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Whilst the most dynamic solar active regions (ARs) are known to flare frequently, predicting
the occurrence of individual flares and their magnitude, is very much a developing field with
strong potentials for machine learning applications. The present work is based on a method
which is developed to define numerical measures of the mixed states of ARs with opposite
polarities. The method yields compelling evidence for the assumed connection between the
level of mixed states of a given AR and the level of the solar eruptive probability of this AR by
employing twomorphological parameters: 1) the separation parameterSl−f and 2) the sumof
the horizontal magnetic gradient GS. In this work, we study the efficiency of Sl−f and GS as
flare predictors on a representative sample of ARs, based on the SOHO/MDI-Debrecen Data
(SDD) and the SDO/HMI - Debrecen Data (HMIDD) sunspot catalogues. In particular, we
investigate about 1,000ARs in order to test and validate the joint prediction capabilities of the
twomorphological parameters by applying the logistic regression machine learning method.
Here, we confirm that the two parameters with their threshold values are, when applied
together, good complementary predictors. Furthermore, the prediction probability of these
predictor parameters is given at least 70% a day before.
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1 INTRODUCTION

A solar flare is a sudden flash observed in the solar atmosphere which is able to rapidly heat the plasma
tomegakelvin temperatures, while the electrons, protons and other heavier ions are accelerated to very
large speeds (Benz, 2008). The associated accelerated particle clouds may reach the Earth, typically
within a few hours or a day following a solar flare eruption. The flares produce radiation across the
electromagnetic spectrum at all wavelengths. Most of the released energy is spread over frequencies
outside the visible range. For this reason, the majority of flares must be observed with instruments
which measurements in these wavelength ranges, as e.g., the Geostationary Operational
Environmental Satellite (GOES). Therefore, the most generally known flare classification scheme
is GOES flare-class. Measurements of the maximum x-ray flux at wavelengths from 0.1 to 0.8 nm near
Earth are classed as A, B, C, M, or X type flares back from 19751. These five GOES flare intensity
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categories are further divided into a logarithmic scale labeled from
1 to 9. The A-, B- and C-classes are the lowest energy release
classes of solar flares and they also occur frequently in the solar
atmosphere. The A to C-class range has no or hardly any
detectable effect on Earth based on current instrumentations
and understanding. The M-class medium flare category may
cause smaller or occasionally more serious disruptions, e.g.,
radio blackouts. However, the X-intensity flares may cause
strong to extreme hazardous events, facility break-downs (e.g.,
radio blackouts, etc.) on the daylight side of the Earth (Hayes et al.,
2017). The major solar flares (M- and X-class) are often
accompany with accelerated solar energetic particles and
coronal mass ejections (CMEs) (see, e.g.,, Tziotziou et al., 2010).

For solar activity modeling, a key ingredient is to determine
the role of the associated observable magnetic field. Waldmeier
(1938) proposed the first classification scheme to examine the
connection between the size and morphology of active regions
(ARs) and the capacity of their flare-productivity. This
classification scheme is known today as the Zürich
classification (see also Kiepenheuer, 1953). This scheme
contains eight types thought to be representative of
consecutive states in the evolution of a sunspot group. The
classification system was further developed by McIntosh
(1990). McIntosh introduced three more components based on
characteristics including the Zürich class, the largest sunspot, and
the sunspot distribution in an AR. Although the classification
uses white-light observations only, it is still widely used.

The first magnetic classification scheme, known as the Mount
Wilson classification, was introduced by Hale et al. (1919). It is
simpler than the Zürich-McIntosh system, as it only distinguishes
unipolar, bipolar, mixed configurations and very close and mixed
configurations within a common penumbral feature, denoted by
the letters α, β, γ and δ-class, respectively. Künzel (1960) added
the δ-class configurations for the McIntosh system which refer to
the most productive sources of energetic flares (see, e.g.,,
Schrijver, 2016, and references therein). All these classification
schemes are useful in revealing potential connections between the
morphological properties of sunspot groups and their flare-
productivity. However, it is somewhat ambiguous that these
classification schemes rely on a number of rather subjective
elements to be identified by visual inspection besides some
more objective measures.

The McIntosh and Mount Wilson classifications have been
shown to be useful for grouping ARs by their expected flare
productivity (Gallagher et al., 2002; Ireland et al., 2008;
Bloomfield et al., 2012). However, further quantities derived
from AR observations allow a physical comparison and deeper
understanding of the actual causes of the solar eruptions. In this
sense, different morphological parameters have been introduced
to characterised the magnetic field configuration or highlight the
existence of polarity-inversion-lines (PILs) in ARs, with varying
sophistication (see e.g., Barnes et al., 2016; Leka et al., 2018;
Campi et al., 2019; Leka et al., 2019a, Leka et al., 2019b; Park et al.,
2020, and references therein). Furthermore, Kontogiannis et al.
(2018) investigated and tested some of those parameters, which
were identified as efficient flare predictors. These parameters
include, e.g.,, a quantity denoted as Beff that measures the coronal

magnetic connectivity between the opposite magnetic field
elements (Georgoulis and Rust, 2007), Ising energy EIsing of a
distribution of interacting magnetic elements (Ahmed et al.,
2010), the sum of the horizontal magnetic field gradient GS

(Korsós and Erdélyi, 2016), and the total unsigned non-
neutralized currents, INN ,tot (Kontogiannis et al., 2017).

The observed magnetic properties of an AR can be processed
for the purpose of prediction by machine learning (ML)
computational methods for data analysis (Camporeale, 2019),
such as neural networks (Ahmed et al., 2013), support vector
machines (Bobra and Couvidat, 2015; Boucheron et al., 2015),
relevance vector machines (Al-Ghraibah et al., 2015), ordinal
logistic regression (Song et al., 2009), decision trees (Yu et al.,
2009), random forests (Liu et al., 2017; Domijan et al., 2019), and
deep learning (Nishizuka et al., 2018). Notably, parameters Beff ,
EIsing , GS, and INN ,tot were used by the FLARECAST project2,
where the prediction capabilities of almost 200 parameters were
tested by the LASSO and Random Forest ML techniques (Campi
et al., 2019). From these 200 parameters, the FLARECAST project
found that the four morphological parameters were ranked as
good flare predictors.

The content of the paper is as follows: Section 2 overviews in
detail the two morphological parameters used for flare prediction
in this work. Section 3 describes the data preparation process and
key aspects of the adopted ML method. Section 4 shows the
results of the analysis focusing on two morphological parameters
in particular, while our conclusions are in Section 5.

2 TWO MORPHOLOGICAL PARAMETERS

Korsós and Erdélyi (2016) introduced and tested, as a trial, an
advantageous scheme that may be used as new prediction
indicators besides the Zürich, McIntosh and Mount Wilson
classification systems. This scheme includes two morphological
parameters, namely:

• The separation parameter Sl−f , which characterises the
separation of opposite polarity subgroups in an AR, given
by the formula:

Sl−f � Dlc−fc

2
����∑Ag

√ /π, (1)

where l and f refer to the leading and following polarities. The
numerator denotes the distance between the area-weighted
centers (therefore the index c) of the spots of leading and
following polarities. Figure 1A gives a visual representation.
The denominator is the diameter of a hypothetic circle (2 times
the radius (

������∑Ag/π
√

)). The ∑Ag
 is the sum of individual

umbrae areas in a sunspot group.

2http://flarecast.eu
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The second introduced morphological parameter is the sum of
the horizontal magnetic gradient GS, defined by

GS � ∑
i,j

∣∣∣∣Φp,i −Φn,j

∣∣∣∣
Di,j

, (2)

• where Φ is the magnetic flux of the umbra based on Korsós
et al. (2014). The indices p and n denote positive and
negative polarities, and i and j are their running indices
in the entire sunspot group. D is the distance between two
opposite-polarity umbrae with indices i and j, respectively.
Panel c of Figure 1 gives a visual presentation of the GS

parameter.

The Sl−f and GS can be determined from the moment of first
available observation of sunspot groups, because the applied
umbrae data are suitably corrected for geometrical
foreshortening in the SOHO/MDI-Debrecen Data (SDD3,) and
the SDO/HMI—Debrecen Data (HMIDD4) catalogues (Baranyi
et al., 2016). Furthermore, these two morphological parameters
were shown to be potential indicators for upcoming flares on a
smaller number of typical test cases (Korsós and Erdélyi, 2016).
The test cases included 116 ARs, which were selected from SDD.
Their selection was based on that about a third of the ARs
produced only B- and C-class flares, another third produced
M-class flares, and the remaining third produced X-class flares.
For the statistical analysis, the considered values of Sl−f and GS

were determined 24, 48, and 72 hr before flare onset to test the
conditional flare probability (CFP) of these two parameters. The
CFPs were calculated as empirical probabilities, which measure
the studied flare intensities and adequate recordings of the
happening of events.

Korsós and Erdélyi (2016) found that if Sl−f ≤ 1 for a flaring AR
then the CFP of the expected largest intensity flare being X-class is
over at least 70%. If 1≤ Sl−f ≤ 3 the CFP is more than 45% for the
largest-intensity flare(s) to be the M-class, and, if 3≤ Sl−f ≤ 13

there is larger than 60% CFP that C-class flare(s) may occurs
within a 48-hr interval. Next, Korsós and Erdélyi (2016) found
also that from analysing GS independently for determining the
associated CFPs: if 7.5≤ log(GS) then there is at least 70% chance
for the strongest energy release to be X-class; if 6.5≤ log(GS)≤ 7.5
then there is ∼ 45% CFP that M-class could be the highest-
intensity flares; finally, if 5.5≤ log(GS)≤ 6.5, then it is very likely
that C-class flare(s) may be themain intensity flares in the coming
48 h. ARs are unlikely to produce X-class flare(s) if 13≤ Sl−f and
log(GS)≤ 5.5.

3 DATA AND DATA PREPARATION

In this study, we further explore test and validate, the joint
prediction capabilities of the Sl−f and GS morphological
parameters. The analysis is based on the binary logistic
regression algorithm, using the Scikit-Learn module in Python
(Pedregosa et al., 2011). The adopted ML technique requires
appropriate historical datasets for training. Logistic regression is
one of simplest and widely-used ML algorithms for two-class
classification. Logistic regression is a special case of linear
regression where the target variable is dichotomous in nature.
Dichotomous means that there are only two possible classes, e.g.,
yes/no or true/false. Logistic regression also predicts the
probability of occurrence of a binary event utilising a logit
function.

Four training sets were constructed to enforce consistency in
time and test robustness, each one corresponding to 6-, 12-, 18-
and 24-hr forecast issuing time interval, because within a day the
forecast reliability becomes more pronounced. The study takes as
a reference the time of the largest flare event for each AR. For each
issuing time interval, we consider the calculated Sl−f or GS values
of an AR before this reference time, as input data for the logistic
regression. This framework allows us to quantify the prediction
capabilities of the two morphological parameters.

Similarly to Korsós and Erdélyi (2016), this study uses
information on around 1,000 ARs extracted from the
Debrecen Sunspot Data Catalogue between 1996 and 2015
(Baranyi et al., 2016). The catalogue contains information
including centroid position in various coordinate systems,

FIGURE 1 | Figures illustrating the determination of the Sl−f and GS morphological parameters. Panel (A) demonstrates, for Sl−f , how the distance Dlc−fc is taken
between the area-weighted centers (therefore the index c) of the spots of leading l and following f polarities. Panel (B) is the corresponding magnetogram of the
continuum image of AR 11775, which were taken at 00:59 on 20 June 2013. Panel (C) present how theGS parameter is calculated.Φ is the magnetic flux in a positive p
or negative n umbra. D is the distance between two opposite-polarity umbrae.

3http://fenyi.solarobs.csfk.mta.hu/en/databases/SOHO/
4http://fenyi.solarobs.csfk.mta.hu/en/databases/SDO/
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area, and magnetic field of sunspots and sunspot groups. Derived
from spacecraft observations, the catalogue has entries at each
1 hr for SDD5,, and 1.5 hr for HMIDD6,. The GOES7 flare
catalogue is used for information on the largest-intensity flare
eruption of each AR.

For each issuing time interval, two thirds of the ARs were
randomly extracted to create a training set. These ARs are labeled
as true(1) and false(0) events, under two different binary
classification definition models:

• 1st model: When the largest intensity flare of an AR is M- or
X-class then this case is classified as true(1), otherwise B- or
C-class flares are false(0).

• 2nd model: Based on the results of Korsós and Erdélyi
(2016), an event is true(1) if an AR is host to a M/X-class
flare, satisfying 3≤ Sl−f , and 6.5≤ log(GS). Or, an event is
true(1) if an AR was host to a B/C-class flare, satisfying
Sl−f > 3, and log(GS)< 6.5. Otherwise the cases are all
labeled false(0).

The two different classification models were chosen to study
whether the two morphological parameters perform better, either
with or without (2nd or 1st model) thresholds. Often, a well-
chosen threshold adjustment(s) could improve prediction
capabilities of a method, as a warning level or as a warning

sign. Furthermore, in the case of both model approaches as
described above, the set of Sl−f and GS values associated with
the remaining 1/3 ARs are not labeled and are provided as a test
set only for the logistic regression algorithm training. In this
manner, there is no overlap between training and testing. To
ensure robustness of the results, we replicated 100 times the
training and test datasets for 6/12/18 and 24-hr issuing time
intervals, like e.g., Campi et al. (2019).

4 ANALYSIS

Solar flare prediction is affected by strong class imbalances, in
that there are far more negative examples (labeled as N) than
positive ones (labeled as P.) Therefore, we apply different metrics
to measure the performance of the 1st and 2nd models. The
performances of the two binary classifiers can be characterised by
confusion matrixes in Figures 2, 3. Those confusion matrixes
summarise the True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) predictions, we adopt
different metrics to quantify the impact performance of the Sl−f
and GS parameters in the case of both model approaches (1st and
2nd). The applied metrics are summarised in Table 1 for 6-, 12-,
18- and 24-hr forecast issuing times, and are:

• Accuracy is the ratio of true positives plus true negatives
over all events, or how often the TRUE prediction is correct:
(TP + TN)/(P + N)

• Recall, also called the true positive rate or sensitivity,
measures the proportion of actual positives that are
correctly identified: TP/P

FIGURE 2 | The result of the binary logistic regression of the 1st model with 6-, 12-, 18-, and 24-hr forecast issuing times for panels (A), (B), (C), and (D)
respectively. The right side of each panel presents the corresponding Receiver Operating Characteristic (ROC) curves.

5http://fenyi.solarobs.csfk.mta.hu/en/databases/SOHO/
6http://fenyi.solarobs.csfk.mta.hu/en/databases/SDO/
7https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-
flares/x-rays/goes/xrs/
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• Specificity, also called the true negative rate, measures the
proportion of actual negatives that are correctly identified:
TN/N

• Precision, also called positive predictive value. This is the
ratio of true positives over all positive predictions: TP/
(TP + FP).

• Negative predictive value (NPV) is the ratio of true negatives
over all negative predictions: TN/(TN + FN).

• F1 score is the harmonic mean between sensitivity (or recall)
and precision (or). It tells us how precise our two classifiers
are, as well as how robust these are. A greater F1 score means
that the performance of our model is better. Mathematically,
F1 can be expressed as: 2 (1/Recall + 1/Precision)

• True Skill Statistic (TSS) is widely used to test the performance
of forecasts (McBride and Ebert, 2000). TSS will be the
preferred performance metric when comparing results of
the 1st and 2nd model approaches with different N/P ratios
because this metric is independent from the imbalance ratio

(Woodcock, 1976; Bloomfield et al., 2012). TSS takes into
account both omission and commission errors. The TSS
parameter is similar to Cohen’s kappa approach (Shao and
Halpin, 1995), and compares the predictions against the result
of random guesses. TSS ranges from −1 to +1, where +1
indicates perfect agreement. The zero or less value indicates
that a performance no better than random (Landis and Koch,
1977). TSS � TP/P−FP/N � Recall + Specificity-1

These seven metric parameters are plotted as a function of
forecast issuing times in Figure 4, where the blue/red lines stand
for the 1st/2nd model. Based on the values of Table 1 and
Figure 4, the two models have high accuracy for all forecast
issuing times. In both models, the best accuracy is gained by the
24-hr prediction window. We emphasise that the accuracy is a
meaningful measure only if the values of FP and FN would be
similar in the confusion matrices of Figures 2, 3. For dissimilar
values, the other metrics must be considered in evaluating the
prediction performance of the two models.

Next, we focus on the recall and specificity metrics, which show
the probability whether a model captures the correct classification
during all four intervals. The values of the specificity metric show
that the two models are capable to correctly classify TN cases
during all four intervals, especially in the case of the 1st model,
which is greater than 90%. Based on recall values, the TP
classification of the 2nd model is 20% more accurate than the
1st model for 6/12/18/24-hr forecast issuing times.

However, when the two models classify a new AR, then we do
not know the true outcome until after an event. Therefore, we are
likely to be more interested in the question what is the probability
of a true decision of the two models. This is measured by
precision and NPV metrics. For the 1st model, the precision

FIGURE 3 | Same as Figure 2, but in the case of the 2nd model.

TABLE 1 | Flare prediction capabilities with sixmetrics in the case of the twomodel
approaches i.e., for 1st model and 2nd model.

Metrics 1st model 2nd model

6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h

Accuracy 0.82 0.81 0.82 0.83 0.73 0.71 0.73 0.75
Recall 0.41 0.37 0.43 0.43 0.73 0.54 0.67 0.74
Specificity 0.95 0.95 0.95 0.97 0.74 0.87 0.80 0.77
Precision 0.73 0.70 0.74 0.82 0.77 0.81 0.79 0.80
NPV 0.83 0.82 0.83 0.84 0.70 0.67 0.69 0.71
F1 0.52 0.48 0.52 0.56 0.75 0.65 0.73 0.77
TSS 0.36 0.32 0.35 0.40 0.47 0.42 0.47 0.51
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of the 24-hr prediction time is ∼ 10% better than the other
issuing time intervals, while the NPV values are ∼ 80% in the
case of four issuing time. The precision and NPV values of the
2nd model are almost the same over all four prediction windows.
Based on precision and NPVmetrics, the 2nd model predict a TP
event with higher probability than the 1st model, while the 1st
model is better with the case of TN event. This is because the 2nd
model discards some X- and M-class flares which do not satisfy
the threshold conditions. Despite this, the 2nd model still could
fairly predict a TN event with about 70% probability.

The F1 and TSS metrics show that the 2nd model performs
better than the 1st in the case of all of the prediction windows.
This is an important aspect because the F1 and TSS are the most
reliable scores in the presence of class imbalance. Intuitively, the
F1 score is not as easy to understand as that of the accuracy, but it
is usually more useful than accuracy, especially in our case, where
we have an uneven class distribution. Namely, 77% of the F1 score
shows that the 24-hr flare prediction window is the most efficient
in the case of the 2nd model approach. Furthermore, the above
0.4 values of TSS score of the 2nd model show that this method is
a good prediction scheme, and, the defined accuracy values of the
2nd model can be considered as correct.

We also use Receiver Operating Characteristic Curves (ROCs)
to evaluated the results of the binary logistic regression method
for both models. In the ROC plots in Figures 2, 3, the sensitivity
(the proportion of true positive results) is shown on the y-axis,
ranging from 0 to 1 (0–100%). The specificity (the proportion of
false positive results) is plotted on the x-axis, also ranging from 0
to 1 (0–100%). The area under the curve (AUC) is a measure of
the test’s performance at distinguishing positive and negative
classes. In Figures 2, 3, AUCs are above 0.7, or a capability to
distinguish between positive class and negative class with more

than 70% likelihood over the 6-, 12-, 18- and 24-hr prediction
time windows. From Figure 2, the 1st model shows similar AUC
values during the four prediction windows. In the case of the 2nd
model, the predicting probabilities are also similar based on the
AUC values of Figure 3. On further note that the predicting
probabilities of the 2ndmodel are 10% less than the 1st one, based
on AUC values during the four prediction windows.

5 CONCLUSION

Korsós and Erdélyi (2016) introduced the separation parameter
Sl−f and the sum of the horizontal magnetic gradient GS as
potential indirect indicators of the measure of non-potentiality
of the magnetic fields of solar active regions. They also proposed
these two morphological parameters as potential new prediction
proxy indicators complementing the traditional Zürich,
McIntosh or Mount Wilson classification schemes.

In this work, a binary logistic regression machine learning
approach is used to test and validate the flare prediction capability
of the GS and Sl−f morphological parameters. Two binary
classification schemes are used. One scheme is based on a
simple approach while implementing solely flare intensity, the
second approach is a more sophisticated model based on both
flare intensity and threshold values of the morphological
parameters. This experimental approach is applied to a large
set of ∼1,000 ARs, with 100 repeats the datasets, over different
forecast issuing time intervals of 6-, 12-, 18-, and 24-hr. Analysis
of various performance metrics shows the following:

• The morphological parameters give more than 70% flare
prediction accuracy, based on logistical regression analysis.

FIGURE 4 | The evolution of selected metrics as a function of forecast issuing times for the 1st (blue) and 2nd (red) model.
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This result supports the findings of Kontogiannis et al.
(2018) and (Campi et al., 2019), who conclude that the
GS parameter has potential as an efficient predictor.

• Based on the F1 scores and the True Skill Statistic metrics,
the joint flare prediction efficiency of the Sl−f and GS

parameters is improved when the previously identified
threshold values by Korsós and Erdélyi (2016) were also
imposed. However, the 2nd model discards some X- and
M-class flares which do not satisfy the threshold conditions.
Despite of it, the 2nd model still could predict/classify an
upcoming event with at least 70% probability, based on the
precision and NPV metrics.

• The best flare prediction capability of the two parameters is
available with 24-hr forecast issuing time. This latter means
that the Sl−f and GS parameters with their thresholds are
capable to predict an upcoming flare with 75% accuracy a
day before flare occurrence.

• However, not just the 24 hrs prediction window has good
metric scores, but also the ones with 6/12 and 18 hrs. This
means that the Sl−f and GS are together applicable for
prediction purpose in a short- and long-term one.

• The limitation of this study is that the applied data are
extracted from a given sunspot database. Therefore, an other
ML method (e.g., Convolutional Neural Network) that is
trained on the same SDO/HMI intensity and magnetogram
data, may assess further parameters to increase the
predictive capability of the two morphological parameters.

We are aware that the two tested models are not perfect and so
a natural question to ask is: how can we improve further them? In
the future, we intend to further explore the application of these
two warning parameters both frommachine learning and physics
perspectives: 1) fine tune the threshold conditions of 2nd model,
2) extend the application of the Sl−f and GS parameters at
different solar atmosphere heights, 3) train the employed
machine learning model at different atmospheric heights for
an even more accurate estimation of flare event time and flare
event intensity, and 4) identify an optimal height range giving the

earliest possible flare prediction, similar to the concept described
by Korsos et al. (2020).
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