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The detection of GW170817, it’s extensive multi-wavelength follow-up campaign, and the
large amount of theoretical development and interpretation that followed, have resulted in a
significant step forward in the understanding of the binary neutron star merger
phenomenon as a whole. One of its aspects is seeing the merger as a progenitor of
short gamma-ray bursts (SGRB), which will be the subject of this review. On the one hand,
GW170817 observations have confirmed some theoretical expectations, exemplified by
the confirmation that binary neutron star mergers are the progenitors of SGRBs. In
addition, the multimessenger nature of GW170817 has allowed for gathering of
unprecedented data, such as the trigger time of the merger, the delay with which the
gamma-ray photons were detected, and the brightening afterglow of an off-axis event. All
together, the incomparable richness of the data from GW170817 has allowed us to paint a
fairly detailed picture of at least one SGRB. I will detail what we learned, what new
questions have arisen, and the perspectives for answering them when a sample of
GW170817-comparable events have been studied.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are some of the most energetic explosions in the present day Universe,
characterized by the release of large amounts of energy, within a few milliseconds to tens of seconds,
resulting in the acceleration of relativistic outflows and the release of high-energy photons (Fishman
and Meegan, 1995; Piran, 1999; Mészáros, 2002; Gehrels et al., 2009; Kumar and Zhang, 2015). They
can be divided in at least two classes, based on the duration of their prompt phase, in which their
emission is concentrated in the hard X-ray and gamma-ray bands and is characterized by fast
variability (Kouveliotou et al., 1993). Long duration GRBs last 2 s or more, while short duration
GRBs (SGRBs) last between a few milliseconds and 2 s. Alternative classifications have also been
introduced, considering, e.g., short GRBs with extended emission (Norris and Bonnell, 2006;
Dainotti et al., 2010; Norris et al., 2010; Barkov and Pozanenko, 2011; Dainotti et al., 2017), or
attempting a more physical classification based on inferred progenitor properties (Lü et al., 2010;
Bromberg et al., 2013).

In the last two and a half decades, the study of GRBs has concentrated on long duration GRBs, and
a general consensus has grown around a model in which these events are associated with the collapse
of the core of massive stars (Woosley and Bloom, 2006). While the collapse of most massive stars
would ignite a core-collapse supernova, those that are fastly spinning and metal poor could
also trigger a long duration GRB, powered by a compact central engine (Woosley, 1993;
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Woosley and Heger, 2006; Yoon et al., 2006). Whether the central
engine is a fastly spinning, highly magnetized neutron star (NS)
(Bucciantini et al., 2008; Bucciantini et al., 2009; Metzger et al.,
2011) or an accreting black hole (BH) (Woosley, 1993; Lee et al.,
2000; Lei et al., 2013) is the matter of open debate.

The interest on SGRBs had increased in the last decade,
initially as a consequence of the launch of the Fermi satellite,
which had a higher efficiency for detecting and localizing them
compared to its predecessors (Meegan et al., 2009). More
recently, the theoretical expectation that SGRBs had to be
associated with the merger of binary NS systems (or, perhaps,
system made by a BH and a NS) (Belczynski et al., 2006; Lee
and Ramirez-Ruiz, 2007; Fong and Berger, 2013; Giacomazzo
et al., 2013; Ruiz et al., 2016; Ciolfi, 2018) has made them the
expected and highly anticipated high-frequency counterparts
of gravitational wave sources (Nakar et al., 2006; Kiuchi et al.,
2010; Schutz, 2011). Such expectations were supported by
energetic and temporal arguments. Powering a GRB
requires a large amount of energy, comparable to the rest
mass of a stellar object converted to energy. In addition, said
energy needs to be released in a matter of a fraction of a second,
at least for SGRBs. Naked compact objects (NS and BH) are the
only available candidates that can offer the required energy
within a region of less than a light second. However, isolated
NS and BH are unlikely progenitors, since some catastrophic
event needs to take place to cause the sudden release of a large
fraction of their total energy. Binary mergers are therefore a
natural candidate, when at least one of the two members is a
NS, since a binary BH system would merge in a bigger BH that
would swallow all the matter and energy, instead of ejecting
them as a relativistic outflow.1

All these expectations were confirmed by the detection of
GW170817 (Abbott et al., 2017a) and its associated GRB

GRB170817A (Abbott et al., 2017b; Goldstein et al., 2017;
Savchenko et al., 2017; Zhang et al., 2018), afterglow, and
kilonova (KN) (Abbott et al., 2017c; Abdalla et al., 2017;
Alexander et al., 2017; Arcavi et al., 2017; Coulter et al., 2017;
Cowperthwaite et al., 2017; Evans et al., 2017; Haggard et al.,
2017; Hallinan et al., 2017; Kasen et al., 2017; Kim et al., 2017;
Margutti et al., 2017; Pian et al., 2017; Siebert et al., 2017; Smartt
et al., 2017; Soares-Santos et al., 2017; Tanvir et al., 2017;
Troja et al., 2017; Valenti et al., 2017; D’Avanzo et al., 2018;
Margutti et al., 2018; Mooley et al., 2018a; Mooley et al., 2018c;
Lyman et al., 2018; Resmi et al., 2018; Villar et al., 2018; Ghirlanda
et al., 2019; Lamb et al., 2019a). In this contribution I will review
the key observations of GW170817 as a SGRB (also known as
GRB170817A), the questions that were answered, and the new
ones that were spurred, and briefly discuss what more insight is
expected from the detection of more systems akin to GW170817
in future GW observing runs.

2 BEFORE THE PROMPT EMISSION

In this Section 1 will review the physics of the SGRB outflow
before the prompt emission phase begins, as it happened in
GW170817. First of all, there is little doubt that the GW
signal of GW170817 came from a binary compact merger, and
that the masses of the two compact objects are compatible with
being NS (Abbott et al., 2017a; Abbott et al., 2017b; Abbott et al.,
2017c). The GW signal by itself does not allow to distinguish
between NSs and BHs, but the richness of the electromagnetic
signal that followed requires the presence of baryonic matter, and
therefore at least one of the two components of the binary had to
be a NS. Most likely they were both NSs (Coughlin and Dietrich,
2019).

2.1 The Time Delay
Besides the identification of the progenitor, a very important
piece of information that GW170817 provided is the merger time,

FIGURE 1 | The two possible timelines with all the phases that may contribute to the detected delay ΔtGW−c. Due to the presence of a structured outflow,
GW170817 most likely followed the top timeline. The relative contribution of the various phases is a matter of debate, but consensus is growing around Δtwind <Δtjet ≪ 1
s, Δtbo ≪ 1 s, Δtc ∼ 0, and Δtph ∼ ΔtGW−Γ. The meaning of all the symbols is explained in Section 2

1Some have suggested, however, that even binary BH mergers could produce a
weak electromagnetic transient, under certain conditions (Perna et al., 2016; Liu et
al. 2016; Zhang, 2016).
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which allowed for the measuring of the time delay between the
GWs and the gamma-ray signals. This delay, which we indicate as
ΔtGW−c can be due to several reasons, as detailed below and shown
in Figure 1 (Granot et al., 2017; Lin et al., 2018; Zhang, 2019;
Lazzati et al., 2020; Lucca and Sagunski 2020).

• Engine Delay—While the time of the merger is the earliest
time at which the jet from the central engine can be
produced, there is the possibility of some delay (Cook
et al., 1994; Lasota et al., 1996; Vietri and Stella, 1998;
Ciolfi and Siegel, 2015). Such delay is difficult to predict
theoretically but can be likely due either to the need of a
transition in the engine itself or to the need of amplifying the
magnetic field to a value large enough to launch a jet. The
former can be quite long, up to years, and usually invokes a
metastable, fastly spinning NS that collapses into a BHwhen
its rotation period is increased by either internal or external
torques. We indicate this delay time as Δteng.

• Wind Delay—Owing to the detection of a KN and an off-
axis SGRB from a structured outflow, we know that
GW170817 ejected a non-relativistic wind. There can be
a delay in launching such a wind as well, and we indicate it
as Δtwind. It should be noted, however, that this delay can in
principle be negative since the NS surfaces are tidally
shredded in the last few orbits before the merger.

• Breakout delay—If the wind is ejected before the jet, then
the jet has to propagate through the wind. The propagation
happens at sub-relativistic speed, causing a delay of the head
of the jet with respect to the GW signal that travels at the
speed of light (Matzner, 2003; Morsony et al., 2007;
Bromberg et al., 2011; Lazzati and Perna, 2019). We
indicate the time it takes for the jet head to cross the
wind as Δtbo. The jet-wind interaction also causes the
development of a cocoon (Ramirez-Ruiz et al., 2002),
confined by the surrounding wind. This leads to the
development of a structured outflow that maintains a
bright core but develops wide, energetic wings at large
polar angles (Lazzati et al., 2017a; Lazzati et al., 2017b).

• Photospheric delay—After the outflow has broken out of the
leading edge of the wind, it needs to propagate out to the
photospheric radius. At this point the jet becomes
transparent and the necessary conditions for the release
of the prompt gamma-ray radiation are met. We indicate
the delay due to the propagation from the break out radius
to the photospheric radius as Δtph.

• Dissipation delay—While at the photospheric radius the
prompt emission can be radiated, it does not mean it is. In
some models, such as the popular internal shock synchrotron
model, the outflowneeds to propagate out to the internal shock
radius before the bulk energy of the flow is dissipated and
turned into radiation. We indicate this additional delay as Δtc.

For the first time, a measurement of the sum of all these possible
delays was available for GW170817 (Abbott et al., 2017b). The
prompt gamma-ray radiation was detected with a delay
ΔtGW−cx1.75 s. Several attempts have been made to constrain the
various individual contributions, but a general consensus has not been

achieved (Shoemaker and Murase, 2018; Gill et al., 2019b; Beniamini
et al., 2020a; Hamidani et al., 2020). A few robust inferences can
however be made (Lazzati et al., 2020). Overall, the measured delay
was fairly small, since GW170817 ejected a significant amount of
energy toward the observer but its Lorentz factor could be at most
moderate (Γ< 7) (Beniamini et al., 2020b). These combine to a large
photospheric radius and a photospheric delay

Δtph ∼
Rph

cΓ2 � 1.4
Rph

2 × 1012 cm
(7Γ)

2

s (1)

The photospheric delay therefore had to contribute to a sizable
part of the delay, since any other non-photospheric emission
mechanism would require a longer delay (this allows to use the
above equation to put a Lower limit on Γ (Beniamini 2020a). The
wind delay, if there was any, had to be smaller than the jet delay,
so that the jet-wind interaction could generate a structured
outflow, as requested for modeling the afterglow emission. For
the same reason, the jet delay itself could be fairly small but could
not be null. Finally, the breakout and dissipation delays had to be
small in order to accommodate the large expected photospheric
delay. Note, however, that the prompt emission spectrum had a
non-thermal shape, a property that is not expected form a simple
photospheric emission model (see Section 3 for a more thorough
discussion).

2.2 The Shaping of the Outflow
GW170817 was also the first GRB for which evidence of a
structured outflow could be unequivocally determined. The
structure of the outflow could be intrinsic, as the jet itself could
have been launchedwith a non-uniformpolar structure (Aloy et al.,
2005; Kathirgamaraju et al., 2019). However, the relatively large
energetics of GW170817 in gamma-rays and the shape of its
afterglow lightcurve (see Section 4) suggest a wide structure,
most likely brought about by the jet interaction with the wind
from the merger (Lazzati and Perna, 2019; Salafia et al., 2020).

A typical SGRB jet with isotropic equivalent energy Eiso � 1053

erg and asymptotic Lorentz factor η � 100 has a baryon rest mass
M0 � Eiso/ηc2 ∼ 10−4M⊙. If it encounters a wind mass
Mwind ≥M0/η ∼ 10−6M⊙ it is shocked and the velocity of
propagation of its head is slowed until the working surface of
the jet head is in causal contact, allowing for the wind material
and the shocked jet material to move to the side instead of
accumulating in front of the jet and thereby slowing it down
(Matzner, 2003; Morsony et al., 2007; Bromberg et al., 2011;
Lazzati and Perna, 2019). As a consequence, a high-pressure
cocoon inflates around the jet, composed by partially mixed jet
and wind material. As the jet breaks out of the wind leading edge,
the cocoon loses the confining effect of the wind material and is
released. Since it has large pressure, it accelerates creating a broad
structure around the jet with decreasing energy and Lorentz
factor for increasing polar angle. This process therefore turns
a collimated jet into a structured outflow. It requires a small wind
mass that is well below the expected amount of baryons ejected in
a binary NS merger. The cocoon structure can be studied
analytically, by enforcing pressure balance between the jet,
cocoon, and wind material at their respective contact surfaces,
or through numerical simulations. Despite its importance for
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predicting burst/merger observability and understanding the
structure and composition of the merger wind and jet, the
polar profile of the outflow is highly debated. Analytic
functions ranging from Gaussian, power-law, and exponential
have been tested, and even numerical simulations do not provide
an unequivocal answer (Murguia-Berthier et al., 2014; Nagakura
et al., 2014; Lazzati et al., 2017b; Murguia-Berthier et al., 2017a;
Murguia-Berthier et al., 2017b; Duffell et al., 2018; Granot et al.,
2018a; Wu and MacFadyen, 2018; Xie et al., 2018; Geng et al.,
2019; Gill et al., 2019a; Kathirgamaraju et al., 2019; Hamidani
et al., 2020; Hamidani and Ioka, 2020; Murguia-Berthier et al.,
2020; Takahashi and Ioka 2020a; Takahashi and Ioka 2020b).

3 THE PROMPT EMISSION

Approximately 1.75 s after the GW chirp, a gamma–ray pulse was
observed by both the Fermi and INTEGRAL satellites from a
position compatible with the direction from which the GWs
arrived (Goldstein et al., 2017; Savchenko et al., 2017). The
pulse was made by an initial spike of about half a second
followed by a broader, less intense tail, for an overall duration
of ∼ 2 s. Two characteristics make this gamma-ray pulse different
from the population of previously observed SGRBs: it is markedly
less energetic than an average cosmological SGRB and, given its
energetics, it has a very high peak frequency (Fong et al., 2015). As a
matter of fact, the detection itself was surprising because the chance
of having a SGRB jet pointing along the line of sight for the first
GW-selected binary merger was expected to be small (Metzger and

Berger, 2012; Ghirlanda et al., 2016). That is because the amplitude
of the GWs depend only mildly on the orientation of the binary,
while the intensity of the radiation from a narrow, relativistic jet
drops quickly for any line of sight outside the jet itself. Such an
expectation was based, however, on the properties of a narrow jet
and not on the possibility that the jet-wind interaction would cause
a structured outflow to form. Predictions from models with
structured outflows had indeed shown that, for moderately large
off-axis angles, a detectable signal would be expected from a GW-
detected merger (Lazzati et al., 2017a; Lazzati et al., 2017b). A
similar effect might be responsible for X-ray flashes, when a long
duration GRB is seen off-axis (Yamazaki 2020, Yamazaki 2003).

The structured outflowmodel was successful at predicting that
a SGRB would be detectable even at large off-axis angles (Lazzati
et al., 2017a; Lazzati et al., 2017b). It correctly predicted the off-
axis burst energetics and its duration. It could also successfully
explain the detected delay between the GWs and the γ-rays. A
comparison between the Fermi data and the bolometric
photospheric emission (Lazzati et al., 2017b) is shown in the
left panel of Figure 2. The one aspect of GW170817 that cannot
be accounted for by the simple photospheric cocoon emission is
the γ-ray spectrum of the prompt emission. At least in first
approximation, the photosphere of an off-axis structured outflow
is expected to produce a thermal pulse with temperature (Lazzati
et al., 2017a; Lazzati et al., 2017b)

Tobsx⎛⎝ LΓ2
4πσR2

ph

⎞⎠1
4

� 107( L
1047erg

)1
4( Γ
100

)1
2(1012cm

Rph
)1

2

K (2)

FIGURE 2 | Left panel (A): the prompt emission of GW170817. The blue step-line shows the Fermi data (Goldstein et al., 2017), while the orange solid line is the
prediction from a theoretical simulation that assumes a structured outflow from the jet-wind interaction (Lazzati et al., 2017b). The radiation is assumed to be released at
the photosphere.Right panel (B): Afterglow of GW170817. Symbols with error-bars show observations in the radio, optical, and X-ray bands. Solid lines show the best
fit result for an afterglow model with a structured outflow and an observer located at θo � 35° from the line of sight. Additional data at different radio frequencies
were used to constrain the model, but only two radio bands are shown for clarity. Adapted from Makhathini et al. (2020).
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which would produce a spectrum peaked at a few KeV, in
severe tension with the observed peak frequency at ∼ 150 keV
(Goldstein et al., 2017). This is due to the fact that the cocoon,
which energized the outflow at large off axis, is not expected to
be radially structured, and therefore no significant dissipation
is expected to occur around the photospheric radius,
differently from the photospheres of long GRBs (Lazzati
et al., 2009; Parsotan et al., 2018). One possible explanation
is that the prompt radiation was due to an external shock
(Veres et al., 2018). However, given the low Lorentz factor and
low interstellar medium densities expected in the surroundings
of GW170817, the timing of the prompt emission, less than 2 s
after the launching of the jet, is difficult to explain.
Alternatively, the prompt emission could be due to the
breakout of the cocoon from the leading edge of the wind
(Kasliwal et al., 2017; Bromberg et al., 2018; Gottlieb et al.,
2018; Nakar et al., 2018). The shock breakout model can
explain the energetics and spectrum of the prompt emission
(Nakar and Sari, 2012) but requires a finely tuned setup in
which the wind is very fast, so that it can reach a large enough
radius at the breakout time. The origin of the prompt emission
spectrum is therefore not been explained in a completely
satisfactory way, yet (Kisaka et al., 2018; Meng et al., 2018;
Pozanenko et al., 2018; Ioka and Nakamura, 2019; Matsumoto
et al., 2019). The observation of more SGRBs from GW-
detected mergers will offer further observational constraints
to shed light on this remaining riddle.

4 THE AFTERGLOW

The afterglow of GW170817 had its own share of unique features. To
begin with, it was not detected for more then a week, until it was
bright enough to be seen first in X-rays (Margutti et al., 2017; Troja
et al., 2017) and, at around the two weeks mark, in radio waves
(Hallinan et al., 2017; Troja et al., 2017). The detection of the
afterglow at optical wavelengths had to wait for the dimming of
the associated KN, and was performed only around day 110 with the
Hubble Space Telescope (Lyman et al., 2018). Such late appearance
of an afterglow is unprecedented, since the typical behavior is that the
afterglow peaks very early, minutes to hours after the burst, and only
dims with time afterward (van Paradijs et al., 2000; Nousek et al.,
2006). A second unique feature of the afterglow of GW170817 was
that, even after it was detected, it sustained a slow brightening at all
wavelengths (Margutti et al., 2017; Mooley et al., 2018c; Ruan et al.,
2018; Troja et al., 2019b), eventually peaking ∼ 150 days after the
GWdetection and dropping in luminosity steeply afterwords (Dobie
et al., 2018; Makhathini et al., 2020) (see the right panel of Figure 2).

The outflow from GW170817 along the direction toward
Earth was under-energetic by a factor 10,000 to 100,000 times
with respect to a typical SGRB (Fong et al., 2017). An
outstanding question was therefore whether GW170817 had
a misaligned, SGRB-like jet pointing in a different direction or
not (Lazzati et al., 2018; Mooley et al., 2018a; Salafia et al.,
2018). If it did, then the identification of the SGRB progenitors
with binary NS mergers would be secured. If did not, then what
GW10817 was associated with would be a new class of dim,

possibly isotropic, γ-ray transients. Unfortunately, telling
whether a misaligned relativistic jet is present is not easy,
since all the radiation is relativistically beamed away from the
line of sight. The slow but steady brightening was shown to be
consistent with the presence of a jet, its energy contribution
along the line of sight growing with the deceleration of the
external shock (Xiao et al., 2017; De Colle et al., 2018; Finstad
et al., 2018; Granot et al., 2018b; Lamb and Kobayashi, 2018;
Lazzati et al., 2018; Nakar et al., 2018; Fraija et al., 2019a; Fraija
et al., 2019b; Beniamini et al., 2020b; Oganesyan et al., 2020).
However, a radially stratified spherical outflow could
reproduce the observations as well, albeit at the price of
adding a never observed before component to the models
(Li et al., 2018; Mooley et al., 2018c; Nakar et al., 2018;
Nakar and Piran, 2018; Salafia et al., 2018). Some evidence
in favor of a jet was provided by the steep post-peak decay at all
wavelengths (Alexander et al., 2018; Jin et al., 2018; Lamb et al.,
2018; Mooley et al., 2018b; Nynka et al., 2018; Fong et al., 2019;
Hajela et al., 2019). In addition, it was soon realized that either
a relatively large linear polarization (Gill and Granot, 2018) or
a small but detectable proper motion of the radio transient
could potentially give the final clue. Both observations were
carried out. Polarization turned out to be small (Corsi et al.,
2018), and only an upper limit of 12 per cent was obtained, still
consistent with either explanation. Long baseline radio
interferometry turned out to be the key. In one experiment,
a small but significant proper motion was detected (Mooley
et al., 2018a), while in a second experiment the radio source
was confirmed to be point-like (Ghirlanda et al., 2019). Both
these characteristics are incompatible with a spherical
expansion. In the future, the detection of the counter-jet
emission might give additional evidence (Yamazaki 2018).

To date, despite the very high quality of the available data,
the unique afterglow of GW170817 can be modeled
successfully with the good old external shock synchrotron
model (Mészáros and Rees, 1997; Sari et al., 1998), with the
only required addition of considering off-axis observers
(Granot et al., 2002) and allowing for some structure in the
polar direction (Lazzati et al., 2017b; Lazzati et al., 2018). The
type of polar stratification is not univocally constrained, since
Gaussian, power-law, and exponential profile seem all to give
an adequate fit to the data (Lazzati et al., 2018; Troja et al.,
2018a; Xie et al., 2018; Ghirlanda et al., 2019). Numerical
simulations are also ambiguous, different codes yielding
different polar structures, including the three mentioned
above (Murguia-Berthier et al., 2014; Nagakura et al., 2014;
Lazzati et al., 2017b; Murguia-Berthier et al., 2017a; Murguia-
Berthier et al., 2017b; Duffell et al., 2018; Granot et al., 2018a;
Wu and MacFadyen, 2018; Xie et al., 2018; Geng et al., 2019;
Gill et al., 2019b; Kathirgamaraju et al., 2019; Hamidani et al.,
2020). Constraints can be obtained from the lack of a large
populations of cosmological off-axis bursts (Beniamini
2019). More observations and further theoretical work are
needed to pin down this important aspect that has
implications not only on the detectability of bursts but
also on the nature of the inner engine and the
composition of the ejected jet and wind.
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5 SUMMARY, DISCUSSION, AND A LOOK
AT THE FUTURE

GW170817 was a rich event, a cornerstone detection in our
understanding of SGRBs. It confirmed that binary NSmergers are
the progenitor of at least some short bursts, it showed us that the
top-hat jet model is woefully inadequate for describing the
relativistic outflows of SGRBs (and possibly long duration
GRBs as well) and it gave us, for the first time ever, a measure
of the trigger time and of the delay between the launching of the
jet and the detection of the prompt emission radiation.

We now know that the burst associated with GW170817 was a
fairly canonical SGRB (Salafia et al., 2019), with a powerful
relativistic jet that, after interacting with the merger wind,
turned into a structured outflow (Lazzati et al., 2017b; Lazzati
et al., 2018). Our line of sight lied somewhere between 15° and 35°

away from the jet axis, the lower value obtained by high resolution
radio imaging (Mooley et al., 2018c; Ghirlanda et al., 2019), while
the larger value being favored by multi-band afterglow modeling
and ejecta considerations (Lazzati et al., 2018; Mandel, 2018; Zou
et al., 2018). The prompt emission was powered by an energetic
cocoon inflated by the interaction of the jet with the merger wind.
The gamma-ray radiation was likely released at or near the
photosphere, either by a shock breakout (Nakar and Sari,
2012; Kasliwal et al., 2017; Gottlieb et al., 2018) or by other
non-thermal mechanisms (Savchenko et al., 2017; Veres et al.,
2018). The external shock developed later than usual due to the
lower than customary Lorentz factor of the outflow along the line
of sight and the afterglow was unusual, characterized by an initial
increase in luminosity that lasted for a fewmonths before peaking
and beginning a steep declining phase. This behavior is understood
to be due to the structure of the outflow, characterized by a polar
stratification with a steep decline as a function of angle in both the
energy per unit solid angle and the Lorentz factor.

Despite the large amount of observational evidence that
allowed us to paint a detailed picture of the dynamic of the
relativistic ejecta of GW170817 and their electromagnetic
signatures, some questions remain open. First, we do not
know the nature of the compact object that launched the
relativistic jet. It could have been either a meta-stable NS or
a BH, and consensus in this respect hasn’t been reached (Piro
et al., 2019; Metzger et al., 2018; Pooley et al., 2018; Abedi and
Afshordi, 2019). A related mystery is the origin of the observed

1.75 s delay between the GW and the prompt emission. As
discussed in Section 2.1 the delay is the sum of many
components and it is unclear which dominates, or if several
of them have comparable magnitude. Since the photospheric
delay is strongly dependent on the viewing angle, observation
of several SGRBs from a diverse set of angles will help better
understand the origin of the delay. Still unclear is also the
physics of the dissipation that powered the prompt emission
and the prompt emission mechanism itself. Shock breakouts,
internal dissipation such as internal shocks, and even external
shocks have been proposed (see Section 3).

Finally, we still do not know how typical GW170817 was. The
fact that most likely it originated from a binary NS merger does
not exclude the possibility that some—if not most—SGRB are
made in NS-BH mergers. It might even be that GW170817 itself
was a NS-BH merger (Coughlin and Dietrich, 2019; Kyutoku
et al., 2020). Re-analysis of several past bursts have yielded some
support the presence of kilonovae in their light curves (Troja
et al., 2018b; Beniamini et al., 2019; Lamb et al., 2019b; Troja
et al., 2019a) or similarities in their prompt emission (Burns
2018, von Kienlin 2019), showing that GW170817 was not
unique. However, there might be cases in which the jet is not
successful in breaking out of the wind leading edge, and a
weaker transient would be produced (Kasliwal et al., 2017;
Mooley et al., 2018c; Salafia et al., 2018). Future GW
detections with the power of multimessenger observations
will allow to better understand the connection between
binary NS mergers, binary NS-BH mergers, and SGRBs.
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