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Recent time series observations of electric fields within collisionless shocks have shown
that the fluctuating, electrostatic fields can be in excess of one hundred times that of the
quasi-static electric fields. That is, the largest amplitude electric fields occur at high
frequencies, not low. In contrast, many if not most kinetic simulations show the
opposite, where the quasi-static electric fields dominate, unless they are specifically
tailored to examine small-scale instabilities. Further, the shock ramp thickness is often
observed to fall between the electron and ion scales while many simulations tend to
produce ramp thicknesses at least at or above ion scales. This raises numerous questions
about the role of small-scale instabilities and about the ability to directly compare
simulations with observations.
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1 INTRODUCTION

Collisionless shock waves are an ubiquitous phenomenon in heliospheric and astrophysical plasmas.
They most often manifest as a nonlinearly steepened fast magnetosonic-whistler wave that has
reached a stable balance between steepening and some form of irreversible energy dissipation. If a
balance is reached, a stationary shock ramp is formed. The shock ramp is the part of shock transition
region between upstream and downstream with an abrupt, discontinuity-like change in number
density (nS where s is the particle species), pressure

1,, quasi-static2 magnetic field magnitude vector
(Bo), and bulk flow velocity (Vbulk). The thickness of this ramp is thought to depend upon
macroscopic shock parameters like the fast mode Mach number (Mf), shock normal angle, θBn
(e.g., quasi-perpendicular shocks satisfy θBn ≥ 45°), and upstream averaged plasma beta (Sagdeev,
1966; Coroniti, 1970; Tidman & Krall, 1971; Galeev, 1976; Kennel et al., 1985).

The term collisionless derives from the fact that the shock ramp thickness ranges from several
electron inertial lengths3 to an ion inertial length with the majority below ∼35 λe (Hobara et al., 2010;
Mazelle et al., 2010). In contrast, the collisional mean free path of a thermal proton can be on the
order of 1 AU or T107 λe (Wilson et al., 2018; Wilson et al., 2019a). Thus, fast mode shocks in
astrophysical plasmas cannot be regulated by Coulomb collisions (with the exception of, perhaps,

Edited by:
Luca Sorriso-Valvo,

National Research Council, Italy

Reviewed by:
Silvia Perri,

University of Calabria, Italy
Quanming Lu,

University of Science and Technology
of China, China

*Correspondence:
Lynn B. Wilson III

lynn.b.wilson@nasa.gov

Specialty section:
This article was submitted to

Space Physics,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 07 August 2020
Accepted: 02 November 2020
Published: 25 January 2021

Citation:
Wilson III LB, Chen L-J and
Roytershteyn V (2021) The

Discrepancy Between Simulation and
Observation of Electric Fields in

Collisionless Shocks.
Front. Astron. Space Sci. 7:592634.

doi: 10.3389/fspas.2020.592634

1Ps � nskBTs, where Ts is the temperature of species s.
2Note we use the term quasi-static instead of background here since electromagnetic fluctuations near shocks in the solar wind
can have amplitudes larger than the surrounding mean. That is, quasi-static refers to the lowest frequency response of an
instrument, for practical purposes, but one can think of it as the effective background field.
3λs � c

ωps
where s is the particle species.
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stellar photospheres and/or chromospheres or interstellar
medium) like shock waves in dense neutral fluids similar to
Earth’s atmosphere. The proposed phenomenon thought to act
as dissipation mechanisms are dispersive radiation (Galeev and
Karpman, 1963; Stringer, 1963; Morton, 1964; Sagdeev, 1966;
Tidman and Northrop, 1968; Tidman and Northrop, 1968;
Decker and Robson, 1972; Krasnoselskikh et al., 2002),
macroscopic quasi-static field effects (Scudder et al., 1986a;
Scudder et al., 1986b; Scudder et al., 1986c; Schwartz et al.,
1988; Hull and Scudder, 2000; Mitchell and Schwartz, 2013;
Mitchell and Schwartz, 2014), particle reflection (Edmiston
and Kennel, 1984; Kennel et al., 1985; Kennel, 1987), and
wave-particle interactions (Sagdeev, 1966; Coroniti, 1970;
Gary, 1981; Papadopoulos, 1985).

The topic of interest for this study is electric fields in
observations and simulations, so we will limit the discussion
to wave-particle interactions and macroscopic quasi-static field
effects. Further, given that the primary discrepancy between
simulations and observations lies in the lack of large
amplitude, high frequency electrostatic waves in the former,
we will limit the discussion to high frequency electrostatic
waves. Note that some PIC simulations do generate the
electrostatic waves of interest but the simulations are often
tailored to generate the modes (e.g., isolated simulation
mimicking shock foot region) by artificially injecting known
free energy sources (e.g., initialize with two counter-streaming
beams). Therefore, all of the modes listed in the following
discussion have been generated in PIC simulations (Dyrud
and Oppenheim, 2006; Matsukiyo and Scholer, 2006;
Matsukiyo and Scholer, 2012; Muschietti and Lembège, 2017;
Saito et al., 2017). However, as will be shown, parameters like the

wavelengths and amplitudes tend to differ from those in
observations, sometimes significantly.

Recent work using time series electric field data has shown that
the common electrostatic wave modes near collisionless shocks
include lower hybrid waves (LHWs), ion acoustic waves (IAWs),
electrostatic solitary waves (ESWs), waves radiated by the electron
cyclotron drift instability (ECDI), and Langmuir waves (Filbert and
Kellogg, 1979; Mellott and Greenstadt, 1988; Kellogg, 2003;Wilson
et al., 2007; Pulupa and Bale, 2008;Walker et al., 2008;Wilson et al.,
2010; Breneman et al., 2013; Wilson et al., 2014a; Wilson et al.,
2014b; Chen et al., 2018; Goodrich et al., 2018; Goodrich et al.,
2019). The properties of these modes are summarized in Table 1
and discussed in detail below.

Electrostatic LHWs have been theorized to play a critical role
in collisionless shock dynamics for decades (Papadopoulos, 1985;
Tidman and Krall, 1971;Wu et al., 1984) but observations of their
electrostatic form have been limited (Mellott and Greenstadt,
1988;Walker et al., 2008;Wygant et al., 1987). They are present in
spacecraft observations at frequencies, in the spacecraft frame,
near the local lower hybrid resonance frequency4. They are
linearly polarized nearly perpendicular to Bo with k λe ( 1.
They are thought to be driven unstable by the free energy in
currents (Lemons and Gary, 1978), ion velocity rings (Akimoto
et al., 1985a), modified two stream instability (MTSI)5, (Gladd,

TABLE 1 | Common Electrostatic Waves at/near Collisionless Shocks.

Wave Name Polarization or waveform Frequencyα and/or Appearance Scale Lengthβ Free energy source or wave source

LHW linear fsc ∼ 5–40 Hz k λe( 1 currentsκ, density gradientsλ,
⊥ to Bo or fsc(flh Electron heat fluxσ, or
oblique to Bo symmetric modulated MTSIθ

sine wavesρ

IAW linear fsc ∼ 102–104 Hz λT2πλDe currentsδ,
‖ to Bo frest(fpi gyrating/reflected ionsζ, or

symmetricη modulated electron heat fluxξ

sine waves
ECDI elliptical or fsc ∼ 102–104 Hz k λe( 1 relative drift between

“Tear-drop”- frest ∼ mixϵ and incident electrons and
shaped asymmetricη k λDe( 1 reflected ionsδ

oblique to Bo modulated
sine waves

ESW bipolar pulse fsc
−1 ∼ few 10 s of ms λTλDe electron beamsδ or

‖ to Bo isolated or trains nonlinear wave decayδ

else unipolar of pulses
LWψ linear fsc ∼ 10–60 kHz k λe( 1μ electron beamsχ

‖ to Bo and/or
or elliptical symmetric modulated nonlinear wave decay]

⊥ to Bo sine waves

αfsc ≡ spacecraft frame frequency; βwavelength or normalized wave number; δ [e.g., Wilson et al., 2014a, and references therein]; ζ [e.g., Akimoto et al., 1985b]; ξ [e.g., Dum et al., 1980]; ψ

Langmuirwave; χ [e.g., Pulupa et al., 2010]; ] [e.g., Kellogg et al., 2013]; η relative to oscillations aboutmean/average; κ [e.g., Lemons andGary, 1978]; λ [e.g., Cairns andMcMillan, 2005];
σ [e.g., Marsch and Chang, 1983]; ρ [e.g., Walker et al., 2008]; θ modified two-stream instability [e.g., Umeda et al., 2012a]; ϵmixture of IAWs and nfce and/or (n + 1/2)fce harmonics; μ

[e.g., Krasnoselskikh et al., 2011].

4flh �
����
fce fcp

√
, where fcs is the cyclotron frequency of species s (�qsBo

ms
where qs is the

total charge, and ms is the mass of species s).
5There are two modes radiated by the MTSI at collisionless shocks, both of which
are very obliquely propagating and have real frequencies near or below flh. The two
free energy sources for the MTSIs are between incident electrons and reflected ions
and incident electrons and incident ions.
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1976; Lemons and Gary, 1977; Wu et al., 1983; Wu et al., 1984),
electron beams (Papadopoulos and Palmadesso, 1976), and/or
heat flux carrying electrons (Marsch and Chang, 1983). These
modes are important for collisionless shock dynamics because
they can stochastically accelerate both thermal electrons (parallel
to Bo) and ions (perpendicular to Bo) to suprathermal energies
(Wu et al., 1984; Cairns and McMillan, 2005).

Electrostatic IAWs have been observed in the solar wind
and near collisionless shocks for over 40 years (Fredricks
et al., 1968; Fredricks et al., 1970a; Gurnett and Anderson,
1977; Gurnett et al., 1979; Kurth et al., 1979). They present in
spacecraft observations at frequencies, in the spacecraft
frame, above the proton plasma frequency6 (due to the
Doppler effect), typically in the ∼1–10 kHz range in the
solar wind near 1 AU. They are observed as linearly
polarized (mostly parallel to Bo but sometimes at small
oblique angles), modulated sine waves with bursty wave
envelopes lasting 10 s of ms (Wilson et al., 2007; Wilson
et al., 2010; Wilson et al., 2014a; Wilson et al., 2014b).
They have been shown to have wavelengths on the order of
a few to several Debye lengths7,, or 10–100 s of meters near 1
AU (Fuselier and Gurnett, 1984; Breneman et al., 2013;
Goodrich et al., 2018; Goodrich et al., 2019). They are
thought to be driven unstable by the free energy in
currents (Biskamp et al., 1972; Lemons and Gary, 1978),
temperature gradients (Allan and Sanderson, 1974),
electron heat flux (Dum et al., 1980; Henchen et al., 2019),
or ion/ion streaming instabilities (Auer et al., 1971; Akimoto
and Winske, 1985; Akimoto et al., 1985b; Goodrich et al.,
2019) or they can result from a nonlinear wave-wave process
(Cairns and Robinson, 1992; Dyrud and Oppenheim, 2006;
Kellogg et al., 2013; Saito et al., 2017). These modes are
important for collisionless shock dynamics because they
can stochastically accelerate thermal electrons (parallel to
Bo) generating self-similar velocity distribution functions
(VDFs) or the so called “flattop” distributions (Vedenov,
1963; Sagdeev, 1966; Dum et al., 1974; Dum, 1975; Dyrud
and Oppenheim, 2006). They are also capable of stochastically
accelerating the high energy tail of the ion VDF (parallel to
Bo) (Dum et al., 1974). Note that the generation of the flattop
has recently been interpreted as evidence of inelastic
collisions (Wilson et al., 2019a; Wilson et al., 2019b;
Wilson et al., 2020).

ESWs present in spacecraft observations as short duration
(few ms), bipolar electric field pulses parallel to Bo and
monopolar perpendicular (Behlke et al., 2004; Wilson et al.,
2007; Wilson et al., 2010; Wilson et al., 2014b). They tend to
be on Debye scales and are thought to be BGK phase space
holes (Ergun et al., 1998; Cattell et al., 2005; Franz et al., 2005;
Vasko et al., 2018). ESWs can be driven unstable by electron
beams (Ergun et al., 1998; Cattell et al., 2005; Franz et al.,
2005), ion beams (Vasko et al., 2018), modified two-stream
instability (MTSI) (Matsukiyo and Scholer, 2006), or the

produce of high frequency wave decay (Singh et al., 2000).
Until recently, it was thought all ESWs outside the auroral
acceleration region were electron holes. However, work by
(Vasko et al., 2018) and (Wang et al., 2020) suggest that many
of the ESWs in the terrestrial bow shock are not only ion holes,
they do not propagate exactly along Bo as was previously
thought. ESWs are important in collisionless shock dynamics
because they can trap incident electrons (Dyrud and
Oppenheim, 2006; Lu et al., 2008) or ions (Vasko et al.,
2018; Wang et al., 2020), depending on the type of hole.
They have also been shown to dramatically heat ions (Ergun
et al., 1998), and/or couple to (or directly cause) the growth of
IAWs (Dyrud and Oppenheim, 2006), whistler mode waves
(Singh et al., 2001; Lu et al., 2008; Goldman et al., 2014),
LHWs (Singh et al., 2000).

The ECDI is driven by the free energy in the relative drift
between the incident electrons and shock-reflected ions
(Forslund et al., 1970; Forslund et al., 1971; Lampe et al.,
1972; Matsukiyo and Scholer, 2006; Muschietti and Lembège,
2013). They also range from Debye to electron thermal
gyroradius scales (Breneman et al., 2013) and present in
spacecraft observations as mixtures of Doppler-shifted IAWs
and electron Bernstein modes. The polarization of these
modes can be confusing, presenting as shaped like a tadpole
or tear drop, with one part of the “tadpole” nearly parallel to Bo

(i.e., IAW part) and the other nearly orthogonal (i.e., the
Bernstein mode part) (Wilson et al., 2010; Breneman et al.,
2013; Wilson et al., 2014b; Goodrich et al., 2018). This results
from the coupling between two modes that are normally
orthogonal to each other in their electric field oscillations.
ECDI-driven modes are important for collisionless shocks
because they can resonantly interact with the bulk of the ion
VDF, generate a suprathermal tail on the ion VDF, and strongly
heat the electrons perpendicular to Bo (Forslund et al., 1970;
Forslund et al., 1972; Lampe et al., 1972; Muschietti and Lembège,
2013).

Langmuir waves have been observed upstream of
collisionless shocks for decades (Gurnett and Anderson,
1977; Filbert and Kellogg, 1979; Kellogg et al., 1992; Cairns,
1994; Bale et al., 1998; Bale et al., 1999; Malaspina et al., 2009;
Soucek et al., 2009; Krasnoselskikh et al., 2011). These waves
have k λe ( 1 (Soucek et al., 2009; Krasnoselskikh et al., 2011)
and rest frame frequencies satisfying frest ( fpe. Langmuir waves
are driven unstable by electron beams and/or nonlinear wave
decay (Pulupa et al., 2010; Kellogg et al., 2013). They tend to be
linearly polarized nearly parallel to Bo when electrostatic but
some do exhibit circular polarization when electromagnetic
(Bale et al., 1998; Malaspina and Ergun, 2008). Langmuir waves
are relevant to collisionless shock dynamics in that they
dissipate the free energy in reflected electron beams and can
mode convert to generate free mode emissions that can serve as
remote detection signatures (Cairns, 1994; Bale et al., 1999;
Pulupa et al., 2010).

In summary, the most commonly observed electrostatic wave
modes near collisionless shocks are IAWs, ESWs, ECDI-driven
modes, and Langmuir waves. Electrostatic LHWs are less
commonly observed, which may be due to instrumental effects

62 π fps �
����
ns qs2

εoms

√
where s is the particle species.

7λDe �
�����
εo k BTe
ne e2

√
where ne is the electron number density.
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as many electric field instruments (Bonnell et al., 2008; Bougeret
et al., 2008; Cully et al., 2008) have been designed with gain roll-
offs at ∼1–10 Hz (low- or high-pass filters), which happens to be
the typical value of flh in the solar wind near 1 AU. It may also be
that electrostatic LHWs are just less commonly generated or
damp very quickly in collisionless shocks. Langmuir waves tend
to occur upstream of the shock in regions filled with shock
reflected electron beams (Cairns, 1994; Bale et al., 1999;
Wilson et al., 2007; Pulupa et al., 2010). Although they can
be common in the upstream, they tend to be much less so in the
ramp and immediate downstream region. Therefore, the
remaining discussion will focus on the most commonly
observed Debye-scale, electrostatic modes: IAWs, ESWs, and
ECDI-driven modes. These three modes are observed in and
around both quasi-parallel and quasi-perpendicular shocks. The
only macroscopic shock parameters on which they appear to
depend are the shock density compression ratio and Mf [e.g.,
Wilson et al., 2007; Wilson et al., 2014a; Wilson et al., 2014b].
The ECDI-driven modes tend not to be observed for Mf ( 3,
since they require sufficient reflected ions to initiate the
instability. Part of the reason for the lack of dependence on
shock geometry is that the fluctuations in the foreshock
upstream of a quasi-parallel shock, for instance, locally rotate
the magnetic field to quasi-perpendicular geometries and some
can even locally reflect/energize particles [e.g., Wilson et al.,
2013; Wilson et al., 2016].

2 HISTORICAL CONTEXT

2.1 Spacecraft Observations
Early spacecraft electric field observers had very limited
resources, compared to modern day, in memory,
computational power, and spacecraft telemetry. As such, the
common practice was to perform onboard computations to
generate Fourier spectra for predefined frequency ranges
(Fredricks et al., 1968; Fredricks et al., 1970a; Fredricks et al.,
1970b; Rodriguez and Gurnett, 1975). These Fourier spectra are
spectral intensity data averaged over fixed time and frequency
intervals, which has been more recently shown to significantly
underestimate the instantaneous wave amplitude (Tsurutani
et al., 2009). The underestimation led to some confusion in
multiple areas of research because the estimated wave
amplitudes from the spectra were too small to noticeably
impact the dynamics of the system in question.

For instance, for decades the radiation belt community had
relied upon such dynamic spectra and came to conclusion that
the whistler mode waves (e.g., chorus and hiss) were typically in
the(1 mV/m amplitude range. The advent of time series electric
field data led to the discovery that some of these modes could
have amplitudes in excess of ∼30 mV/m (Santolík et al., 2003).
Later the STEREO spacecraft were launched and the electric field
instruments were one of the first to be turned on. This led to the
discovery of extremely large amplitude whistler mode waves with
T200 mV/m (Cattell et al., 2008). The discovery provoked an
investigation of Wind observations as it passed through the
radiation belt some 60+ times early in its lifetime. The result

was a series of papers using Wind and STEREO that all showed
consistent observations of large amplitude whistler mode waves
with T100 mV/m (Kellogg et al., 2010; Breneman et al., 2011;
Kellogg et al., 2011; Kersten et al., 2011; Wilson et al., 2011;
Breneman et al., 2012). These results altered the design and
scientific direction of NASA’s Van Allen Probes mission.

Similar issues arose in observations of collisionless shock
waves. The early work using dynamic spectra data found
electrostatic waves with spacecraft frame frequencies, fsc,
greater than a few hundred hertz to have amplitudes of, at
most, a few 10s of mV/m but typically smaller in the few mV/
m range (Fredricks et al., 1970b; Rodriguez and Gurnett, 1975).
Numerous theoretical studies had suggested that small-scale, high
frequency waves were an important dissipation mechanism to
regulate the nonlinear steepening of collisionless shock waves
(Sagdeev, 1966; Tidman and Krall, 1971; Papadopoulos, 1985).
However, such small amplitude electric field observations raised
doubts about the ability of the high frequency modes to supply
sufficient dissipation to maintain a stable shock.

The first published example (of which the authors are aware)
of a time series electric field component observed by a spacecraft
within a collisionless shock was presented in Wygant et al. (1987)
observed by the ISEE-1 probe. The observation was one of the
first pieces of evidence that the dynamic spectra plots were not
fully capturing the electric field dynamics because the data
showed electric fields up to nearly ∼100 mV/m. Later work
using the Wind spacecraft found ESWs in the terrestrial bow
shock with amplitudes in excess of ∼100 mV/m (Bale et al., 1998;
Bale et al., 2002). A few bow shock crossings were observed with
the Polar spacecraft, which found nonlinear, electrostatic IAWs
within the shock with amplitudes up to ∼80 mV/m (Hull et al.,
2006). The picture starting to emerge was that high frequency,
electrostatic waves were common and large amplitude in
collisionless shocks. Note that the occurrence rate of
electrostatic waves was already implied by studies using
dynamic spectra data, but not such large amplitude.

Wilson et al. (2007) examined waveform capture data of
electrostatic waves above the proton cyclotron frequency, fpp,
from the Wind spacecraft finding a positive correlation between
peak wave amplitude and shock strength, i.e., stronger shocks had
larger amplitude waves. They also observed that ion acoustic
waves were the dominant electrostatic mode within the shock
ramp. Shortly after, a study (Wilson et al., 2010) of a supercritical
shock showed evidence of waves radiated by the ECDI. Since
then, a series of papers using MMS (Chen et al., 2018; Goodrich
et al., 2018; Goodrich et al., 2019), STEREO (Breneman et al.,
2013), THEMIS (Wilson et al., 2014a; Wilson et al., 2014b), and
Wind (Breneman et al., 2013) have examined these electrostatic
waves in collisionless shocks.

While the discussion has almost exclusively focused on
fluctuating electric fields, δE, it is critical to discuss quasi-static
electric fields, Eo, as well. The primary obstacle to accurate Eo
measurements results from the lack of a stable ground in
spacecraft observations (Scime et al., 1994a; Scime et al.,
1994b; Scudder et al., 2000; Pulupa et al., 2014; Lavraud and
Larson, 2016) and the sheath that forms around the conducting
surfaces (Ergun et al., 2010), which alters how the instrument
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couples to the plasma. It is beyond the scope of this study to
discuss, in detail, the difficulties associated with such
measurements, but some context can be gained by reviewing
some recent electric field instrument papers (Wygant et al., 2013;
Bale et al., 2016; Ergun et al., 2016; Lindqvist et al., 2016). In lieu
of a proper Eo measurement in the plasma rest frame, we can
estimate the convective electric field, Ec � -Vsw × Bo (whereVsw is
the bulk flow solar wind velocity in the spacecraft frame)8. Since
the parameters in most simulations are scaled or normalized, we
will use the dimensionless ratio δE/Eo when comparing spacecraft
and simulation results. Unless otherwise specified, Eo � Ec in these
contexts.

Prior to the launch of MMS, there were several studies that
attempted to measure the cross shock electric field but each
suffered from inaccuracies or under resolved electric field
measurements which kept the issue of its magnitude in doubt
(Dimmock et al., 2011; Dimmock et al., 2012;Wilson et al., 2014a;
Wilson et al., 2014b). The launch ofMMS allowed researchers, for
the first time, to probe Eo with sufficient cadence and accuracy to
properly measure the cross shock electric field in an
interplanetary shock (Cohen et al., 2019). Note that the Eo
measured in this study peaked at (1.5 mV/m, i.e., comparable
to or smaller than the magnitude of Ec (which was (4 mV/m in
this study). Therefore, we will assume Eo as being comparable to
Ec in magnitude throughout and will just refer to Eo instead of
both. Even so, there is some discrepancy because such a
measurement is extremely difficult at the terrestrial bow shock
and detailed MMS observations showed that the electron
dynamics seemed to be dominated by a combination of
magnetosonic-whistler modes and electrostatic IAWs and
ECDI waves (Chen et al., 2018).

The current picture from observations is summarized in the
following. In the studies where the quasi-static electric field could
be reliably measured (Cohen et al., 2019) or approximated from
measurements (Wilson et al., 2014a; Wilson et al., 2014b;
Goodrich et al., 2018; Goodrich et al., 2019), the findings were
that δE is consistently much larger than Eo, i.e., δE ≫ Eo. Some of
these works attempted to quantify the impact on the dynamics of
the system due to δE vs. Eo, finding δE dominated (Wilson et al.,
2014a; Wilson et al., 2014b; Chen et al., 2018; Goodrich et al.,
2018). Chen et al. (Chen et al., 2018) examined in great detail the
evolution of the electron distribution through the shock finding
that a magnetosonic-whistler wave accelerated the bulk of the
incident distribution which rapidly became unstable to high
frequency, electrostatic IAWs that scattered the electrons into
the often observed flattop distribution [Wilson et al., 2019b;
Wilson et al., 2019a; Wilson et al., 2020, and references
therein]. This seems to somewhat contradict the results of
Cohen et al. (2019) and others who argued that a quasi-static
cross shock potential is dominating the shock and particle
dynamics. What all of these studies do agree upon is that
δE ≫ Eo. Note that the purpose of comparing the fluctuating
to the quasi-static field here is to help compare with simulations,

which normalize the electric fields by the upstream Ec value or
something similar.

Figure 1 shows seven waveform captures observed by the
Wind spacecraft’s WAVES instrument (Bougeret et al., 1995)
while passing through the quasi-perpendicular terrestrial bow
shock. The first column shows the x-antenna electric field (δEx),
the second the y-antenna electric field (δEy), and the third
hodograms of δEy vs. δEx . The local Bo is projected onto each
hodogram shown as a magenta line9. Each row shows a different
waveform capture/snapshot that is ∼17 ms in duration. The first
column contains a double-ended arrow in each panel illustrating
the scale associated with 200 mV/m. The first two rows show
examples of ESWs mixed with ECDI-driven waves, the third and
fourth rows show ECDI-driven waves, and the fifth through
seventh rows show IAWs. The distinguishing features are as
follows: the ESWs have an isolated, bipolar pulse with either a
linear or figure eight-like polarization and a nearly flat frequency
(spacecraft frame) spectrum response in the ∼0.2–10 kHz range
(not shown); the IAWs exhibit symmetric δEx and δEy about
zero, are linearly polarized along Bo, and have a broad frequency
peak (spacecraft frame) in the ∼2–10 kHz range (not shown); and
the ECDI exhibit asymmetric δEx and δEy fluctuations about
zero, their polarization is not always linear along Bo, and the
frequency peak (spacecraft frame) is in the ∼0.5–10 kHz range
with superposed cyclotron harmonics (not shown). For reference,
the upstream average convective for this bow shock crossing is
Ec ∼ 3.5 mV/m.

2.2 Kinetic Simulations
Kinetic simulations of shocks are challenging due to the need to
resolve global structure of the shock (generally associated with
λi
10) and the relatively long time scales associated with it

simultaneously with short spatial (λDe) and fast temporal
scales (fpe) associated with instabilities.

Early kinetic particle-in-cell (PIC) simulations were much
more limited by computational constraints than those
performed today. A common approach to scaling the problem
in order reduce the computational load is to consider one- or two-
dimensional problems and to reduce ratios of the ion-to-electron
mass, Mi

me
, and electron plasma-to-cyclotron frequency, ωpe

Ωce
, while

keeping the plasma β and the size of the problem in units of λi
comparable to the physical system of interest. Further
computational trade-offs include altering the simulation
resolution (i.e., number of grid cells), the number of particles
per cell for particle codes or velocity-space resolution for
continuum Vlasov codes (Yang et al., 2013). Since the
frequencies and the growth rates of the instabilities of interest
are associated with certain characteristic time scales, such a re-
scaling may significantly alter the development and the role of
instabilities in the simulations. For example, reducing Mi

me
lowers

the threshold for Buneman instability (Hoshino and Shimada,

8Ec has typical values satisfying ∼0.1–3 mV/m in the solar wind near Earth. In
contrast, the waves shown in Figure 1 have δET 100–300 mV/m, thus δE/Eo > 50.

9Note that the data is taken in the ecliptic plane to within ∼1° and the fraction of the
local Bo in this plane exceeds 89% for all events except the first two rows.
10The size of the problem may significantly exceed λi , for example when upstream
turbulence in quasi-parallel shocks must be included.
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2002) by reducing the difference between electron and ion
thermal speeds. Values of ωpe

Ωce
were also expected and found to

inhibit the growth of certain wave modes like Bernstein modes
(Matsukiyo and Scholer, 2006; Muschietti and Lembège, 2013;
Muschietti and Lembège, 2017). What’s more, the Mi

me
ratio was

shown to dramatically affect the macroscopic profile of the shock
magnetic field (Scholer and Matsukiyo, 2004) and affect the
growth of what are now viewed as critical instabilities like the
MTSI (Umeda et al., 2012a; Umeda et al., 2012b; Umeda et al.,
2014). Thus the re-scaling approach must be carefully chosen
based upon its expected impact on the phenomena of interest.

Some of the first two-dimensional PIC simulations using
realistic Mi

me
was presented by (Matsukiyo and Scholer, 2006).

Since then, the community has made efforts to compromise
somewhat on Mi

me
in order to increase ωpe

Ωce
, to more realistic

values (i.e., 50–100 in solar wind near 1 AU) (Muschietti and
Lembège, 2013) used ratios of Mi

me
� 400 and ωpe

Ωce
� 10 to examine the

higher harmonics of Bernstein modes associated with the ECDI.
More typical values for the latter fall in the ∼2–4 range for recent
simulations (Umeda et al., 2014; Matsukiyo and Matsumoto,
2015; Zeković, 2019). However, much larger values have been
used in cases where one can reduce the simulation to one spatial
dimension (Umeda et al., 2019).

Despite all of the progress made since the early full PIC
simulations, there still remains two striking discrepancies
between observations and many simulations: the amplitude
and wavelength at which the strongest electric fields are
observed and inconsistencies in the thickness of the shock
ramp. The second issue is more obvious from cursory
examinations of simulation results, so we will discuss it first.
As previously discussed, observations consistently show that the
shock ramp thickness, Lsh, tends to satisfy 5 < Lsh/λe < 40
(Hobara et al., 2010; Mazelle et al., 2010). However, PIC
simulations, even with realistic mass ratio, often generate

FIGURE 1 | Example of six waveform captures observed by Wind while crossing the Earth’s quasi-perpendicular bow shock on 1996-12-02. Each row
corresponds to, by column, the X vs time, Y vs time, and Y vs X hodogram (in instrument coordinates) from the Wind/WAVES time domain sampler (TDS) instrument
(Bougeret et al., 1995). Each waveform capture/snapshot is ∼17 ms in duration. The quasi-static magnetic field projection is shown as the magenta line in hodograms
(Adapted from Figure 3.6 in Wilson (2010).
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shock ramps with thicknesses satisfying Lsh/λe > 43,
i.e., exceeding proton inertial length (Scholer and Burgess,
2006), while some generate more realistically thin ramps
(Matsukiyo and Scholer, 2012; Yang et al., 2013). Yang et al.
(Yang et al., 2013) concluded that the shock ramp thickness
decreased with increasing Mi

me
but increased with increasing ion

plasma beta. Note however that (Matsukiyo & Scholer, 2012) used
∼20% finer grid resolution, twice as many particles per cell, and
smaller plasma betas than (Scholer & Burgess, 2006). However,
(Yang et al., 2013) used fewer particles per cell and smaller ωpe

Ωce

than both (Matsukiyo and Scholer, 2012) and (Scholer and
Burgess, 2006). It is important to note that it’s still not clear
what physical or numerical parameters controls the ramp
thickness in simulations or observations or even what the
relevant physical scale is (e.g. λe or λDe).

Note that the thickness of the magnetic ramp of a
collisionless shock is not significantly affected by the
presence of corrugation/ripples (Johlander et al., 2016) other
than the temporal dependence that can occur during
reformation (Mazelle et al., 2010). The spatial extent of the
entire transition region can indeed be increased by such
oscillations but the magnetic gradient scale length does not
appear to be significantly affected. The biggest limiation to
determining the shock ramp thickness in data is time
resolution. More recent spacecraft like THEMIS
(Angelopoulos, 2008) and MMS (Burch et al., 2016) have, for
instance, fluxgate magnetometers that return 3-vector
components 128 times every second, which is more than
sufficient to resolve the bow shock ramp. The bow shock
moves slower in the spacecraft frame than interplanetary
shocks, so time resolution is more of a constraint for
examining the shock ramp thickness of interplanetary shocks.
Even so, the 128 sps of the THEMIS and MMS fluxgate
magnetometers is still sufficient for most interplanetary shocks.

As previously discussed, observations consistently show
δE/Eo > 50 for fluctuations with wavelengths at or below a
few 10s of Debye lengths (Wilson et al., 2014a; Wilson et al.,
2014b; Chen et al., 2018; Goodrich et al., 2018), i.e., λ ( few 10s
of λDe. Most shock simulations find values satisfying δE/Eo < 10
and the scales at which the largest electric field fluctuations occur
tend to satisfy kλe < 1 (Scholer and Matsukiyo, 2004; Matsukiyo
and Scholer, 2006; Scholer and Burgess, 2007; Lembège et al.,
2009; Umeda et al., 2012a; Umeda et al., 2014; Matsukiyo and
Matsumoto, 2015). We note that explicit fully kinetic PIC
simulations tend to have spatial grid resolution of a few λDe,
since such scales must be resolved for numerical stability. It has
long been known that unrealistically small values of Mi

me
and ωpe

Ωce
can

lead to unrealistically large electric field amplitudes for modes
with kλe < 1 (Hoshino and Shimada, 2002; Comişel et al., 2011;
Zeković, 2019). Although the three main modes discussed herein
have been successfully identified in PIC simulations, they were
either unrealistically small in amplitude or at different spatial
scales or not excited unless the simulation was specifically tailored
for that instability.

It is worth noting the severe computational costs of using fully
realistic plasma parameters. The separation of spatial scales
satisfies λi/λDe �

��
Mi
me

√
β−1/2e (ωpe

Ωce
) or λe/λDe � (ωpe

Ωce
)( �

2
√

VAe
VTe

) �

��
2
βe

√ (ωpe

Ωce
) or λe/λDe � VTe�

2
√

c, where VAe � Bo�����
μo ne me

√ � λe Ωce and

βe � 2μo ne kB Te

B2
o

� ( VTe
Ω ce λe

)2. If we use typical examples from 1

AU solar wind observations (see Section 3 for values) and let βe ∼
1, then λi/λDe ∼ 4,000–20,000. The separation of temporal scales

goes as (ωpi

Ωci
) �

��
Mi
me

√
(ωpe

Ωce
), which is again ∼ 4,000–20,00011. The

computational cost of any given simulation scales as

(ωpe

Ωce
)d+1 (Mi

me
)(d+1)/2, where d is the number of spatial

dimensions used in the simulation. Thus, one can see that

increasing (ωpe

Ωce
) from ∼10 to 100, even in a one-dimensional

simulation, is at least 100 times more computationally expensive.
It is also the case that simulations often use shock speeds satisfying
VTp < VTe < Ushn while shocks in the solar wind tend to satisfy
VTp < Ushn ≪ VTe ≪ c (see Section 3 for values and definitions).
For explicit PIC codes, there are additional computational expenses
since the time steps are tied to the grid cell size, which raises the
order of both ωpe

Ωce
and Mi

me
by one. Therefore, it can be seen that we are

approaching a computational wall and it may require new classes of
simulation codes to overcome these limitations if we hope to use
fully realistic plasma parameters.

FIGURE 2 | An example terrestrial bow shock crossing observed by
THEMIS-C on 2009-09-05. Panel (A) shows the magnetic field magnitude
(black) and three normal incidence frame coordinate basis (NCB) (Scudder
et al., 1986a) components vs time at 128 samples/second (sps)
observed by the fluxgate magnetometer (Auster et al., 2008). Panel (B) shows
the DC-coupled electric field at 128 sps observed by EFI (Bonnell et al., 2008;
Cully et al., 2008). Panel (C) shows the AC-coupled electric field at 8,192 sps
observed by EFI. Note that Panels (B,C) share the same vertical axis range for
direct comparison (Adapted from Figure I:2 in Wilson et al. (2014a)).

11Note that ωpe/Ωci is larger by an additional factor of
������
Mi/me

√
.
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3 EXAMPLE OBSERVATIONS VERSUS
SIMULATIONS

In this section we will present two example observations made by
the THEMIS (Angelopoulos, 2008) and MMS (Burch et al., 2016)
missions to further illustrate the difference in magnitude between
δE and Eo. We will also present PIC simulation results with
parameters representative of a wide class of simulations discussed
in the literature. The purpose is to illustrate some limitations of
simulations to provoke advancement in closing the gap between
observations and simulations of collisionless shocks.

Figure 2 shows a direct comparison between δE and Eo
observed by THEMIS-C during a terrestrial bow shock crossing
adapted fromWilson III et al. (2014a) andWilson III et al. (2014b).
The study examined the energy dissipation rates estimated from
(J · E) (i.e., from Poynting’s theorem) due to the observed electric
fields, E, and estimated current densities12, J. They expanded (jo +
δj) · (Eo + δE) and found that (Jo · δE) was the dominant term13,
i.e., the fluctuating fields acted to limit the low frequency currents
in/around the shock. Two important things were found: the
magnitude of (jo · δE) and changes in this term were much
larger than (jo · Eo); the signs of the changes in (jo · δE) and
(jo · Eo) are opposite. The second point was interpreted to imply
that the fluctuating fields were giving energy to the particles and the
quasi-static fields were gaining energy from the particles. In short,
the main conclusion from (Wilson III et al., 2014a;Wilson III et al.,
2014b) was to illustrate that not only are the fluctuating electric
fields large, they could potentially contribute enough energy
transfer to compete with quasi-static fields. Prior to this study,
the view by many in the community was that these fluctuating
fields were completely negligible or just a minor, secondary effect.
More recent, independent studies have performed similar analyses
using different spacecraft and came to similar conclusions (Chen
et al., 2018; Goodrich et al., 2018; Hull et al., 2020).

Figure 3 provides another example directly comparing δE and
Eo observed by two MMS spacecraft during a terrestrial bow shock
crossing. The electric fields are shown in theDe-spun, Sun-pointing,
L-vector system or DSL (Angelopoulos, 2008). For each spacecraft,
Eo,j( 10mV/m was satisfied for the entire interval with most time
steps satisfying Eo,j ( 5 mV/m. In contrast, the peak-to-peak δEj
values commonly exceed 100 mV/m in bursty, short duration, wave
packet intervals. Note that even the electric field instrument on
MMS has limitations in its accuracy for frequencies below ∼1 Hz
(Ergun et al., 2016; Lindqvist et al., 2016). Thus, even with the
significantly improved instrument technology and design of MMS,
the observations consistently show δE ≫ Eo.

As a practical list of reference values, we present one-variable
statistics of solar wind parameters from the same data set as inWilson
et al. (2018) and all interplanetary (IP) shocks in the Harvard

Smithsonian’s Center for Astrophysics Wind shock database14. The
followingwill showparameters asX5% (X(X95%, ~X [units], for the
entire data set, where Xy% is the yth percentile and ~X is the median.
First, the typical parameters for over 400 IP shocks are as follows:

1.10 ( Mf ( 4.60, ∼1.91 [N/A];
1.15 ( MA ( 6.24, ∼2.41 [N/A];
36.6 ( Ushn ( 329.9, ∼98.2 [km/s];
79.6 ( Vshn ( 762.3, ∼418.5 [km/s];
22.2 ( θBn ( 87.7, ∼63.8 [deg];

FIGURE 3 | An example terrestrial bow shock crossing observed by
MMS3 and MMS4 on 2019-01-30. Panels (A,D) show the magnetic field
magnitude (black) vs time at 128 sps observed by the fluxgate magnetometer
(Russell et al., 2016). Panels (B,E) show the DC-coupled electric field
components at 128 sps observed by the electric field instrument (Ergun et al.,
2016; Lindqvist et al., 2016). Panels (C,F) show the AC-coupled electric field
at 8,192 sps. Note that Panels (B,C,E) share the same vertical axis range for
direct comparison.

12Note that similar current densities have been found using multi-spacecraft
techniques (Hull et al., 2020) supporting the results in Wilson III et al. (2014a)
and Wilson III et al. (2014b).
13Note that Qo in this context is not the quasi-static terms in quasi-linear or linear
theory but that from the DC-coupled measurements. Further, δQ is the fluctuating
terms from these theories but the AC-coupled measurements, thus there is no a
priori requirement that 〈δQ〉 � 0. 14https://www.cfa.harvard.edu/shocks/wi_data/.
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where Ushn is the upstream average flow speed in the shock
rest frame and Vshn is the upstream average shock speed in the
spacecraft frame. Note that the values ofMf,MA, and Ushn will
all be, on average, larger for most bow shocks in the
interplanetary medium. These values are only meant to
serve as a statistical baseline for reference. For example,
the 11 bow shock crossings in Wilson et al. (2014a);
Wilson et al. (2014b) satisfied 3.1 ( MA ( 21.9. Next, we
present some typical plasma parameters15 near 1 AU in the
solar wind:

80.2 ( fce ( 409, ∼162 [Hz];
0.04 ( fcp ( 0.22, ∼0.09 [Hz];
17.2 ( fpe ( 42.5, ∼26.3 [kHz];

371 ( fpp ( 944, ∼578 [Hz];
1,579 ( VTe ( 2,411, ∼1975 [km/s];
21.9 ( VTp ( 76.9, ∼40.2 [km/s];
1.03 ( ρce ( 4.62, ∼2.28 [km];
32.5 ( ρcp ( 186, ∼88.8 [km];
1.12 ( λe ( 2.77, ∼1.82 [km];
50.5 ( λp ( 129, ∼82.5 [km];
4.74 ( λDe ( 13.8, ∼8.58 [m];

where fcs is the cyclotron frequency of species s, fps is the plasma
frequency of species s, VTs is the most probable thermal speed of
species s16, ρcs is the thermal gyroradius of species s17, λe is the
inertial length of species s, and λDe is the electron Debye length.

FIGURE 4 | An example taken from a PIC simulation with the shock normal along the x-direction. Each plot shows a 1D cut through the middle of 2D simulation
domain. Panel (A) shows the magnetic field magnitude, B (orange), and the electron number density, ne (blue), vs. spatial position x. Panels (B,C) show the components
of magnetic field (B) and the electric field (E). Panels (D,E) show a zoomed region of panels (A,C) respectively. The boundaries of the zoomed region are indicated by
vertical dashed lines in panels (A–C). All fields are measured in the simulation frame, where the shock moves in the positive x direction with the speed of ∼2 VA.

15Note that none of these are Doppler-shifted.

16VTs �
����
2 k BTs
ms

√
.

17ρcs � VTs
Ωcs
.
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Next, we present ratios of some typical plasma parameters near 1
AU in the solar wind:

176 ( λe/λDe ( 269, ∼215 [N/A];
131 (ρce/λDe ( 670, ∼255 [N/A];
8,000 ( λp/λDe ( 12,160, ∼9,757 [N/A];
0.34 ( λe/ρce ( 1.63, ∼0.83 [N/A];
92.4 ( fpe/fce ( 474, ∼180 [N/A];
4.79 ( VTe/〈Ushn〉95% ( 7.31, ∼5.99 [N/A];
43.1 ( VTe/〈Ushn〉5% ( 65.9, ∼54.0 [N/A];
0.53 ( VTe/c ( 0.80, ∼0.66 [%];

where 〈Ushn〉y% is the yth percentile of Ushn presented earlier in
this section and c is the speed of light in vacuum.

Figure 4 shows example one-dimensional cuts at three
different time steps taken from a PIC simulation. The
simulation parameters are as follows: θBn ∼ 60 deg, MA ∼ 6.5,
ωpe

Ωce
∼ 4, Mi

me
∼ 900, Δ ∼ 1 λDe (where Δ is the grid cell size), initially

1,000 particles per cell, and λe/λDe ∼ 8 (i.e., ∼27 times smaller than
median solar wind values near 1 AU). All of the panels show data
in normalized units. The electric field is normalized to the initial
upstream averaged convective electric field, -V×B, i.e., the same
Eo referenced for spacecraft observations. Thus, in the upstream
the Ez component has an offset of unity. The normalization for ne
and B are just the initial upstream average values of the
magnitude of each. All fields are measured in the simulation
frame, where the shock moves in the positive x direction with the
speed of approximately 2 VA.

One can see that the largest values of |E| rarely exceed 2 (i.e., only
short intervals >2 but peak only at ∼6), similar to the simulations
discussed previously. Further, the spatial scales at which these fields
aremaximized is on λe scales whereas observations showmaximum
electric fields at λDe scales. One can also see that the ramp, e.g., B in
panel (D), is about Lsh ∼ 28 λe (or ∼0.9 λi) thick, similar to
observations that typically show ramps satisfying Lsh < 35 λe (or
<0.8 λi) (Hobara et al., 2010; Mazelle et al., 2010). The simulation
does, however, generate the ubiquitous whistler precursor train
upstream of the shock ramp (Wilson et al., 2012; Wilson et al.,
2017). Yet it is still not clear what parameter or parameters are
controlling the shock ramp thickness and electric field amplitudes at
very small spatial scales in simulations.

4 DISCUSSION

We have presented examples illustrating that spacecraft
observations of collisionless shocks consistently show δE ≫
Eo where δE is due to electrostatic fluctuations satisfying k λDe
( 1 with frequencies well above flh. In contrast, most PIC
simulations of collisionless shocks show considerably smaller
amplitude of electrostatic fluctuations. This is true even when
the simulation uses realistic Mi

me
and plasma betas.

Further, many simulations still generate shock ramps
satisfying Lsh/λe > 43, i.e., thicker than most observations.
However, much more progress has been made on this front
where Yang et al. (2013) concluded that the shock ramp thickness
decreased with increasing Mi

me
but increased with increasing ion

plasma beta. There is still the question of whether ωpe

Ωce
plays a role

in the simulated values of Lsh, though Yang et al. (2013) was able
to produce realistic thicknesses despite only having ωpe

Ωce
� 2.

Another potential issue that was not explicitly discussed in
detail is that of the separation between λe and λDe, but these are
controlled by Mi

me
and ωpe

Ωce
. As previously shown, statistical solar

wind parameters satisfy λe/λDe ∼ 215 (or λp/λDe ∼ 9,757) while
simulations often have much smaller vales of λp/λDe ∼ 70–500 (or
λe/λDe ∼ 7–40) (Umeda et al., 2011; Umeda et al., 2012a; Umeda et al.,
2014; Savoini and Lembège, 2015). It is also the case that simulations
often use shock speeds satisfyingVTp <VTe <Ushn < cwhile shocks in
the solar wind tend to satisfy VTp < Ushn ≪ VTe ≪ c.

The origins of the discrepancy between the observation that
δE ≫ Eo for electrostatic fluctuations satisfying k λDe ( 1 remain
unclear. The ratios Mi

me
and ωpe

Ωce
are the most likely parameters since

they control the separation of spatial and temporal scales between
the instabilities of interest and the global shock scales in an
obvious manner. A lack of spatial resolution in most simulations
may also be a factor. The purpose of this work is to motivate both
observational and simulation communities to bridge the gap find
closure with this issue. Without an accurate reproduction of the
high frequency, large amplitude waves it is not possible to
determine at what scales the electric fields dominate the
energy dissipation through collisionless shocks.
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