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Massive stars are important metal factories in the Universe. They have short and energetic

lives, and many of them inevitably explode as a supernova and become a neutron star or

black hole. In turn, the formation, evolution and explosive deaths of massive stars impact

the surrounding interstellar medium and shape the evolution of their host galaxies. Yet

the chemical and dynamical evolution of a massive star, including the chemical yield of

the ultimate supernova and the remnant mass of the compact object, strongly depend

on the interior physics of the progenitor star. We currently lack empirically calibrated

prescriptions for various physical processes at work within massive stars, but this is

now being remedied by asteroseismology. The study of stellar structure and evolution

using stellar oscillations—asteroseismology—has undergone a revolution in the last two

decades thanks to high-precision time series photometry from space telescopes. In

particular, the long-term light curves provided by the MOST, CoRoT, BRITE, Kepler/K2,

and TESS missions provided invaluable data sets in terms of photometric precision,

duration and frequency resolution to successfully apply asteroseismology to massive

stars and probe their interior physics. The observation and subsequent modeling

of stellar pulsations in massive stars has revealed key missing ingredients in stellar

structure and evolution models of these stars. Thus, asteroseismology has opened

a new window into calibrating stellar physics within a highly degenerate part of the

Hertzsprung–Russell diagram. In this review, I provide a historical overview of the

progress made using ground-based and early space missions, and discuss more recent

advances and breakthroughs in our understanding of massive star interiors by means of

asteroseismology with modern space telescopes.

Keywords: asteroseismology, stars: interiors, stars: oscillations, stars: evolution, stars: rotation, stars: massive,

stars: early-type

1. INTRODUCTION

Stars are the essential building blocks of planetary systems, stellar clusters and galaxies. The lives
and energetic deaths of massive stars, i.e., those with birth masses larger than ∼8 times that of the
Sun (8 M⊙)—play a pivotal role in shaping the Universe (Maeder andMeynet, 2000; Maeder, 2009;
Kippenhahn et al., 2012; Langer, 2012). Massive stars were amongst the first stars in our Universe
(Bromm and Larson, 2004; Bromm et al., 2009), and are progenitors of core-collapse supernovae
and gamma-ray bursts (Heger et al., 2003; Smartt, 2009; Tanvir et al., 2009; Modjaz et al., 2019).
The properties of massive stars allow them to be observed at large distances (see e.g., Stark, 2016),
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hence allow us to study the early epochs of the Universe including
the re-ionization of the Universe and the formation of the first
galaxies (Bromm and Larson, 2004; Robertson et al., 2010).

Massive stars typically form in dense, cold and large molecular
clouds with one of the important signatures of massive star
formation being giant filament structures and powerful bi-polar
outflows when they are embedded in such dense clouds—see
the recent review by Rosen et al. (2020). After the formation
phase, massive stars enter the so-called main sequence phase of
stellar evolution, which is defined by the onset of hydrogen fusion
in the core via the CNO cycle whilst maintaining hydrostatic
equilibrium. The length of the main sequence is governed by
the nuclear time scale, with more massive stars having shorter
main sequence life times. During their lives, massive stars
produce intense radiation fields from their high luminosities
and experience line-driven winds, which together play major
roles in the shaping of their environment (Kippenhahn et al.,
2012; Langer, 2012). The majority of massive stars experience
an explosive death as a supernova, which provides mechanical
and chemical feedback to the interstellar environment (Mac
Low and Klessen, 2004; de Rossi et al., 2010; Hopkins et al.,
2014; Crowther et al., 2016; Stark, 2016) and can trigger a new
generation of stars and planets. The exotic compact remnants of
massive star evolution are neutron stars and black holes, with the
latter being end products for many of the higher-mass progenitor
stars. These remnants facilitate important tests of Einstein’s
theory of General Relativity and the study of the Universe using
gravitational waves when they coalesce (Abbott et al., 2016,
2019). Hence, understanding the evolution of massive stars and
their roles as supernovae and gravitational-wave progenitors
represent fundamental questions in astronomy (Smartt, 2009;
Langer, 2012). It is especially important to understand massive
star evolution since there is a strong dependence of a supernova’s
chemical yield and the mass of the remnant on the interior
physics of the progenitor star (Hirschi et al., 2005; Nomoto
et al., 2006; Langer, 2012; Stark, 2016), and because of the
large diversity in observed supernovae light curves (Dessart and
Hillier, 2019).

Despite the importance of massive stars in our Universe,
their physics is not yet fully understood. There are still many
questions spanning all evolutionary phases, and specifically how
their formation, evolution and inevitable deaths differ to those
of the more common intermediate- and low-mass stars (Langer,
2012). A major shortcoming of current stellar evolution models
is that they contain large theoretical uncertainties for massive
stars, which is evident already during the earliest phases of
stellar evolution including the main sequence. Consequently
these uncertainties propagate and strongly impact the post-main
sequence stage of stellar evolution (Maeder and Meynet, 2000;
Ekström et al., 2012; Chieffi and Limongi, 2013). Hence the
power of models for predicting if a massive star will explode
as a supernova, the corresponding chemical yield and the mass
of the compact remnant are limited by the accuracy of models
reproducing the observed properties of stars prior to them
exploding as supernovae.

Since massive stars have convective cores and radiative
envelopes during the main sequence, the physics and numerical

implementation of convection and convective-boundary mixing
is crucial in determining their core masses and subsequent
evolution (Gabriel et al., 2014; Georgy et al., 2014; Paxton et al.,
2018, 2019). The mixing profile at the interface of convective
and radiative regions, and the mixing profile within the envelope
directly impact the amount of hydrogen available for nuclear
burning. With more internal mixing, a massive star experiences a
longer main sequence and produces a larger helium core mass
at the end of the main sequence since fresh hydrogen from
the envelope is readily supplied to the convective core (Miglio
et al., 2008b; Kippenhahn et al., 2012; Pedersen et al., 2018;
Michielsen et al., 2019). In the case of single, slowly rotating
and non-magnetic massive stars, it is the internal mixing profile
and helium core mass that dictates the evolution beyond the
main sequence and determines the ultimate end state. However,
probing the physical processes beneath the opaque surfaces of
massive stars is practically impossible using standard methods
and techniques in astronomy, such as spectroscopy.

Rotation plays a major role among massive stars, specifically
because rotationally induced mixing is expected within
their interiors (Zahn, 1992; Maeder and Meynet, 2000). Yet
prescriptions for such mixing profiles are currently assumed
in models and controlled by numerous free parameters that
have yet to be empirically calibrated. This represents a large
source of uncertainty within theoretical evolution models when
estimating the masses and ages of high-mass stars (see e.g.,
Aerts, 2020 and Serenelli et al., 2020 for recent detailed reviews).
The combined influence of various rotation rates, different
metallicity regimes and mass loss through stellar winds also
introduce strong degeneracies within evolutionary models of
massive stars (Maeder and Meynet, 2000; Georgy et al., 2011,
2013; Ekström et al., 2012; Chieffi and Limongi, 2013; Groh
et al., 2019). Furthermore, based on dedicated studies, such as
MiMeS (Wade et al., 2016), the BOB campaign (Morel et al.,
2015), and the BRITE spectropolarimetric survey (Neiner et al.,
2017), ∼10% of massive stars are inferred to host a large-scale
magnetic field with polar field strengths that range from ∼100 G
up to a few kG. The degeneracies within evolutionary models are
also more complex when dealing with the presence of magnetic
fields in massive stars (Alecian et al., 2014; Shultz et al., 2018;
Keszthelyi et al., 2019, 2020).

It is known that many massive stars are members of multiple
systems, which interact over the course of their lifetimes, so
theoretical uncertainties are further compounded by the effects of
binarity and mass transfer (Podsiadlowski et al., 1992; Sana et al.,
2012; deMink et al., 2013; Duchêne and Kraus, 2013; Moe and Di
Stefano, 2017). However, despite the complexities associated with
rotation, metallicity, mass loss and magnetic fields, massive stars
in multiple systems have proven extremely useful in probing and
mitigating model parameter uncertainties (Guinan et al., 2000;
Hilditch et al., 2005; Torres et al., 2010; Tkachenko et al., 2014,
2016; Almeida et al., 2015; Abdul-Masih et al., 2019; Johnston
et al., 2019; Mahy et al., 2020a,b). This is primarily because
binary studies have the potential to provide masses and radii
from the stars’ relative orbital motion around a common center
of mass. Moreover, accurate, absolute and model-independent
masses and radii are achievable in the case of eclipsing binary
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systems (see e.g., Southworth et al., 2020 and Tkachenko et al.,
2020) owing to the ability to simultaneously model spectroscopic
radial velocities together with the eclipse depths in the light curve
of a binary system.

To truly maximize the predictive power of evolutionary
models for massive stars, it is essential to calibrate their physical
prescriptions and parameters using stringent observational
constraints on stellar interiors. One of the most successful and
novel methodologies for this is called asteroseismology, which
uses the resonant oscillation frequencies of stars to probe their
structure—see the research monograph by Aerts et al. (2010).
Until recently, most observational studies of massive stars have
focused on the determination of global and/or average properties
of these stars, such as the effective temperature and surface
gravity derived from spectroscopy being used to estimate masses
and ages. On the other hand, the recent space photometry
revolution has truly brought asteroseismology to the forefront
of astronomy as a means to calibrate stellar evolution theory
across the Hertzsprung–Russell (HR) diagram (Chaplin and
Miglio, 2013; Hekker and Christensen-Dalsgaard, 2017; García
and Ballot, 2019; Aerts, 2020).

In this review, I discuss the progress that has been made
in constraining the interiors of massive stars by means of
asteroseismology and the space photometry revolution made
possible thanks to modern space missions. In section 2, I provide
a brief overview of asteroseismology, its methodology, and the
types of pulsating massive stars it can be applied to. In section 3,
an overview of the space telescopes that have led to the space
photometry revolution is described. In section 4, I discuss the
recent advances in massive star interiors made by means of
asteroseismology, and section 5 describes the state-of-the-art of
variability studies in some of the most massive stars. I finish
by discussing the current challenges and future prospects for
asteroseismology of high-mass stars in section 6.

2. ASTEROSEISMOLOGY

A powerful method for probing and constraining the physics of
stellar interiors is asteroseismology, which uses stellar oscillations
to probe the physics of stellar structure (Aerts et al., 2010). The
pulsation modes of stars are standing waves exhibiting nodes
and anti-nodes and are described by spherical harmonics. In the
case of non-rotating and non-magnetic stars, the wavefunctions
of stellar pulsations are separable into the radial and angular
directions. The radial parts of the wavefunction solutions are
characterized by the radial order n. Whereas, the angular
dependence is characterized by the angular degree ℓ (number
of surface nodes), and the azimuthal order m (where |m| is the
number of surface nodes that are lines of longitude). The simplest
example of a pulsation mode is a radial mode for which {ℓ,m} =
0 such that the surface of a star expands and contracts during
a pulsation cycle. More complex examples of pulsation modes
include non-radial modes (i.e., ℓ > 0), for which the indices ℓ and
m define the surface geometry of the oscillation. As an example,
the axisymmetric dipole mode (i.e., {ℓ,m} = {1, 0}) has the stellar

equator as a node. Thus, the northern and southern hemispheres
of a star expand and contract in anti-phase with one another.

Although they have a common structure comprising a
convective core and a radiative envelope during the main
sequence, there are different types of pulsations that can be
excited in massive stars. In general, however, the excitation
mechanism of pulsation modes has been shown to be the
heat-engine mechanism operating in the local maximum of
the Rosseland mean opacity caused by iron-group elements—
the so-called Z-bump (Dziembowski and Pamyatnykh, 1993;
Dziembowski et al., 1993; Gautschy and Saio, 1993; Pamyatnykh,
1999; Miglio et al., 2007). This κ-mechanism gives rise to
pulsation modes with properties and excitation physics which
depend on the host star’s mass, age and chemical composition.
There are two main types of pulsation modes excited by the
κ-mechanism in massive stars, which are defined based on
their respective restoring force: pressure (p) modes and gravity
(g) modes.

2.1. Pressure Modes
Pressure (p) modes are standing waves for which the pressure
force acts as a restoring force (Aerts et al., 2010). Typically,
p modes have high frequencies (i.e., pulsation periods of order
several hours in massive stars), can be radial or non-radial and
are mostly sensitive to the radiative envelopes of massive stars.
For radial p modes, the entire interior of the star acts as a
pulsation cavity, with the center of a star being a node and its
surface an anti-node. In the cases of non-radial p modes, the
depth of the pulsation cavity from the surface is determined
by the local adiabatic sound speed c(r). A non-radial pulsation
mode encounters an increasing c(r) when traveling inward
from the stellar surface, which causes it to travel faster and be
refracted. The depth a non-radial p mode can reach is called
its turning radius, rt , which is proportional to

√
ℓ(ℓ + 1) and

defined outwards from the center of the star (Aerts et al., 2010).
Thus, higher degree p modes have smaller pulsation cavities
that are more sensitive to the stellar surface. The power of
asteroseismology is that each pulsation has a cavity defined by
a star’s structure, such that each pulsation mode can be used as a
direct probe of the physical processes at work within its cavity.

If the radial orders of p modes are sufficiently large such that
the modes satisfy n ≫ ℓ, which is called the asymptotic regime,
the pulsations are approximately equally-spaced in frequency
(Tassoul, 1980). Deviations from a constant frequency spacing
are possible, and become more prevalent for more evolved stars.
During the main sequence phase of evolution the radius of
a massive star increases and the core contracts, which drives
the g- and p-mode pulsation cavities closer to one another
as a result of an increasing Brunt-Väisälä frequency (Aerts
et al., 2010). Consequently, this can cause a form of pulsation
mode interaction called avoided crossings, in which p and g
modes can exchange character whilst retaining their identities if
their frequencies approach one another (Osaki, 1975). In more
evolved cases, such as post-main sequence stars, the evanescent
region between the p- and g-mode cavities inside massive stars
decreases. This can allow p and gmodes to couple with each other
and form mixed modes, which are modes with the character of
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a p mode in the envelope and the character of a g mode in the
deep interior (Aerts et al., 2010). The regularities of asymptotic
p modes in the amplitude spectra of low- and intermediate-
mass stars has greatly simplified the issue of mode identification
and facilitated asteroseismology for low-mass stars (see e.g.,
Chaplin and Miglio, 2013; Hekker and Christensen-Dalsgaard,
2017; García and Ballot, 2019), but are rarely observed in massive
stars (see e.g., Belkacem et al., 2010; Degroote et al., 2010b). Such
high-radial order p modes are generally not expected for massive
stars owing to the excitation physics of the κ-mechanism being
inefficient in driving such modes in massive stars (Dziembowski
and Pamyatnykh, 1993; Dziembowski et al., 1993; Gautschy and
Saio, 1993; Pamyatnykh, 1999; Miglio et al., 2007).

In the presence of rotation the frequency degeneracy of non-
radial pulsation modes with respect to m is lifted, which serves
as a unique method of mode identification in certain pulsating
stars. The simplest case is for stars that rotate (very) slowly and
rigidly, i.e., with a uniform interior rotation angular frequency
�—such that the splitting of non-radial pulsation frequency,
ωnℓm, is given by

ωnℓm = ωnℓ +m (1− Cnℓ) �, (1)

where Cnℓ is the Ledoux constant which sets the size of the
splitting due to the Coriolis force. In this idealized example,
the result of Equation (1) produces a multiplet of pulsation
frequencies separated by the stellar rotation frequency in the
amplitude spectrum for p modes of high radial order or high-
angular degree since Cnℓ ≃ 0 in such cases (Aerts et al.,
2010). An example of rotationally-split quadrupole p modes is
shown in Figure 1, using the example of KIC 11145123 originally
discovered by Kurtz et al. (2014). The amplitude spectrum of
the resultant quintuplet split by rotation shown in Figure 1 uses
both 1 and 4-years light curves to emphasize the significant
improvement in the resolving power of longer light curves
for asteroseismic studies of rotation. Therefore, if the rotation
rate is sufficiently slow, p-mode multiplets serve as a means of
determining the interior rotation rates of stellar envelopes using
an almost model-independent methodology.

Beyond the first-order perturbative approach for including the
Coriolis force in slow and rigid rotators given in Equation (1),
second- and third-order perturbative formalisms have been
discussed by, for example, Dziembowski and Goode (1992),
Daszyńska-Daszkiewicz et al. (2002), and Suárez et al. (2010). As
described by Suárez et al. (2010), it is important to note that the
first-order perturbative treatment of the Coriolis force applied to
p modes is only applicable for stars with rotation velocities below
∼15% of their critical breakup velocity, with faster rotating stars
requiring more complex formalisms.

2.2. Gravity Modes
Gravity (g) modes are standing waves for which buoyancy (i.e.,
gravity) acts as a restoring force (Aerts et al., 2010). Typically,
g modes have low frequencies, can only be non-radial and are
mostly sensitive to the deep interiors of massive stars near their
convective cores. In the asymptotic regime, g modes are equally
spaced in period (Tassoul, 1980), and exhibit a characteristic

FIGURE 1 | Example of rotational splitting of quadrupole p modes into a

quintuplet using both 1 and 4-years light curves of the star KIC 11145123

(Kurtz et al., 2014). Horizontal red lines correspond to the rotational splitting

value of the modes.

period 50. In the case of a non-rotating and chemically-
homogeneous star, 50 can be calculated from the individual
g-mode periods, Pn,ℓ, given by

Pnℓ =
50√

ℓ (ℓ + 1)
(|n| + α) , (2)

in which α is a phase term independent of the mode degree, ℓ,
and

50 = 2π2
(∫ r2

r1

N(r)
dr

r

)−1

, (3)

where r1 and r2 are the inner and outer boundaries of the g-mode
pulsation cavity, and N(r) is its Brunt-Väisälä frequency. Thus,
Equation (2) defines a constant spacing in period for g modes
of the same angular degree, ℓ, and consecutive radial order, n.
Equation (3) demonstrates that the characteristic period, 50, is
largely determined by the Brunt-Väisälä frequency, N(r), which
has a strong dependence on the mass of the convective core, and
hence the mass and age of a star (Miglio et al., 2008a).

2.2.1. Interior Rotation
Since all massive stars rotate to some extent, the Coriolis force
is also a dominant restoring force for g modes. Therefore, it
is more appropriate to describe massive stars having gravito-
inertial modes, for which both the Coriolis force and buoyancy
are important. This is particularly true for pulsation modes with
frequencies in the co-rotating frame below twice the rotation
frequency (see Aerts et al., 2019a). As discussed in detail by
Bouabid et al. (2013), the period spacing increases with period
in the co-rotating frame for prograde modes, and decreases
in the inertial frame. This is because in the co-rotating frame
the effective ℓ(ℓ + 1) (cf. Equation 2) for prograde sectoral
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FIGURE 2 | Schematic of the methodology of constraining interior rotation using g modes. (Left) Light curve of the Slowly Pulsating B (SPB) star KIC 3459297

pulsating in low-frequency g modes (cf. Pápics et al., 2017). (Right) Amplitude spectrum and period-spacing pattern of the prograde g-mode pulsations in the light

curve are shown as the top and bottom panels, respectively. Pápics et al. (2017) determined frot = 0.63± 0.04 d−1 from the g-mode period spacing pattern for

KIC 3459297.

modes decreases with rotation due to the effect of Coriolis force.
Whereas, in the inertial frame an increasing period spacing is
caused by the frequency increase (i.e., period decrease) due to the
effect of advection |m|�. Therefore, for rotating stars as viewed in
the inertial frame by an observer, one expects a decreasing period
spacing for prograde g modes and an increasing period spacing
for retrograde g modes.

Consequently, a powerful diagnostic in interpreting the
oscillation spectrum of a rotating star pulsating in g modes is its
period spacing pattern, which is defined as the period differences,
1P, of consecutive radial order (n) gravity modes of the same
angular degree (ℓ) and azimuthal order (m) as a function of the
pulsation mode period, P. An example of an observed period
spacing pattern for a series of prograde dipole g modes in the
star KIC 3459297 (Pápics et al., 2017) is shown in Figure 2, in
which a fit to the g-mode period spacing pattern reveals the
near-core rotation rate—see Van Reeth et al. (2016), Ouazzani
et al. (2017), and Pápics et al. (2017) for the application of this
technique. Under the asymptotic approximation, g modes in a
non-rotating, chemically homogenous star are equally spaced in
period (cf. Equation 2), yet rotation and a chemical gradient left
behind from nuclear burning within a receding convective core
introduce perturbations in the form of a tilt and dips, respectively
(Miglio et al., 2008a; Bouabid et al., 2013). Higher rotation rates
induce a larger tilt with the gradient being negative for prograde
modes and positive for retrograde modes in the inertial frame.

The commonly-used and mathematically appropriate
approach to including rotation in the numerical computation
of pulsation mode frequencies is the use of the Traditional
Approximation for Rotation (TAR; Eckart, 1960; Lee and
Saio, 1987a,b; Bildsten et al., 1996; Townsend, 2003b). Such a
treatment of the Coriolis force is necessary for g-mode pulsators
if 2�/ω & 1 (Aerts et al., 2018). This is because high-radial
order g modes in moderately and rapidly-rotating stars are
in the gravito-inertial regime (Aerts et al., 2019a). Within
the formalism of the TAR, the horizontal component of the
rotation vector is ignored, which is a reasonable assumption
for gravito-inertial modes in main sequence stars given that the

Lagrangian displacement vector is predominantly horizontal.
The differential equations for non-radial pulsations in rotating
stars are almost equivalent to those of non-rotating stars
(using the Cowling approximation) if ℓ(ℓ + 1) is replaced by
the eigenvalue of the Laplace tidal equation, λ. Hence, the
mathematical framework of the TAR allows the asymptotic
approximation to be used for high-radial g modes in rotating
stars (see Lee and Saio, 1997, Townsend, 2003b and Townsend,
2003a). Today, the TAR has been used to probe the impact of
rotation on g-mode period spacing patterns both theoretically
(e.g., Bouabid et al., 2013) and observationally (e.g., Van Reeth
et al., 2016), and has been extended by Mathis (2009) and
Mathis and Prat (2019) to take into account differential rotation
and the slight deformation of stars, respectively. The TAR is
implemented within the state-of-the-art pulsation code GYRE

(Townsend and Teitler, 2013; Townsend et al., 2018) and has
been used by various observational studies to probe (differential)
rotation inside g-mode pulsators (Van Reeth et al., 2016, 2018).
We refer the reader to Aerts (2020) for a detailed discussion of
the TAR and its application to pulsating stars.

2.2.2. Interior Mixing
Since massive stars have convective cores and radiative envelopes
during the main sequence, the physics of convection and
convective-boundary mixing is crucial in determining their core
masses and evolution (Kippenhahn et al., 2012). The mixing
profile at the interface of convective and radiative regions, and the
mixing profile within the envelope directly impact the amount of
hydrogen available for nuclear burning. Mixing at the boundary
of convective regions, such as near the convective core in a
main sequence star, is typically implemented as overshooting in
numerical codes and expressed in terms of the local pressure scale
height (Freytag et al., 1996; Herwig, 2000). This is predicated
on the non-zero inertia of convective bubbles at a convective
boundary causing them to overshoot into a radiative layer. In
massive stars, the overshooting of the convective core (also
known as convective-boundary mixing) entrains hydrogen from
the envelope into the core resulting in a longer main sequence
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lifetime and a larger helium core mass (Pedersen et al., 2018;
Michielsen et al., 2019). This has a direct impact on the
characteristic g-mode period, 50, of main-sequence stars with
convective cores (Mombarg et al., 2019).

A non-zero amount of convective core overshooting is
necessary when interpreting pulsations in massive stars using 1D
stellar evolution codes (Dupret et al., 2004; Briquet et al., 2007;
Daszyńska-Daszkiewicz et al., 2013b). Yet, the amount and shape
of convective-boundary mixing remains largely unconstrained
for such stars. Two examples of typical shapes of convective-
boundary mixing profiles currently implemented in evolution
codes include a step overshoot and an exponential overshoot
(see e.g., Herwig, 2000; Paxton et al., 2015). Typically, these
two prescriptions in the shape of convective core overshooting
are referred to as αov and fov, respectively, in the literature
and differ approximately by a factor of 10–12 (Moravveji et al.,
2015). However, it is only recently that asteroseismology has
demonstrated the potential to discriminate them in observations
using g-mode period spacing patterns (Moravveji et al., 2015,
2016; Pedersen et al., 2018). Moreover, there is considerable
ongoing work using 3D hydrodynamical simulations (Augustson
and Mathis, 2019) and g-mode pulsations to probe the
temperature gradient within an overshooting layer and ascertain
if it is adiabatic, radiative, or intermediate between the two
(Michielsen et al., 2019).

In addition to the need for convective-boundary mixing
in massive stars, the origin of mixing within their radiative
envelopes is also unconstrained within evolutionary models.
Direct evidence for needing increased envelope mixing comes
from enhanced surface nitrogen abundances in massive stars
(Hunter et al., 2009; Brott et al., 2011). Since nitrogen is a by-
product of the CNO cycle of nuclear fusion in a massive star
(Kippenhahn et al., 2012), an efficient mixing mechanism in
the stellar envelope must bring it to the surface. Rotationally-
induced mixing has been proposed as a possible mechanism
(Maeder and Meynet, 2000), but it is currently unable to explain
observed surface nitrogen abundances in slowly-rotating massive
stars in the Milky Way and low-metallicity Large Magellanic
Cloud (LMC) galaxies (Hunter et al., 2008; Brott et al., 2011).
Nor can rotational mixing fully explain surface abundances in
massive overcontact systems (Abdul-Masih et al., 2019, 2020).
Furthermore, there was no statistically-significant relationship
between the observed rotation and surface nitrogen abundance in
a sample of galactic massive stars studied by Aerts et al. (2014). In
fact, the only robust correlation with surface nitrogen abundance
in the sample was the dominant pulsation frequency (Aerts
et al., 2014), which suggests that pulsations play a significant
role in determining the mixing properties within the interiors of
massive stars.

2.2.3. Period Spacing Patterns as Probes of Interior

Rotation and Mixing
As previously illustrated in Figure 2, an observed g-mode
period spacing pattern provides direct insight of the
interior rotation rate of a star. Such patterns also allow
the amount of interior mixing in terms of both convective

core overshooting and envelope mixing to be determined.
Since massive stars have a receding core whilst on the main
sequence, they develop a chemical gradient in the near-
core region as they evolve. Gravity modes are particularly
sensitive to this molecular weight (µ) gradient and in the
absence of large amounts of internal mixing this leads
to mode trapping (Aerts, 2020). Thus, the g modes get
trapped which leads to “dips” in the g-mode period spacing
pattern on top of the overall “tilt” caused by rotation (cf.
Figure 2).

An illustration of the effect of different amounts of interior
mixing and rotation on the g-mode period spacing patterns of
prograde dipole modes in a 12 M⊙ star about halfway through
the main sequence is shown in Figure 3. In the left column
of Figure 3, the effect of increasing the amount of envelope
mixing (denoted by Dmix) is shown going from top to bottom.
Whereas, in the right column, the effect of increasing the amount
of convective core overshooting (denoted by fov) is shown
from top to bottom. Such values of Dmix and fov represent
the range of values typically found by asteroseismic studies of
stars with convective cores. Clearly, even for moderate values
of envelope mixing (i.e., Dmix ≃ 104 cm2 s−1), the presence
of dips in the g-mode period spacing pattern are strongly
diminished, as shown in the bottom-left panel of Figure 3.
Thus, the observed presence of strong dips in g-mode period
spacing patterns already places an upper limit on the amount of
envelope mixing possible in such stars. In all panels of Figure 3,
three different rotation rates are shown in green, blue and red,
demonstrating the significant affect of rotation for g modes,
which correspond approximately to rotation frequencies of 0.0,
0.1, and 0.2 d−1, respectively. The effect of rotation was calculated
assuming rigid rotation using the TAR implemented in the GYRE

pulsation code (Townsend and Teitler, 2013; Townsend et al.,
2018).

Yet, it is possible that only some, or even none, of the pulsation
modes shown in Figure 3 are observed in massive stars, since
the excitation of a given pulsation mode depends on stellar
parameters, including mass, age, metallicity. The example using
a 12 M⊙ shown in Figure 3 does not include any predictions
of mode excitation. Nevertheless, Figure 3 serves as a schematic
example of similar behavior for anymain sequence star born with
a convective core. In summary, the morphology of an observed
g-mode period spacing pattern facilitates mode identification
and offers a direct measurement of the near-core rotation and
chemical mixing within a star. In practice, asteroseismology
of g modes requires long-term and high-precision time series
(space) photometry to extract g-mode period spacing patterns.
These patterns consequently allows one to measure the interior
rotation and constrain the envelope mixing of the host star,
and the corresponding characteristic g-mode period, 50, which
places constraints on its mass and age. From a large and multi-
dimensional grid of stellar structure models covering the possible
values of mass, age, and interior mixing parameterized by fov
and Dmix, a quantitative comparison of observed and theoretical
g-mode period spacing patterns facilitates asteroseismology to
derive the interior properties of massive stars (Aerts et al., 2018).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 October 2020 | Volume 7 | Article 578584

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Bowman Asteroseismology of High-Mass Stars

FIGURE 3 | Theoretical g-mode period spacing patterns for prograde dipole modes of a 12 M⊙ star about halfway through the main sequence (i.e., Xc = 0.4). The left

and right columns are for different envelope mixing (Dmix) in cm2 s−1, and exponential convective-boundary mixing (fov) expressed in local pressure scale heights,

respectively, calculated using the MESA stellar evolution code (Paxton et al., 2019). For each panel, three different rotation rates expressed as a fraction of the critical

rotation rate, �crit, calculated using the Traditional Approximation for Rotation (TAR) using the GYRE pulsation code (Townsend and Teitler, 2013) are shown.

2.3. Instability Domains of High-Mass Stars
The common interior structures of massive stars includes a
convective core and radiative envelope, with pulsations in these
stars being driven by the κ-mechanism operating within the local
opacity enhancements caused by the Z-bump associated with
iron-peak elements in their near-surface layers (Dziembowski
and Pamyatnykh, 1993; Dziembowski et al., 1993; Gautschy and
Saio, 1993; Pamyatnykh, 1999; Miglio et al., 2007). The depth
of the Z-bump at T ≃ 200,000 K depends on the effective
temperature of the star and in turn defines an upper and
lower temperature boundary for the instability region of the κ-
mechanism in the HR diagram, which are sometimes referred
to the blue and red edges of an instability region, respectively.
In addition to the mass, radius and effective temperature
of a star, which define its thermal structure, the metallicity
and choice of opacity table in models are also important
parameters (Dziembowski and Pamyatnykh, 2008; Paxton et al.,
2015; Walczak et al., 2015; Daszyńska-Daszkiewicz et al., 2017).
Since the κ-mechanism operates in the Z-bump, it requires a
sufficiently-large opacity enhancement to block radiation and
excite coherent pulsation modes. This is supported by theoretical
models of pulsation excitation, and observations which indicate
a dearth of massive pulsators in low-metallicity environments,
such as the LMC galaxy with Z ≃ 0.5Z⊙ (see e.g., Salmon et al.,
2012).

Furthermore, rotation plays an important role in defining
the instability regions of massive stars. From an observational
perspective, moderate and fast rotation distorts the spherical

symmetry of a star. This has significant implications for the
spectroscopic determination of atmospheric parameters, such as
the effective temperature and surface gravity, as these parameters
are significantly affected by gravity darkening (von Zeipel, 1924;
Townsend et al., 2004; Espinosa Lara and Rieutord, 2011). From
a more theoretical perspective, the distorted spherical symmetry
of rapidly-rotating stars impacts the applicability of using 1D
models, and because phenomena associated with rapid rotation,
such as rotationally-induced mixing, can significantly influence
evolutionary tracks in the HR diagram (Maeder and Meynet,
2000; Maeder, 2009; Lovekin, 2020). Moreover, as discussed in
section 2.2.1, the Coriolis force perturbs the pulsation frequencies
of a rotating star and consequently also the expected parameter
range of instability regions in the HR diagram (Townsend, 2005;
Bouabid et al., 2013; Szewczuk and Daszyńska-Daszkiewicz,
2017).

The calculation of instability regions for stars requires non-
adiabatic calculations, and specifically the calculation of a
pulsation mode’s growth rate (Unno et al., 1989; Aerts et al.,
2010). Following the laws of thermodynamics, heat-driven
pulsation modes require that heat is gained in phase with
compression during a pulsation cycle. A non-adiabatic pulsation
calculation yields a mode’s eigenfrequency, and its imaginary
component yields the growth rate. For heat-drivenmodes excited
by the κ-mechanism, the growth rate is a positive quantity for
modes that are effectively excited and negative for modes that
are damped (Unno et al., 1989; Aerts et al., 2010). The instability
regions of pulsations in massive stars for different masses, ages,
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metallicities, and rotation rates can be readily calculated for early-
type stars by means of stellar structure and evolution codes,
such as MESA (Paxton et al., 2011, 2013, 2015, 2018, 2019),
when coupled to non-adiabatic stellar pulsation codes, such as
GYRE (Townsend and Teitler, 2013; Townsend et al., 2018).
We refer the reader to Moravveji (2016), Godart et al. (2017),
and Szewczuk and Daszyńska-Daszkiewicz (2017) for instability
regions of main-sequence massive stars calculated with and
without rotation, and to Daszyńska-Daszkiewicz et al. (2013a)
and Ostrowski and Daszyńska-Daszkiewicz (2015) for instability
calculations for post-main sequence massive stars.

Amongst the early-type stars, there are two main groups
of stars that pulsate in coherent pulsation modes excited by
the κ-mechanism: the β Cephei (β Cep) stars and the Slowly
Pulsating B (SPB) stars, which together span the approximate
mass range from 3 to 25M⊙. Although not traditionally classified
as a distinct pulsator group amongst massive stars, the pulsating
Be stars are also discussed in this section for completeness.
Pulsations in more evolved and/or more massive stars have also
been detected, such as those in periodically variable supergiant
(PVSG) stars (Aerts et al., 2010). However, they are not included
here since there are currently very few asteroseismic studies of
these objects. The reader is referred to Saio et al. (2006) and
Ostrowski et al. (2017) for insightful work on the variability of
such stars.

2.3.1. β Cephei Stars
The β Cephei (β Cep) stars are Population I stars with spectral
types ranging from late O to early B on the main sequence,
and have birth masses larger than some 8 M⊙ and up to
25 M⊙. They pulsate in low-radial order g and p modes excited
by the κ-mechanism operating in the Z-bump (Dziembowski
and Pamyatnykh, 1993), and have pulsation periods that range
between about 2 and 8 h (Stankov and Handler, 2005; Pigulski
and Pojmański, 2008a,b; Aerts et al., 2010). Most β Cep stars are
dwarf stars, making them likely main sequence stars, although a
significant fraction are giants or supergiants. Our understanding
of the driving of low-radial order g modes in high-mass β Cep
stars remains somewhat elusive (Handler et al., 2004, 2017; Aerts
et al., 2004a), since a substantial overabundance of iron and
nickel in the Z-bump is typically needed for the κ-mechanism
to be efficient at exciting g modes in such stars (Pamyatnykh
et al., 2004; Moravveji, 2016; Daszyńska-Daszkiewicz et al.,
2017). Moreover, in addition to the mode excitation by the
κ-mechanism, β Cep stars have been shown to exhibit non-
linear mode excitation (Degroote et al., 2009) and stochastically-
excited pulsation modes (Belkacem et al., 2009, 2010; Degroote
et al., 2010b), which demonstrate that multiple pulsation driving
mechanisms exist in these stars.

2.3.2. Slowly Pulsating B Stars
The Slowly Pulsating B (SPB) stars are the lower-mass
counterparts of the β Cep stars, with the original definition of
this type of variable star made by Waelkens (1991) although
individual examples of SPB stars were known previously
(e.g., 53 Persei; Smith and McCall, 1978). The SPB stars are
Population I stars with spectral types that range from B3 to B9

on the main sequence, thus they have birth masses between ∼3
and 8 M⊙ (Aerts et al., 2010). They pulsate in high-radial order
and predominantly prograde dipole g modes excited by the κ-
mechanism operating in the Z-bump (Dziembowski et al., 1993;
Gautschy and Saio, 1993) and have pulsation periods that range
between a few days and several hours (Waelkens et al., 1998b;
Aerts et al., 1999b; De Cat and Aerts, 2002).

2.3.3. Pulsating Be Stars
A subset of ∼20% of non-supergiant massive stars are classified
as Be stars (Porter and Rivinius, 2003). This group comprises
stars that have shown Balmer lines in emission on at least one
occasion, since such emission lines are known to be transient
(Zorec and Briot, 1997; Neiner et al., 2011; Rivinius et al., 2013).
The Be stars are rapid rotators with circumstellar decretion disks,
and their near-critical rotation rates are thought to be related to
their evolutionary history. More specifically, Be stars may have
accreted mass from a companion or are the result of a stellar
merger, which is supported by the relative rarity of Be stars with
main-sequence companions (Bodensteiner et al., 2020). Many Be
stars show evidence of pulsations and experience outbursts of
material thought to be driven by pulsations (Rivinius et al., 2003;
Huat et al., 2009; Kurtz et al., 2015). The pulsational behavior
of Be stars is quite diverse, with such stars showing coherent
g modes and stochastically excited gravito-interial waves, with
the amplitude of their pulsations being connected to whether the
star is mid-outburst or in quiescence (Kambe et al., 1993; Porter
and Rivinius, 2003; Neiner et al., 2009, 2012b; Baade et al., 2016).
Given the diverse variability seen in Be stars, it remains unclear
if a single excitation mechanism is unanimously responsible for
exciting pulsations in Be stars, with their fast rotation being
their main common characteristic (Porter and Rivinius, 2003;
Townsend et al., 2004).

3. THE SPACE PHOTOMETRY
REVOLUTION

The successful application of asteroseismology requires
long-term, continuous and high-precision time series data
to resolve individual pulsation mode frequencies, and
perform unambiguous mode identification. As discussed in
sections 2.1 and 2.2.3, mode identification using the continuous
photometry provided by space telescopes can be readily achieved
using rotationally-split modes and period spacing patterns,
respectively. However, prior to space telescope missions different
techniques were more common. Nevertheless, once mode
identification has been achieved, a quantitative comparison of
observed pulsation mode frequencies and those predicted by
theoretical models in addition to atmospheric constraints, such
as the effective temperature and metallicity from spectroscopy
reveals the physics that best represents the observed star—a
fitting process known as forward seismic modeling (Aerts et al.,
2018).

3.1. Prior to Space Telescopes
Prior to the near-continuous photometry provided by space
telescopes, pulsation modes in massive stars were identified by
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means high-resolution and high-cadence spectroscopic and/or
photometric time series data assembled using ground-based
telescopes (e.g., Smith, 1977; Waelkens, 1991; De Cat et al.,
2005). In the early days of massive star asteroseismology, mode
identification via spectroscopic line profile variations (LPVs)
targeted the silicon triplet at 4,560 Å in slowly-rotating β Cep
stars (Gies and Kullavanijaya, 1988; Aerts et al., 1992, 1994a,b;
Aerts and Waelkens, 1993; Telting and Schrijvers, 1997; Telting
et al., 1997; Uytterhoeven et al., 2004, 2005), whereas for SPB
stars the silicon doublet at 4,130 Å was also useful (Aerts et al.,
1999a; Aerts and De Cat, 2003). A spectral resolving power of
at least 50,000 and a very high signal-to-noise being preferable.
In fast rotating B stars, such as Be stars, these silicon multiplets
can be blended and one must target isolated lines, such as the
helium I 6,678 Å line (e.g., Balona and Kambe, 1999; Balona et al.,
1999; Maintz et al., 2003; Štefl et al., 2003). Balmer lines are not
suitable for LPV studies as they are less sensitive to the radial
and non-radial velocities of pulsations since they are dominated
by intrinsic (i.e., Stark) broadening. For a complete discussion of
mode identification using spectroscopic time series, we refer the
reader to Aerts et al. (2010).

An alternative and complementary methodology to using
LPVs in the identification of pulsation modes in massive stars is
to use amplitude ratios from multi-color photometry. Originally
devised by Watson (1988) and Heynderickx et al. (1994), this
approach was particularly effective when applied to β Cep
stars owing to their relatively high amplitude and short-period
pulsations. We refer the reader to Shobbrook et al. (2006),
Handler et al. (2012) and Handler et al. (2017) for examples
of this technique. The analysis of ground-based photometry
and/or spectroscopy has been successful in demonstrating the
importance of constraining parameters, such as convective core
overshooting, rotation and metallicity in massive star evolution
(Aerts et al., 2003; Handler et al., 2004, 2006; Briquet et al., 2007;
Daszyńska-Daszkiewicz et al., 2013b; Szewczuk and Daszyńska-
Daszkiewicz, 2015).

3.2. Early Space Missions
When the era of space telescopes dawned, the revolution
of asteroseismology for stars across the HR diagram truly
began. Space telescopes not only provide long-term and near-
continuous observations of multiple stars simultaneously, but the
typical precision of space-based photometry is at least two orders
of magnitude better than what is possible from the ground. Such
early space missions, which were not designed for asteroseismic
surveys but nonetheless were extremely useful, included the
Hipparcos mission (van Leeuwen et al., 1997), which discovered
hundreds of pulsating B stars (Waelkens et al., 1998a; Aerts
et al., 2006c; Lefèvre et al., 2009). The drastically improved
time series data allowed low-amplitude pulsation modes to be
detected in stars previously believed to be constant, and yielded
precise pulsation frequencies in multi-periodic pulsators that are
dominated by complex beating patterns (Koen and Eyer, 2002).

The first space telescope dedicated to asteroseismology was
the MOST mission, which was launched in 2003 (Walker et al.,
2003). The MOST spacecraft may have been a small telescope,
but it detected pulsations in a wide variety of different types

of variable stars. Among the massive stars, MOST studied SPB,
β Cep, and Be stars (Walker et al., 2005; Aerts et al., 2006a,b; Saio
et al., 2007a,b; Cameron et al., 2008), including rare instances
of β Cep stars in eclipsing binary systems (Desmet et al.,
2009a,c). Simultaneous MOST photometry and ground-based
spectroscopy proved vital in understanding and modeling the
first massive star exhibiting hybrid p- and g-mode behavior,
γ Peg (Handler et al., 2009; Walczak et al., 2013). Furthermore,
MOST detected pulsations in blue supergiants, such as Rigel
(Saio et al., 2006; Moravveji et al., 2012), and interestingly it
also detected pulsations in some Wolf-Rayet stars (Lefèvre et al.,
2005; Moffat et al., 2008a) but the absence of pulsations in
others (Moffat et al., 2008b). Although the time series photometry
assembled by the MOST mission was limited in length, it
served as a valuable proof-of-concept exercise demonstrating the
power of massive star asteroseismology using space telescopes
compared to facilities on the ground.

The next major milestone in the space photometry revolution
was the French-led CoRoT mission launched in 2006 (Auvergne
et al., 2009). The CoRoT spacecraft was a combined planet
hunting and asteroseismology focused mission, which delivered
short-cadence (i.e., 32 s) time series photometry for different
fields of view across the sky for up to 150 days (Baglin et al.,
2009). Over the mission duration, CoRoT contributed a wealth
of information concerning variability in massive stars, with some
aspects remaining unchallenged in quality and impact more than
a decade later. The CoRoT fields of view were optimized to
contain hundreds of candidate pulsating B stars (Degroote et al.,
2009), which included β Cep, SPB, and Be stars (Degroote et al.,
2009; Aerts et al., 2011, 2019b; Briquet et al., 2011; Pápics et al.,
2011; Neiner et al., 2012b; Degroote, 2013). The mission was
a great success for massive star variability studies, with CoRoT
detecting regular frequency spacings in the O8.5V star HD 46149
(Degroote et al., 2010b), and providing firm confirmation that
massive stars can pulsate in both p- and g-mode frequencies
(Degroote et al., 2012). Furthermore, CoRoT led to the first
discovery of deviations from a constant period spacing in the
B3V star HD 50230 (Degroote et al., 2010a). In addition to
high-precision asteroseismology of targeted β Cep stars (Aerts
et al., 2011, 2019a), CoRoT also discovered stochastic variability
caused by pulsations in massive star photospheres. This includes
stochastic non-radial pulsations in B stars (Belkacem et al., 2009;
Neiner et al., 2012b) and stochastic low-frequency variability in
the three O stars HD 46223, HD 46150, and HD 46966 (Blomme
et al., 2011; Bowman et al., 2019a).

Of all the space photometry missions available for
asteroseismology, the BRITE-constellation of nanosatellites is
ranked amongst the highest for providing excellent asteroseismic
returns considering its budget and etendue (Weiss et al., 2014;
Pablo et al., 2016). The constellation of nanosatellites from the
collaboration of Austria, Poland, and Canada, was originally
launched in 2013 and have provided long-term time series
photometry of some of the brightest stars in the sky. This
includes β Cep, SPB and Be stars (Baade et al., 2016; Pigulski
et al., 2016; Daszyńska-Daszkiewicz et al., 2017; Handler et al.,
2017; Walczak et al., 2019), but also pulsating stars in multiple
systems (Kallinger et al., 2017; Pablo et al., 2017, 2019) and
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stochastic variability in O supergiants and Wolf-Rayet stars
(Buysschaert et al., 2017b; Ramiaramanantsoa et al., 2018a,b,
2019). The multi-color and long-term photometry of BRITE and
its observing strategy are naturally complementary to combing
BRITE data with simultaneous ground-based photometry and/or
spectroscopy (e.g., Handler et al., 2017).

3.3. The Kepler and K2 Missions
Perhaps the most famous of all space telescopes providing time
series photometry, the Kepler space telescope was launched
in 2009 and had a primary goal of finding Earth-like planets
orbiting Sun-like stars (Borucki et al., 2010; Koch et al., 2010).
Although by the end of the nominal Kepler mission, the 4-
years light curves of more than 200,000 stars proved invaluable
for asteroseismology as well as exoplanet studies. Massive stars
(> 8 M⊙) were purposefully avoided by the Keplermission since
they are bright and typically saturated the CCDs, although dozens
of SPB stars and rotationally-variable B stars were discovered
(McNamara et al., 2012; Balona et al., 2015). Since the end of
the nominal 4-years Keplermission, the extremely high precision
light curves have been used to discover and analyse rotationally-
split modes and period spacing patterns of prograde dipole
g modes in dozens of SPB stars (Pápics et al., 2014, 2015, 2017).
Such asteroseismic studies have revealed the interior rotation
rates, convective core overshooting andmixing inmain-sequence
B stars (Moravveji et al., 2015, 2016; Szewczuk and Daszyńska-
Daszkiewicz, 2018). Despite massive stars not being included in
the Kepler field of view, ingenious techniques to extract the light
curves of nearby massive stars have been successful (Pope et al.,
2016, 2019a), which includes the scattered-light variability of the
O9.5 Iab star HD 188209 (Aerts et al., 2017).

After ∼4 years the Kepler spacecraft lost a second vital
reaction wheel, which meant that the field of view could not
be maintained without a significant expenditure of fuel. A new
mission, K2: Kepler’s second light, was devised by NASA, which
consisted of 80-days campaigns pointing in the direction of
the ecliptic (Howell et al., 2014). Since the K2 campaign fields
included young star-forming regions, a plethora of massive
stars were available to study using K2 light curves. The first
proof-of-concept of O-star asteroseismology was demonstrated
by Buysschaert et al. (2015), which acted as an important
demonstration of the feasibility of massive star asteroseismology
with space photometry. The K2 mission allowed the rotation,
pulsation, and binary properties of the seven sisters of the
Pleiades to be studied in detail for the first time thanks to its long
time base and high precision (White et al., 2017). Since the end of
the K2 mission in 2018, these high-precision data have revealed
dozens of previously unknown β Cep and SPB stars (Pope et al.,
2016, 2019b; Burssens et al., 2019) and ubiquitous stochastic
low-frequency variability in the photospheres of massive stars
(Bowman et al., 2019b).

3.4. The TESS Mission
The ongoing Transiting Exoplanet Survey Satellite (TESS; Ricker
et al., 2015) is currently providing high-precision and short
cadence (i.e., 2 min) observations for hundreds of thousands
of stars across the sky. Each ecliptic hemisphere (|b| > 6◦)

FIGURE 4 | Spectroscopic HR diagram of the pulsating massive stars

observed by TESS in its sectors 1–13, which have spectroscopic parameters

derived by high-resolution spectroscopy, are shown as green circles. Note that

the ordinate axis shows spectroscopic luminosity such that L : = T4
eff/g

(Langer and Kudritzki, 2014). Red and blue hatched regions denote the

theoretical instability regions of g and p modes, respectively, for main sequence

stars. Non-rotating evolutionary tracks at solar metallicity (in units of M⊙) are

shown as solid gray lines, and a typical spectroscopic error bar is shown in the

bottom-left corner. Figure adapted from Burssens et al. (2020), their Figure 3.

is divided into 13 sectors which are each observed for up to
28 days. However, there is overlap of the observational sectors
near the ecliptic poles, such that stars within the TESS continuous
viewing zones (CVZ) have uninterrupted light curves spanning 1
year. Such an observing strategy is optimized to find transiting
exoplanets orbiting bright stars across the sky, but TESS data
are also extremely valuable for massive star asteroseismology.
Amongst the earliest studies of massive star variability as viewed
by TESS are those by Handler et al. (2019), Bowman et al.
(2019b) and Pedersen et al. (2019) in which the diverse variability
of massive stars is demonstrated using a total sample of more
than 200 massive stars. The study by Handler et al. (2019)
considers one of the first β Cep stars observed by the TESS
mission, which revealed it to be multi-periodic and subsequent
asteroseismic modeling indicated it was a runaway star because
of its inferred age.

Since the first 13 sectors of TESS data in the southern
ecliptic hemisphere have become available, Burssens et al. (2020)
have completed a census of massive star variability using TESS
data, and coupled this to high-resolution spectroscopy from the
IACOB (Simón-Díaz et al., 2011, 2015; Simón-Díaz and Herrero,
2014) and OWN (Barbá et al., 2010, 2014, 2017) surveys. This
allowed them to place more than 100 pulsating massive stars
in the spectroscopic HR diagram. A summary of the variability
catalog by Burssens et al. (2020) is shown in the spectroscopic
HR diagram in Figure 4, in which the observed stars are shown
as green circles overlaid on top of evolutionary tracks (gray lines)
and theoretical instability regions for p and g modes (blue and
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red hatched regions, respectively), which were calculated using
the MESA evolution code (Paxton et al., 2019) and the GYRE

pulsation code (Townsend and Teitler, 2013). Although there is
general agreement between the observed location of pulsating
stars and the predicted instability regions, the study by Burssens
et al. (2020) clearly demonstrates that our understanding of the
variability mechanisms in massive stars is far from complete
given the overall distribution of stars within the HR diagram.

4. EMPIRICAL CONSTRAINTS ON
MASSIVE STAR INTERIORS

In the previous section, it was described how early asteroseismic
studies of massive star interiors were predominantly based on
ground-based campaigns. The acquisition of these necessary data
was painstakingly complex and required substantial dedication
from all those involved, since it is non-trivial to collect
and analyse such fragmented time series. However, despite
the complications some aspects of these ground-based studies
remain unrivaled to this day owing to the carefully-selected
sample of stars and the relative exclusion of massive stars in
later space missions. In particular, there remain only a handful
of truly massive stars that have been undergone forward seismic
modeling. In this section, some important case studies of
pulsating massive stars that have studied using asteroseismology
are presented. In particular the range of parameters that have
been obtained via forward seismic modeling, where available, are
summarized in Table 1, but we refer the reader to the individual
studies for full details.

4.1. Ground-Based Studies
The first detailed study of the interior of a massive star using
asteroseismology is arguably that of the slowly-rotating B3V
star V836 Cen (HD 129929) (Aerts et al., 2003, 2004b; Dupret
et al., 2004). The analysis of the extensive ground-based data set
consisting of multicolor Geneva photometry and high-resolution
spectroscopy revealed HD 129929 to be a multiperiodic β Cep
star pulsating in low-radial order g and p modes (Aerts et al.,
2003, 2004b). The rotationally-split multiplets in HD 129929
yielded a non-rigid interior rotation rate where the near-core
region was determined to be rotating a factor of ∼4 times
faster than the envelope. This was the first measurement of
the interior rotation rate of a main-sequence star. Subsequent
forward seismic modeling allowed the best-fitting mass, age,
metallicity, core hydrogen mass fraction, and convective core
overshooting to be determined (Dupret et al., 2004), which are
provided in Table 1.

An important example of extensive ground-based multicolor
photometry and spectroscopy being used to probe the interior
of a β Cep star is that of B2 III star ν Eri (HD 29248) (Handler
and Aerts, 2002; Ausseloos et al., 2004; De Ridder et al., 2004;
Handler et al., 2004; Pamyatnykh et al., 2004; Aerts et al.,
2004a; Jerzykiewicz et al., 2005; Suárez et al., 2009; Daszyńska-
Daszkiewicz and Walczak, 2010). At the time, and arguably still
true today, ν Eri represents one of the best studied β Cep stars
owing to the substantial data set having been assembled for the

star. The spectroscopic and frequency analyses of this slowly-
rotating (v sin i . 20 km s−1) star revealed rotationally-split
low-radial order dipole g and p modes, and possibly high-radial
order g modes (Handler et al., 2004; Aerts et al., 2004a). Forward
seismic modeling of ν Eri was unable to find a satisfactory
theoretical model unless an iron enhancement throughout the
star, and in particular in the Z-bump, was included in the
models to explain the mode excitation (Ausseloos et al., 2004;
Pamyatnykh et al., 2004). The best-fitting parameters of ν Eri
yielded a non-rigid interior rotation rate of ∼3–5 times faster
in the near-core region compared to the envelope, although this
is quite uncertain given the asymmetry of the small number
of rotationally-split modes available (Ausseloos et al., 2004;
Pamyatnykh et al., 2004). Later, Dziembowski and Pamyatnykh
(2008), Suárez et al. (2009), and Daszyńska-Daszkiewicz and
Walczak (2010) revisited the modeling of ν Eri and investigated
its interior rotation, overshooting andmode excitation properties
based on different opacity tables, specifically focusing on the
relative abundance of iron in the Z-bump. In particular, these
asteroseismic modeling studies were able to produce a better
fit to the observed pulsation mode frequencies using larger
overshooting values and an enhancement of iron in the Z-
bump, albeit at the expense of not necessarily re-producing the
inferred location of the star in the HR diagram. The best-fitting
parameters from these studies are provided in Table 1, although
the variance in the parameters can be understood as arising from
the different metallicities and opacity tables being used.

A similarly famous β Cep star is 12 Lac (B1.5 III; HD 214993),
which is comparable in mass to ν Eri although it is somewhat
more rapidly rotating with a projected rotational velocity of 30 .

v sin i . 40 km s−1 (Gies and Lambert, 1992; Abt et al., 2002).
However, producing a satisfactory asteroseismic model for 12 Lac
has been difficult owing to inconsistencies between observed and
theoretically-predicted mode identifications, the consequential
impact on the inferred interior rotation profile, and stellar
opacity data being unable to explain the excitation of all
observed pulsation mode frequencies (Aerts, 1996; Dziembowski
and Jerzykiewicz, 1999; Handler et al., 2006; Dziembowski
and Pamyatnykh, 2008; Desmet et al., 2009b). Despite these
difficulties, Dziembowski and Pamyatnykh (2008) conclude
based on the then-available observations of 12 Lac that it also
exhibits an interior rotation rate of∼4–5 times faster in the near-
core region compared to the envelope. Desmet et al. (2009b) were
able to constrain the parameters of 12 Lac, but the most advanced
study of 12 Lac to date was performed by Daszyńska-Daszkiewicz
et al. (2013b), who performed mode identification, asteroseismic
modeling and studied how rotation, metallicity and opacity data
significantly affect the modeling results.

The slowly-rotating (v sin i ≃ 30 km s−1) β Cep star θ Oph
(B2 IV; HD 157056) was also subject to intense photometric
campaigns to detect, extract and identify its variability (Briquet
et al., 2005; Handler et al., 2005; Daszyńska-Daszkiewicz and
Walczak, 2009). The frequency spectrum of θ Oph resembled that
of V836 Cen in that it also contained a single radial mode and a
handful of low-radial order rotationally-split multiplets, although
one difference is that θ Oph is known to be a multiple system
(Briquet et al., 2005). However, contrary to previous examples of
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TABLE 1 | Best-fitting parameters of high-mass stars derived from forward seismic modeling of pulsations discussed in this review.

Star Mass Age Z Xc Core overshooting References

αov fov(M⊙) (Myr)

V836 Cen (HD 129929) 9.35 16.3 0.0188 0.353 0.10± 0.05 − Dupret et al., 2004

9.23 − 0.0120 0.314 − 0.0365 Hendriks and Aerts, 2019

ν Eri (HD 29248) 9.0−9.9 16−20 0.0150 0.34−0.38 0.00−0.12 − Pamyatnykh et al., 2004

8.4 26.6 0.0115 − 0.21 − Ausseloos et al., 2004

7.13 14.82 0.019 0.139 0.28 − Suárez et al., 2009

8.01−9.77 16.2−29.1 0.014−0.018 0.247−0.279 0.03−0.35 − Daszyńska-Daszkiewicz and

Walczak, 2010

9.0 − 0.015 − 0.163 − Daszyńska-Daszkiewicz et al.,

2017

6.56 − 0.0195 0.275 − 0.0242 Hendriks and Aerts, 2019

θ Oph (HD 157056) 8.2± 0.3 − 0.009−0.015 0.38± 0.02 0.44± 0.07 − Briquet et al., 2007

8.00−8.81 7.20−7.38 0.01−0.02 0.35−0.42 0.07−0.39 − Walczak et al., 2019

7.21 − 0.0132 0.349 − 0.0402 Hendriks and Aerts, 2019

V2052 Oph (HD 163472) 8.2−9.6 16.9−23.7 0.010−0.016 0.25−0.32 0.00−0.15 − Briquet et al., 2012

12 Lac (HD 214993) 10.2−14.4 11−23 0.015 0.13−0.21 0.0−0.4 − Desmet et al., 2009b

10.28 − 0.0115 − 0.39 − Daszyńska-Daszkiewicz et al.,

2013b

12.80 − 0.0198 0.200 − 0.0187 Hendriks and Aerts, 2019

HD 50230 7−8 − 0.020 ≃ 0.30 0.2−0.3 − Degroote et al., 2010a

11.12 − 0.0200 0.045 − 0.0494 Hendriks and Aerts, 2019

6.187± 0.025 61.72+1.89
−0.21 0.0408± 0.0009 0.3058+0.0006

−0.0007 − 0.0180± 0.0014 Wu and Li, 2019

HD 180642 11.4−11.8 12.4−13.0 0.008−0.014 0.21−0.25 < 0.05 − Aerts et al., 2011

HD 46202 24.1± 0.8 4.3± 0.5 0.013−0.015 − 0.10± 0.05 − Briquet et al., 2011

KIC 10526294 3.25 63 0.014 0.627 − 0.017 Moravveji et al., 2015

5.25 − 0.0120 0.712 − 0.0348 Hendriks and Aerts, 2019

KIC 7760680 3.25± 0.05 202 0.020± 0.001 0.503± 0.001 − 0.024± 0.001 Moravveji et al., 2016

HD 43317 5.8+0.2
−0.1 0.54+0.01

−0.02 − 0.004+0.014
−0.002 Buysschaert et al., 2018

KIC 3240411 6.25 − 0.006 0.612 − 0.02 Szewczuk and

Daszyńska-Daszkiewicz, 2018

Note that not all studies listed here use the same evolution codes, opacity tables (e.g., standard vs. modified), nor necessarily the same numerical setup for selecting the statistically

best-fitting asteroseismic model, so the reader is referred to each individual study for full details.

β Cep stars discussed in this section, forward seismic modeling
of θ Oph by Briquet et al. (2007) revealed an approximately
rigid interior rotation rate and a significantly larger amount of
convective core overshooting with the best-fitting model yielding
αov = 0.44 ± 0.07. Such a high value of convective core
overshooting is rare in the context of modern asteroseismology of
stars with convective cores (Aerts et al., 2019a), but does highlight
the trend that stellar models typically underestimate the mass of
the convective cores in high-mass main-sequence stars.

A final example case study of forward seismic modeling of a
slowly-rotating β Cep star based on ground-based data is the
B2 IV/V star V2052 Oph (HD 163472; Briquet et al., 2012).
The importance of V2052 Oph in this context is that it is a
known magnetic star (Neiner et al., 2003, 2012a). A large-scale
magnetic field is thought to suppress the near-core mixing caused
by convective core overshooting in massive stars. The data set
of V2052 Oph assembled and analyzed by Briquet et al. (2012)
included more than 1300 spectra from 10 different telescopes
around the world, and the resultant frequency spectrum of

included a radial mode and two prograde non-radial modes
identified by means of spectroscopy. Forward seismic modeling
of these identified pulsation modes yielded a relatively fast
rotation rate with veq ≃ 75 km s−1, and only a small amount of
convective core overshooting with αov ∈ [0.00, 0.15], which was
concluded to be low because of the star’s magnetic field (Briquet
et al., 2012).

4.2. Space-Based Studies
Early space missions, such as MOST (Walker et al., 2003) have
targeted massive stars for the purposes of asteroseismology.
However, in this review we focus on selected case studies from
the BRITE, CoRoT and Kepler missions. This is because of their
high photometric precision and their long observational base
lines (Auvergne et al., 2009; Baglin et al., 2009; Borucki et al.,
2010; Koch et al., 2010; Weiss et al., 2014), which are necessary
for successful forward seismic modeling.

The CoRoTmission provided near-continuous light curves up
to 150 days in length at a cadence of 32 s, which at the time was
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a major revolution for asteroseismology. Early important results
from the mission included the seismic modeling of the β Cep
star HD 180642 (Aerts et al., 2011), and detection of the g-mode
period spacing pattern in the B3 III SPB star HD 50230 (Degroote
et al., 2010a). Such a g-mode period spacing pattern was a
huge step forward in asteroseismology, as such patterns enable
mode identification and allow interior rotation and mixing to be
measured directly. Subsequent modeling of HD 50230 revealed
it to be a mid-main sequence star with a mass of ∼7 M⊙, and
convective core overshooting of 0.2 ≤ αov ≤ 0.3 (Degroote et al.,
2010a). Later, Degroote et al. (2012) discovered that HD 50230
is a wide-binary system, and confirmed its ultra-slow rotation
rate of veq ≃ 10 km s−1 using spectroscopy, although they
concluded that this does not impact the aforementioned g-mode
period spacing pattern. More recently, Wu and Li (2019) have
revisited the analysis of HD 50230 and conclude it to be a
metal-rich hybrid pulsator with a modest amount of convective
core overshooting.

Not long after the early studies by Degroote et al. (2010a)
and Aerts et al. (2011), another important result for massive star
asteroseismology from the CoRoT mission was made based on
the O9V star HD 46202 (Briquet et al., 2011). Spectroscopy of
HD 46202 confirmed its literature spectral type and yielded a
projected surface rotation rate of v sin i ≃ 25 km s−1 and an
effective temperature of Teff = 34,100 ± 600 K, which makes it
amongst the hottest β Cep pulsators known (Briquet et al., 2011).
Several radial and non-radial pulsation modes were identified
using the CoRoT photometry of HD 46202. Forward seismic
modeling of these identified modes yielded a precise mass and
age for this massive pulsator, confirming it as the most massive
modeled β Cep star to date. A significant amount of convective
core overshooting was required to fit the observed pulsation
frequencies and the best-fitting asteroseismic parameters from
Briquet et al. (2011) are provided in Table 1.

A third pivotal study of a massive star using asteroseismology
from CoRoT data is the magnetic and fast-rotating B3.5V star
HD 43317 (Pápics et al., 2012; Briquet et al., 2013; Buysschaert
et al., 2017a, 2018). This star was originally studied by Pápics et al.
(2012) using the 150-d CoRoT light curve and it was concluded
to exhibit g and pmodes based on its frequency spectrum, since it
appeared to have independent pulsation modes in both high and
low frequency regimes. High-resolution spectroscopy confirmed
HD 43317 as an early-type star with an effective temperature of
Teff = 17,350 ± 750 K, and as a fast rotator with a projected
surface rotational velocity of v sin i = 115 ± 9 km s−1 (Pápics
et al., 2012). Later, HD 43317 was detected to host a large-scale
magnetic field with a polar field strength of ∼1.3 kG (Briquet
et al., 2013; Buysschaert et al., 2017a). After revisiting the light
curve with the knowledge of how such fast rotation perturbs the
frequencies of g-mode pulsations in B stars (see e.g., Kurtz et al.,
2015), Buysschaert et al. (2018) extracted all significant pulsation
mode frequencies and performed forward seismic modeling of
HD 43317 and determined its fundamental parameters, which
are provided in Table 1. The small amount of convective core
overshooting in the rapidly-rotating andmagnetic star HD 43317
led Buysschaert et al. (2018) to a similar conclusion to that of
Briquet et al. (2011) for the β Cep star V2052 Oph (cf. 4.1): the

presence of a large-scale magnetic field is a plausible cause for
the suppression of additional mixing (i.e., overshooting) in the
near-core region.

As discussed in section 3.3, during the life time of the Kepler
space mission, massive stars were avoided as targets in the field
of view. Hence, whereas much of the asteroseismic inference
of massive stars based on ground-based data were focused on
β Cep stars, more recent asteroseismic results based on the 4-
years light curves of the Kepler telescope are typically derived
from SPB stars (Aerts et al., 2019a). Although not all SPB stars are
“massive” stars, they do share a common interior structure whilst
on the main sequence, so their discussion is relevant as part of
this review.

Amongst the early days of Kepler asteroseismology, two SPB
stars were identified as high priority targets: KIC 10526294
and KIC 7760680. A long series of rotationally-split g modes
in the B8.3V star KIC 10526294 allowed Pápics et al. (2014)
to determine a near-core rotation period of ∼188 days.
Later, Moravveji et al. (2015) performed the first in-depth
asteroseismic modeling of this main-sequence B star, from
which it was concluded that a modest amount of exponential
diffusive overshooting (i.e., fov) fit the Kepler data significantly
better than when using the step overshooting prescription
(i.e., αov). Furthermore, a small but non-negligible amount of
additional envelope mixing (Dmix ≃ 100 cm2 s−1) was needed
despite KIC 10526294 being an ultra-slow rotator (Moravveji
et al., 2015). The best-fitting asteroseismic modeling parameters,
including the measured overshooting of 0.017 ≤ fov ≤ 0.018,
are included in Table 1. The exquisite Kepler data allowed Triana
et al. (2015) to compute a near-rigid interior rotation profile
through an asteroseismic inversion. Interestingly, at the 1-σ
confidence level, the inversion by Triana et al. (2015) confirmed
the ultra-slow rotation rate, but revealed that KIC 10526294 had
a counter-rotating envelope compared to that of its core. Similar
conclusions in terms of a non-negligible amount of convective
core overshooting and envelope mixing were also reached for the
B8 V SPB star KIC 7760680 based on the period spacing pattern
of prograde dipole g modes by Moravveji et al. (2016). However,
it should be noted that the uncertainties obtained by Moravveji
et al. (2015) and Moravveji et al. (2016) are typically quoted as
the step size within the computed grid of evolution models and
may be unrealistically small, because they ignore degeneracies
amongst the model parameters (see Aerts et al., 2018). There
has been substantial development in the correct way to treat
parameter correlations and degeneracies for asteroseismology of
g-mode pulsators by moving away from the often-used χ2 merit
function and toward the use of the Mahalanobis distance which
includes heteroscedasticity. We refer the reader to Aerts et al.
(2018) for further details.

At somewhat higher masses, Szewczuk and Daszyńska-
Daszkiewicz (2018) performed forward seismic modeling of the
SPB star KIC 3240411 using its axisymmetric (m = 0) period
spacing pattern extracted from Kepler data. KIC 3240411 was
found to be a relatively young star near the zero-age main
sequence with the upper limit on its convective core overshooting
being fov ≤ 0.030. The best-fitting model parameters (i.e., model
#2 in Table 2 of Szewczuk and Daszyńska-Daszkiewicz, 2018)
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are included in Table 1. Importantly, Szewczuk and Daszyńska-
Daszkiewicz (2018) also studied the effect of rotation and opacity
data within their modeling for the purposes of explaining mode
excitation of high-radial order g modes in such stars. This is
because the excitation of such a large number and radial order
range for high-radial order g modes remains somewhat difficult
to explain from a theoretical perspective.

Recently, the nanosatellites of the BRITE-constellation
mission have been targeting pulsating massive stars with the
aim of performing forward seismic modeling of the detected
pulsation mode frequencies. Notable examples of the importance
of the contribution of the BRITE mission in this aspect
include ν Eri (Daszyńska-Daszkiewicz et al., 2017) and θ Oph
(Walczak et al., 2019). The BRITE data marked the first
time that these famous β Cep stars were observed from
space, thus the first time an asteroseismic analysis of them
benefitted fromhaving near-continuous, short-cadence and long-
term monitoring. Handler et al. (2017) discovered new g-
mode pulsations in ν Eri using BRITE data, and Daszyńska-
Daszkiewicz et al. (2017) used the extracted pulsation mode
frequencies to perform forward seismic modeling. Daszyńska-
Daszkiewicz et al. (2017) determined optimum parameters for
ν Eri and emphasized the improvement of usingmodified opacity
tables to explain all the observed pulsation mode frequencies.
Moreover, the modified opacity data increases the efficiency of
convection within the Z-bump, an effect also predicted when
increasing the metallicity of the star (Cantiello et al., 2009) or
increasing the rotation (Maeder et al., 2008). In the analysis
of θ Oph using BRITE data, Walczak et al. (2019) discovered
several g modes. From their forward seismic modeling, similar
conclusions made by Daszyńska-Daszkiewicz et al. (2017) for
ν Eri were made. Specifically that an increase in the mean
opacity within the Z-bump is needed to explain all pulsation
mode frequencies in θ Oph (Walczak et al., 2019). However,
since θ Oph is a triple system with ∼ 8.5 and ∼ 5.5 M⊙
primary and tertiary components, respectively, it was difficult to
ascertain the origin of the g-mode frequencies (Walczak et al.,
2019).

Recently, a new method of performing forward seismic
modeling by means of a machine learning was developed by
Hendriks and Aerts (2019). The authors trained a deep neural
network using more than 62 million pulsation mode frequencies,
which were calculated from a vast grid of stellar models covering
main sequence intermediate- and high-mass stars spanning
from 2 to 20 M⊙. Optimum models were selected using a
genetic algorithm making such an automated pipeline extremely
quick compared to more conventional forward seismic modeling
techniques. Hendriks and Aerts (2019) test their methodology
using several well-studied massive stars to benchmark the
accuracy of their technique and good agreement is found overall.
However, as discussed in detail by Hendriks and Aerts (2019),
the modeling results based on their deep neural network depend
on the choice of hyperparameters, which affect the ability to
find the global minimum in the solution space. In Table 1 the
model parameters resulting from the optimized tuning of these
hyperparameters are provided (cf. gray points), but such values
are claimed to be an “optimal starting point” for further complex

modeling. We refer the reader to Hendriks and Aerts (2019) for
full details.

Asteroseismology using Kepler data has also been applied to
hundreds of intermediate-mass stars covering masses between
∼1 and 8 M⊙, rotation rates up to 80% of critical, and
evolutionary stages spanning from the main sequence through to
the red giant branch. More specifically, g-mode period spacings
have also been used to probe interior rotation in hundreds
of intermediate-mass main-sequence stars, which are more
commonly known as γ Dor stars (Van Reeth et al., 2015a,b, 2016,
2018; Ouazzani et al., 2017, 2019; Li et al., 2019a,b, 2020). An
important conclusion from these works is that current angular
momentum transport theory is erroneous by more than an
order of magnitude (Aerts et al., 2019a). The situation is less
clear for massive stars owing to the much smaller sample size
currently available, but significant progress has already been
made in recent years because of ground- and space-based data
sets and asteroseismology.

The pioneering asteroseismic studies of massive stars using
ground- and space-based data sets clearly demonstrate the
importance of constraining the interior properties of massive
stars and the effectiveness of using g-mode period spacing
patterns in SPB stars and low-radial order g and p modes
for β Cep stars. Thanks to the ongoing TESS mission (Ricker
et al., 2015), the asteroseismic sample of pulsating massive
stars has increased in size by at least two orders of magnitude
(Pedersen et al., 2019; Burssens et al., 2020). Thus, detailed
forward seismic modeling of many high-mass TESS targets are
expected in the not-so-distant future. We refer the reader to
Handler et al. (2019) for the first modeling study of a β Cep
star using TESS data. Despite the relatively small sample size so
far compared to intermediate-mass stars, asteroseismic studies of
massive stars have demonstrated the need to include improved
prescriptions for convective core overshooting and envelope
mixing given that current evolution models underestimate the
core masses of massive stars and consequently also their main-
sequence lifetimes.

4.3. Implications of Mixing for the
Post-Main Sequence
The majority of asteroseismic studies of massive stars have
been of main sequence stars. Of course, based on evolutionary
time scales, stars spend more than 90% of their lives in this
phase (Kippenhahn et al., 2012). However, pulsating post-main
sequence massive stars do exist (Saio et al., 2006; Aerts et al.,
2010), and to truly understand their interior physics requires
us to first understand the interiors of main-sequence stars. For
example, the interplay of different mixing processes can cause
some post-main sequence massive stars to undergo blue loops in
the HR diagram. However, the exact nature of why some massive
stars undergo blue loops and others do not remains unknown
(Langer, 2012), especially given the differences in the physics and
numerics in various stellar evolution codes (e.g., Martins and
Palacios, 2013). It is known, however, that convection, mixing
and mass loss all play significant roles in determining if stars
undergo blue loops in the HR diagram and their pulsational
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FIGURE 5 | HR diagram containing non-rotating evolutionary tracks starting

from the zero-age main-sequence for stars of initial masses of 12- and

13.5-M⊙ calculated using the MESA stellar evolution code (Paxton et al.,

2019), using two different values for the diffusive exponential convective

core-overshooting value (fov), which are expressed in pressure scale heights.

With increased mixing in the near-core region, a massive star has a longer

main-sequence lifetime and produces a larger convective core mass at the

terminal age main-sequence. The increased core mass and interior mixing

during the main sequence phase of evolution also impacts the post-main

sequence evolution of a massive star, including whether it performs a “blue

loop,” which is demonstrated by the evolutionary track of the 12-M⊙ star with

fov = 0.02.

properties (Georgy, 2012; Saio et al., 2013; Georgy et al., 2014;
Wagle et al., 2019). To demonstrate how the difference in the
amount of the mixing at the boundary of a convective core
within a massive main-sequence star drastically impacts its post-
main sequence evolution, evolutionary tracks calculated with the
MESA stellar evolution code (Paxton et al., 2011, 2013, 2015,
2018, 2019; r11554) for initial masses of 12- and 13.5-M⊙ and
twomoderate values for their convective core-overshooting value
using the diffusive exponential prescription (i.e., fov) are shown
in Figure 5. The evolutionary tracks shown in Figure 5 use initial
hydrogen and metal mass fractions of X = 0.71 and Z = 0.02,
respectively, OP opacity tables (Seaton, 2005), and the chemical
mixture of Nieva and Przybilla (2012) and Przybilla et al. (2013)
for cosmic B stars. As illustrated in Figure 5, only one of the four
evolution tracks contains a blue loop in the post-main sequence
stage of evolution.

Currently, there exists a knowledge gap concerning the
interiors of blue supergiants yet to be filled by asteroseismology.
This is primarily because until recently few pulsating blue
supergiants had been found within the Hertzsprung gap in
the HR diagram (Bowman et al., 2019b), despite theoretical
models predicting such stars should pulsate (Saio et al., 2013;
Daszyńska-Daszkiewicz et al., 2013a; Ostrowski and Daszyńska-
Daszkiewicz, 2015). Asteroseismology of post-main sequence
massive stars represents a major future goal for the community,

especially since g-mode period spacing patterns and the presence
of radial p modes have the capability to distinguish shell-
hydrogen burning and core-helium burning massive stars (Saio
et al., 2013; Bowman et al., 2019b). Furthermore, when coupled
to spectroscopic surface abundances of core-processed material
(e.g., C, N, and O), convection and mixing in massive stars can
be significantly improved within stellar evolution codes, which
has important consequences for stars that eventually explode as
a supernova (e.g., Saio et al., 1988; Georgy et al., 2014; Wagle
et al., 2019). In particular, the helium core masses of post-main
sequencemassive stars represent a critical deliverable to the wider
astronomical community as it is a fundamental parameter for
predicting the chemical properties of supernovae (Smartt, 2009;
Langer, 2012).

5. DIVERSE PHOTOMETRIC VARIABILITY
IN MASSIVE STARS

A recent discovery made using the CoRoT, K2, and TESS
missions was that the vast majority of early-type stars have
significant low-frequency variability in photometry (Bowman
et al., 2019a,b). Such stochastic variability is not predicted from
the κ-mechanism, but is expected from convectively-driven
internal gravity waves (IGWs) excited by core convection (Rogers
et al., 2013; Rogers, 2015; Edelmann et al., 2019; Horst et al.,
2020). 2D and 3D hydrodynamical simulations predict that
IGWs reach the surface with significant amplitudes and provide
detectable perturbations in temperature and velocity (Edelmann
et al., 2019), and that IGWs are also extremely efficient at
transporting angularmomentum and chemical elements (Rogers,
2015; Rogers and McElwaine, 2017). A snapshot of a 3D
simulation of IGWs propagating within a 3-M⊙ main-sequence
star from Edelmann et al. (2019) is shown in Figure 6.

The morphology of the low-frequency variability in more
than 160 massive stars was found to be similar across a large
range of masses and ages for both metal-rich galactic and metal-
poor LMC stars (Bowman et al., 2019b). The insensitivity of the
stochastic variability to a star’s metallicity together with the fact
that evolutionary timescales predicted most stars were likely on
the main sequence was concluded as strong evidence that the
observed stochastic variability is likely caused by IGWs excited
by core convection (Bowman et al., 2019b). More recently,
Bowman et al. (2020) demonstrated that the morphology of
the IGWs in the frequency spectrum probes the evolutionary
properties of the star, such as mass and radius. Furthermore, the
amplitudes of IGWs in photometry were found to correlate with
the macroturbulent broadening in the spectral lines of dozens
of massive stars observed by the TESS mission (Bowman et al.,
2020), with macroturbulence also having been associated with
pulsations (Aerts et al., 2009; Simón-Díaz et al., 2010, 2017).
Thus, mixing and angular momentum transport caused by IGWs
are important to take into account when studying massive star
evolution (Aerts et al., 2019a), and are currently not implemented
in most stellar evolution codes.

There are currently four known excitation mechanisms that
can trigger variability in early-type stars: (i) coherent p and
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FIGURE 6 | Snapshot of a non-rotating 3D numerical simulation of gravity

waves excited by core convection inside a main-sequence massive star, with a

white-blue color scale indicating temperature fluctuations. Simulation courtesy

of Edelmann et al. (2019).

g modes excited by the κ-mechanism (Dziembowski et al., 1993;
Gautschy and Saio, 1993; Szewczuk and Daszyńska-Daszkiewicz,
2017); (ii) IGWs generated by turbulent core convection
(Edelmann et al., 2019); (iii) IGWs generated by thin sub-surface
convection zones (Cantiello et al., 2009); and (iv) waves generated
from tides in binary systems (Fuller, 2017). Whereas, essentially
all of the asteroseismic results discussed in section 4 are based
on heat-driven modes, the other variability mechanisms in
massive stars remain somewhat under-utilized despite having
great probing power of stellar interiors. In the future, it is
expected that binary asteroseismology in particular is going to
play a more substantial role in providing excellent constraints
of massive star interiors because recent space telescopes, such
as BRITE and TESS are providing the necessary high-quality
time-series observations (see e.g., Jerzykiewicz et al., 2020 and
Southworth et al., 2020).

6. CONCLUSIONS AND FUTURE
PROSPECTS

Our knowledge of the interior physics of massive stars has
historically been based on a handful of asteroseismic studies
using time series data obtained with ground-based telescopes.
Such data sets are notoriously limited by their poor duty
cycles which complicates mode identification (Aerts et al., 2003;
Ausseloos et al., 2004; Dupret et al., 2004; Handler et al., 2004;
Pamyatnykh et al., 2004; Briquet et al., 2007, 2012; Desmet et al.,
2009b; Daszyńska-Daszkiewicz et al., 2013b, 2017). These initial
asteroseismic studies, however, provided the first evidence of the
interior rotation profiles of massive stars and that evolutionary
models of such stars lacked calibrated prescriptions for interior
processes, such as convective core overshooting. Consequently

standard evolutionary models typically underestimate the mass
of convective cores and hence the main sequence lifetimes of
massive stars. Furthermore, ground-based studies yielded the
first measurements of the interior rotation rates of main sequence
stars (Aerts et al., 2003), with both rigid and non-rigid rotation
rates being inferred for a handful of β Cep stars (Aerts et al., 2003;
Ausseloos et al., 2004; Pamyatnykh et al., 2004; Briquet et al.,
2007). More recently, the MOST (Walker et al., 2003), CoRoT
(Auvergne et al., 2009), Kepler/K2 (Borucki et al., 2010; Howell
et al., 2014), and the ongoing BRITE-Constellation (Weiss et al.,
2014) missions have advanced asteroseismic studies beyond
measuring only the masses, ages and metallicities of massive
stars. More advanced forward seismic modeling techniques and
improved observations have constrained both macroscopic and
microscopic physical processes and mechanisms inside stars,
such as the amount and shape of mixing in their radiative
envelopes (Moravveji et al., 2015, 2016; Buysschaert et al., 2018;
Szewczuk and Daszyńska-Daszkiewicz, 2018; Walczak et al.,
2019) and angular momentum transport as a function of stellar
evolution (Aerts et al., 2019a).

Today, thanks to the ongoing TESS mission (Ricker et al.,
2015), there is huge asteroseismic potential for massive stars
as we are no longer limited by the biases of having a small
sample of pulsating massive stars. The long-term and high-
photometric precision provided by space telescopes is unrivaled
by ground-based telescopes, and the sample of massive stars
has expanded to hundreds of stars because of the all-sky TESS
mission (Pedersen et al., 2019; Burssens et al., 2020). Crucially,
TESS is observing massive stars which span a large range in
mass and age, but also massive stars in different metallicity
regimes. This is because the southern CVZ of TESS includes
the LMC galaxy, which allows pulsation excitation models to
be tested for metal-rich and metal-poor stars (Bowman et al.,
2019b). TESS also offers the opportunity to revisit “old friends”
in terms of previously studied massive stars with high-precision
photometry, which is particularly useful to probe the long-
term stability in pulsation mode amplitudes and frequencies in
relatively short-lived stars (e.g., Neilson and Ignace, 2015). The
diverse variability of massive stars, which includes both coherent
pulsation modes excited by the κ-mechanism and IGWs excited
by core convection (Pedersen et al., 2019; Bowman et al., 2019b;
Burssens et al., 2020), enables asteroseismology for a sample of
massive stars larger by two orders of magnitude compared to any
that came before.

The important future goals of asteroseismic studies based on
the large and diverse TESS data set include constraining the
helium core masses, near-core and envelope mixing processes,
interior rotation profiles and angular momentum transport
mechanisms inside massive stars. Insight of the physics in the
near-core region of stars above ∼8 M⊙ is currently lacking
compared to intermediate- and low-mass stars (Aerts et al.,
2019a). Moreover, HD 46202 remains the only massive star
above 15 M⊙ to have undergone forward seismic modeling
(Briquet et al., 2011). In turn TESS data combined with high-
resolution spectroscopy and asteroseismology will mitigate the
currently large uncertainties in stellar evolution theory and lead
to constraining why only some massive stars undergo blue
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loops during the post-main sequence phase of evolution (e.g.,
Bowman et al., 2019b), and improved predictions of supernovae
chemical yields and remnant masses. The future is very bright
for massive stars, and the goal to calibrate stellar structure and
evolution models of massive stars using asteroseismology is now
within reach.
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Aerts, C., Thoul, A., Daszyńska, J., Scuflaire, R., Waelkens, C., Dupret, M. A.,
et al. (2003). Asteroseismology of HD 129929: core overshooting and nonrigid
rotation. Science 300, 1926–1928. doi: 10.1126/science.1084993

Aerts, C., and Waelkens, C. (1993). Line profile variations of rotating, pulsating
stars. Astron. Astrophys. 273, 135–146.
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Handler, G., Pigulski, A., Daszyńska-Daszkiewicz, J., Irrgang, A., Kilkenny, D.,

Guo, Z., et al. (2019). Asteroseismology of massive stars with the TESS mission:
the runaway β Cep pulsator PHL 346 = HN Aqr. Astrophys. J. Letters 873:L4.
doi: 10.3847/2041-8213/ab095f

Handler, G., Rybicka, M., Popowicz, A., Pigulski, A., Kuschnig, R., Zocłońska,
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