. Using the Faraday loop model, we
were able to use the observed VBs values measured upstream of
the Earth to drive the Faraday loop model with realistic inputs.
This allowed examination of analog model outputs as was done
by Bargatze et al. (1985) using linear filter analysis. Of course,
it was also possible to compute the linear filter elements in the
Faraday Loop model as for the real magnetospheric response (as
measured by the AL index).

Important studies in this early period went further to examine
underlying dynamics as revealed within indicial time series data.
Consolini et al. (1996) used the auroral electrojet indices to infer
multifractal aspects of the dynamical system behavior. These
authors examined the infrerred turbulent character involved
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FIGURE 8 | (A) The mechanical analog model for the substorm process:

Mass on a spring is increased until a critical distance is reached. At that point,

part of the mass is unloaded which causes the mass to move upward, after

which the mass loading continues. (B) A Faraday loop model for the

magnetospheric activity (Klimas et al., 1992). The dynamical substorm cycle is

represented by a system of changing electric fields and magnetic flux content

of the tail lobes. The magnetic flux changes in terms of the electric field

imbalance and the magnetic flux content as produced by the tail currents.

with the magnetosphere-ionosphere dynamics. Subsequently in
important studies of the nature of the Earth’s plasma sheet
behavior during active times, Angelopoulos et al. (1999) found
evidence of intermittency in the plasma flows. This work was
extended by Vörös et al. (2003) who confirmed such intermittent
multiscale behavior of themagnetic field in the near-Earth plasma
sheet (see section Multi-Scale Aspects).

Follow-on work (e.g., Freeman and Morley, 2004, 2009) has
sought to assemble “minimal” substorm models that contain
the key aspects of substorm dynamical processes and timing
properties. While substorms in the real world can have many
complex variations, there is a basic, repeatable underlying
pattern of substorms that is usually present. While early
studies tended to focus on the auroral electrojet index time
series, subsequent studies also examined other available indices.
Wanliss (2005) found fractal behavior in the stormtime (SYM-
H) index time series and this fractal nature of the dynamics was

amplified upon in a broad study of magnetic storm development
(Balasis et al., 2006).

MULTI-SCALE ASPECTS

The traditional methods of studying the solar wind
interaction with Earth’s magnetosphere have been to take a
magnetohydrodynamic (MHD) approach. This framework was
described in the foregoing sections of this review. The MHD
method has had many successes and has helped, for example,
to illuminate much about the fundamental substorm dynamical
cycle. However, MHD models use different computational
techniques and approaches which can lead to different predicted
dynamical (substorm) behavior (see Gordeev et al., 2016).
Moreover, as we have also detailed in this paper, there are
complex and non-linear aspects of solar wind-magnetosphere
coupling that are not always adequately captured by the
straightforward MHD models and simulations (Baker et al.,
1999 and references therein). This has led various authors to
take different tacks and these alternatives have provided valuable
and novel understanding of the coupling issues. For example,
Chapman et al. (1998) and Chang (1999) employed analog
models to characterize the most general dynamical properties of
the terrestrial plasma sheet and its coupling in the ionosphere.
These ideas are based on the slow buildup of a system until
it reaches an unstable state at which point an “avalanche”
occurs and the system collapses. Chapman et al. (1998) gained
valuable insight into the energy buildup and release in the
Earth’s magnetotail using such a “sand pile” approach. The
basic advances from this kind of work have been the realization
that the growth phase of substorms is an essential element
of the substorm cycle. Either a spontaneous relaxation of the
system must eventually occur after sufficient loading or else even
the slightest perturbation of the system can trigger a massive
energy release.

Another approach considered for the magnetospheric system
was predicated on a variant of “catastrophe theory.” This was
based on the idea of a system that has evolved to a highly
stressed state. Then, after further forcing, the system undergoes
a catastrophic transition to a much more relaxed state. As shown
here in Figure 9 from Baker et al. (1999), the magnetosphere can
be thought of late in the substorm growth phase as being primed
for catastrophic collapse. Then by means of one or more plasma
physical processes, the magnetotail can collapse into a relaxed
configuration. This kind of reasoning was also explored by Lewis
(1991) in an attempt to help resolve some of the longstanding
debates about the exact mechanisms and physical instabilities
that lead to substorm onsets. Baker et al. (1999) noted that
it might be a variety of different instabilities that could play
important triggering roles in the state transition, depending on
the circumstances.

Based upon decades of in situ and remote sensing observations
of the global magnetospheric system and based upon the revealed
complexity of the underlying magnetospheric dynamics, one
can say that many different approaches have been necessary
to disentangle the various facets of geomagnetic activity. But
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FIGURE 9 | A diagram illustrating the abrupt (“catastrophic”) transition of the

magnetosphere from a highly stressed, or taillike, magnetic connection to a

much more relaxed configuration. Several different physical pathways for such

relaxation may be possible once the magnetosphere exceeds a critical value of

a magnetospheric state variable λ* (adapted from Baker et al., 1999).

quite clearly, all the evidence suggests that the solar wind-
magnetosphere-ionosphere interactions have strongly non-linear
aspects to them. In light of this recognition, space plasma physics,
as applied to magnetospheric dynamics, must move away from
traditional plasma stability analyses and must utilize techniques
that incorporate global, non-linear interactions. In trying to
embrace such approaches, ideas from other branches of physics,
engineering, applied mathematics, etc., can provide valid and
extremely useful insights.

Adopting a more generalized point of view has certainly
driven home the point that multiscale phenomena play a crucial
role in magnetospheric dynamics. For example, global auroral
images have been examined on a wide range of temporal and
spatial scales (Lui, 2002; Uritsky et al., 2002). The results of such
analysis point clearly toward essentially scale-free distributions
over a wide spectrum of system conditions. This may further
imply that the magnetotail can undergo strong dissipation events
in part due to local plasma instabilities and in part due to control
elements remote from the central plasma sheet. These elements
may largely lie in the incident solar wind driver or theymay reside
in the distant ionosphere. Under such circumstances, it may
appear that regional plasma instabilities are spontaneous or are
even occurring in an essentially random fashion (Lewis, 1991).
Thus, a lesson from many prior, diverse types of studies is
that non-traditional analysis and modeling can reveal important
aspects of our terrestrial space environment.

STATE SPACE ANALYSIS AND PHASE
SPACE RECONSTRUCTION

Phase space reconstruction and analog model development—
as discussed here—give considerable insight into all aspects

FIGURE 10 | (a) Illustration of a simple nonlinear relationship between the

state of the magnetosphere (X) and solar wind input (U); (b) Neighboring

trajectories through magnetospheric state space.

of magnetospheric dynamics. The evidence has suggested that
substorms are the manifestation of a fundamental dynamical
cycle. But this work also has shown that the magnetosphere is
never really linear in its interaction with the solar wind since the
nature of the substorm response varies as the general level of the
activity increases.

In light of such analysis, one can speak in terms of a
certain “state” of the magnetospheric system (see Vassiliadis
et al., 1995). This state can be characterized by the level of
geomagnetic activity (as might be measured by AE, AL, Kp, or
other global indices). One can identify a state variable, X(t),
which characterizes the global magnetospheric condition, but
which also takes cognizance of the recent past history of the solar
wind input [U(t)] and the resultant magnetospheric response.
Figure 10a illustrates a simple non-linear (i.e., quadratic)
relationship between U(t) and X(t). At a particular point (X0, U0)
one approximates the relationship by a “local linear” filter (LLP).
In general, the LLF varies depending on the input level.

Pursuing the notion of amagnetospheric state, Vassiliadis et al.
(1995) asserted that the system evolved according to dX/dt =
F(X; U). It assumed that an index such as AL contains sufficient
information to characterize the whole magnetospheric system.
The basis for this assumption has been examined in earlier studies
and analogous questions have been addressed for many complex
systems (Gleick, 1987). It seems clear that global geomagnetic
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indices embed within them the “shadow” of all the key dynamical
processes. Proceeding on this presumption, the recent history of
input [U(t)] and output [X(t)] specifies a clear trajectory in state
space. This concept is illustrated in Figure 10b where the open
dot at time, t, is followed by another point in state space at time
= t + T. Because of the repeatable cycle in substorm dynamics,
there is a reasonable possibility of extrapolating the dynamical
evolution of the magnetosphere into the future. By examining
the “nearest neighbors” of a given point (X0, U0) in state space,
and using the average state space trajectories represented by the
nearest neighbor points, one can predict the future evolution of
the solar wind-magnetosphere system (Vassiliadis et al., 1995).

The method of state space construction proved to be
a powerful way of predicting future geomagnetic activity.
As described above, one can use a large data base of
previous input-output (e.g., VBs-AL) relationships to construct a
multidimensional state space. One can then consider the recent
values of VBs and AL leading up to this point. For example,
consider the previous 15min of AL behavior. Then looking
back in the historical data base, find all previous examples of
VBs-AL behavior that closely parallel the one in question. By
averaging together these “nearest neighbor” trajectories in state
space one can predict with some assurance the future evolution
of the ongoing geomagnetic activity pattern. In many ways this
is similar to predicting terrestrial weather based upon previous
similar patterns of season, temperature, pressure, humidity, etc.

All of this work may be termed “data-mining” and it has
shown significant successes over many years. There have been
crucially important models of the terrestrial magnetic field built
on such data mining efforts (Tsyganenko and Sitnov, 2007; Sitnov
et al., 2008). More recently, using this kind of global magnetic
field information has allowed extraction of magnetospheric
substorm growth phase and expansion phase patterns (Stephens
et al., 2019). Going beyond simple index data to global in situ data
exploitation may hold even greater modeling promise.

NON-LINEAR DYNAMICS AND
COMPLEXITY

As discussed above, linear prediction filters can be convolved
with input time-series in order to approximate the output of
a specified system process. This was the approach taken for
substorm onset forecasting (Bargatze et al., 1985; Blanchard
and McPherron, 1992) and the method met with considerable
empirical success. However, the approach was also criticized
because it did not reveal in great detail the underlying physical
processes producing substorm onsets.

Many other magnetospheric properties have been modeled
using linear filter methods. For example, Nagai (1988) applied
this approach to the problem of specifying and forecast energetic
electron fluxes at the geostationary orbit using Kp geomagnetic
indices as the driving input. Baker et al. (1990b) applied linear
prediction filter methods to the same problem but using solar
wind speed data as the driver input. This latter approach
proved to be very useful and powerful. Even today—three
decades later—the Space Weather Prediction Center of the

National Oceanic and Atmospheric Administration (NOAA)
uses the Baker et al. (1990b) method as the basis of its
Relativistic Electron Forecast Model (REFM). This model
provides 1–8 day predictions of omni-directional electron fluxes
at geostationary orbit using real-time solar wind data fromNASA
spacecraft at L1.

While linear analyses can work well in such system
applications, there is ample evidence that non-linear behavior is
exhibited in several ways by the Earth’s magnetosphere. This was
well-documented by the Bargatze et al. (1985) work concerning
magnetospheric substorms described above. Much work over the
past several decades has further demonstrated that geomagnetic
activity can exhibit output that is not proportional to input. There
are clear examples in the ionosphere and the magnetospheric
proper where there are feedbacks (that is, output influences input
to some greater or lesser degree). The near-Earth system thus
can exhibit what seems to be random behavior and there can be
immense sensitivity to initial conditions. These are all properties
of non-linear dynamics (Gleick, 1987). This has also been termed
low-dimensional behavior or “deterministic chaos.” Such non-
linearity can lead to self-organization in which global patterns
emerge from local interactions amongmany subunits (see Pepper
and Hoelzer, 2001) In these cases—as in the magnetosphere-
ionosphere system—the interactions are often shaped bymultiple
feedback loops.

As described by Klimas et al. (2000), the magnetotail
and its embedded plasma sheet (see Figure 2) exhibit many
of the properties just discussed. Klimas et al. noted that
the magnetotail is a spatially distributed loading-unloading
system. The hypothesis—well-supported by observations—is that
magnetic flux is the relevant conserved quantity. Klimas et al.
also demonstrated that the magnetotail is often near a threshold
instability that can produce localized magnetic reconnection.
Thus, the system exhibits self-organized criticality (SOC) with a
level of global coherence in a broadly distributed spatial region
that is near instability (see, also, Sitnov et al., 2001). Often in the
magnetotail system, localized reconnection, “pseudo-breakups,”
and full-fledged magnetospheric substorms produce a rather
“scale-free” cascade (avalanche) of geomagnetic disturbances
(Klimas et al., 2000).

A persistent question in system analysis is how much
information content may be inherently contained in a given
parameter sequence or activity time series. Measures of ‘entropy”
are often used to assess such information content and many
studies have suggested that the magnetosphere exhibits clear
evolution frommore complex to a more orderly state as the near-
Earth space moves from pre-storm to full geomagnetic storm
conditions (Balasis et al., 2008, 2009). More recent work building
on such entropy assessments have examined the information
transfer via solar wind forcing leading to radiation belt flux
enhancements (Wing et al., 2016). Entropy analyses have also
helped understand more deeply the substorm-storm relationship
that lies at the heart of the magnetospheric dynamical pattern
(Runge et al., 2018).

As shown schematically in Figure 11 (from Baker, 2011),
there has been quite a progression of thought about non-linear
magnetospheric dynamics over the past several decades. From
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FIGURE 11 | A timeline of ideas and papers dealing with various aspects non-linear dynamics in magnetospheric physics (from Baker, 2011).

the rudimentary analogy of the dripping faucet by Hones (1979)
through the several models and approaches of the 1990s and
early 2000s, many methods of data analysis have shown that
the magnetosphere-ionosphere system is a complex, non-linear
domain. With new large data sets from observing platforms such
as the Magnetospheric Multiscale (MMS) mission (Burch et al.,
2015), new opportunities now exist to examine questions that
were not accessible in earlier times.

NEURAL NETWORKS, MACHINE
LEARNING, AND FUTURE PROSPECTS

In the 1990s and into the 2000s, several authors and research
groups began to employ artificial neural network (ANN)methods
to study such things as solar wind driving of radiation belt particle
fluxes (e.g., Stringer and McPherron, 1993) and geomagnetic
activity (e.g., Gleisner and Lundstedt, 1997; Takalo and Timonen,
1997). These multi-layer feed-forward neural nets were able to
provide—in many cases—impressive specification and forecasts
of important space weather indicators such as the AE/AL indices
or geostationary-orbit electron fluxes. Somewhat later, related
ANN methods were able to specify and predict up to 1-h ahead
the ionosphere total electron content (TEC) (see, e.g., Tulunay
et al., 2006). While these approaches often gave remarkably good
forecasts of geophysical conditions, there were also criticisms
that the methods did not reveal deep insight into the underlying
physics that produced specific responses.

In today’s era of machine learning (ML), there seems to be
less concern about always needing to understand precisely why
a given method works. Rather there is more concern about

how well a ML tool might be able to do. Recent studies have
used vast new spacecraft data sets for a wide range of purposes
such as assessing magnetospheric field models (Yu et al., 2014)
and identifying radiation belt pitch angle distribution patterns
(Souza et al., 2016). In these instances, and many more that
could be cited, neural network tools permit data examination and
classification in rather automatic ways.

Machine learning has reached even more full flower in just
the last few years. Combining physical models with machine
learning techniques has provided the capability to analyze and
understand relationships between cold plasma properties, local
wave characteristics, and relativistic electron flux distributions
throughout the inner magnetosphere (Chu et al., 2017; Bortnik
et al., 2018). Particularly notable successes have been achieved
using non-linear autoregressive moving average with exogenous
inputs (NARMAX) methods to predict energetic particle events
(e.g., Boynton et al., 2011, 2013). Both acceleration and loss
processes for relativistic electrons, including the amount of
“memory” in the system, have been more deeply understood
through the use of ML techniques.

Looking to the future, it is obvious that both space missions
and ground-based systems will continue to increase in
their capabilities. This means even higher volumes of solar,
interplanetary, and geospace data. “Non-linear” approaches
(spectral methods, filter techniques, ANNs, etc.) will
also probably keep increasing in complexity and in their
“data-mining” capabilities. Many useful applications of these
capabilities will probably result. They likely will include:

– Data conditioning (gap filling, noise reduction, data
smoothing, etc.);
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– Empirical model development and coupling to other models
(either first-principles or other empirical models);

– Data assimilation (related to non-linear dynamics, control
theory, radiation belt behavior, thermospheric properties, GPS
performance, etc.); and

– Prediction algorithms.

SUMMARY AND CONCLUSIONS

Advances in computer technology in the 1980s allowed
scientists and mathematicians to solve numerically many vexing
problems posed decades earlier. This meant that fields of
fractal geometry, non-linear dynamics, chaos theory, wavelet
(and other) transform methods, neural networks, etc., could
be formulated as extensions (or juxtapositions) to traditional
linear and spectral approaches. Hence, concepts such as the
“state” of a plasma, fractals, chaos (as opposed to turbulence),
cellular automata, and several other ideas trace back to that time.
From these ideas, especially in the 1990s, sprang a plethora of
methods for data analysis. In this brief review, we have touched
on some examples in geomagnetic field studies, radiation belt
behavior, ionospheric and thermospheric changes, and solar
wind-magnetosphere coupling, among others. These approaches
often gave rise to improved methods of numerical simulations of
the magnetospheric domain.

While some of the methods explored in earlier decades found
only limited use and therefore did not develop further into
the 2000s, others revealed great utility. This often sprang from
data analysis methods developed in earlier times that now have
found applications in processing large volumes of data returned
by spacecraft missions and ground-based observation platforms.
In this machine learning era, this is an extremely important
outcome. These earlier methods now are aiding in producing new
(and effective) empirical and physical models. These results hold

great promise for predicting the state of geoplasma systems going
forward. Thus, space situational awareness and space weather
applications seem to be on the threshold for a new and highly
productive phase.

It is perhaps worth noting that much of the early work
described in this brief review was built upon analysis and
modeling of geomagnetic index information. With years of in
situ measurements throughout the magnetosphere-ionosphere
system, we now have plasma, energetic particle, and magnetic
field data sets that could be organized and used to examine
dynamical properties of the solar-terrestrial system that were not
accessible readily based only on ground indices such as AE or
Dst. It would be quite valuable (in the author’s opinion) to use
different long-term descriptors of themagnetospheric system and
repeat some of the kinds of studies that have been reviewed here.
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