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Insufficiently accurate magnetic-field-line mapping between the aurora and the equatorial
magnetosphere prevents us from determining the cause of many types of aurora. An
important example is the longstanding question of how the magnetosphere drives low-
latitude (growth-phase) auroral arcs: a large number of diverse generator mechanisms
have been hypothesized but equatorial magnetospheric measurements cannot be
unambiguously connected to arcs in the ionosphere, preventing the community from
identifying the correct generator mechanisms. Here a mission concept is described to
solve the magnetic-connection problem. From an equatorial instrumented spacecraft, a
powerful energetic-electron beam is fired into the atmospheric loss cone resulting in an
optical beam spot in the upper atmosphere that can be optically imaged from the ground,
putting the magnetic connection of the equatorial spacecraft’s measurements into the
context of the aurora. Multiple technical challenges that must be overcome for this mission
concept are discussed: these include spacecraft charging, beam dynamics, beam
stability, detection of the beam spot in the presence of aurora, and the safety of
nearby spacecraft.
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INTRODUCTION

One of the unsolved problems of magnetospheric physics is the cause of the various types of auroral
forms (Lanchester, 2017; Denton, 2019). This is particularly the case for auroral arcs (Denton et al.,
2016; Borovsky et al., 2020a), where an unknown generator mechanism in the equatorial and near-
equatorial magnetosphere extracts power and current from the magnetosphere to drive an auroral
arc that dissipates energy in the ionosphere and atmosphere. This is sketched in Figure 1. A large
number of diverse generator mechanisms have been hypothesized (e.g., Borovsky, 1993; Haerendel,
2011; Haerendel, 2012; Borovsky et al., 2020b) but equatorial magnetospheric measurements have
not been unambiguously connected to arecs in the ionosphere, preventing scientists from identifying
the correct generator mechanisms. For quiescent auroral arcs, even the form of energy that is
extracted from the magnetosphere (magnetic energy, ion thermal energy, electron thermal energy,
flow kinetic energy, . . .) is not known. The auroral community understands the near-Earth
acceleration processes quite well (e.g., field-aligned potentials and Alfven-wave electron
acceleration) but does not understand the equatorial energy-conversion processes driving these
near-Earth processes; nor does the community understand the origin of the Alfvenic energy. The
aurora is a manifestation of complex processes operating in the distant magnetosphere; the desire to
use optical images of the aurora as television-screen view of magnetospheric processes (e.g., Akasofu,
1965; Mende, 2016a;
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Mende, 2016b) is impeded by not knowing what processes act to
create the various auroral forms.

The foundation of the auroral-cause problem is an inability to
unambiguously connect equatorial magnetospheric
measurements to the various auroral forms. Static magnetic
models of the magnetosphere (e.g., Tsyganenko, 1989;
Tsyganenko and Sitnov, 2007; Sitnov et al., 2008) are not
sufficiently accurate to magnetically map ionospheric features
into the equatorial electron plasma sheet, particularly into the
high-Reynolds-number magnetotail (Borovsky et al., 1997; Voros
et al., 2004; El-Alaoui et al., 2010; Stepanova et al., 2011; El-Alaoui
et al., 2012). Tests of the accuracy of magnetic-field-line mapping
with the standard magnetic-field models have found very large
errors for the nightside magnetosphere (Thomsen et al., 1996;
Weiss et al., 1997; Ober et al., 2000; Shevchenko et al., 2010;
Nishimura et al., 2011), even in the quasi-dipolar regions. For
quiescent, low-latitude (growth-phase) auroral arcs there are two
schools of thought about the equatorial location of the source of
the arc: one school assume that the arc is in the dipolar portion of
the nightside magnetosphere (e.g., McIlwain, 1975; Meng et al.,
1979; Kremser et al., 1988; Mauk and Meng, 1991; Pulkkinen
et al., 1991; Lu et al., 2000; Motoba et al., 2015) and a second
school has the source of the arc in the stretched magnetotail (e.g.,
Yahnin et al., 1997; Yahnin et al., 1999; Birn et al., 2004a; Birn
et al., 2004b; Birn et al., 2012; Sergeev et al., 2012; Hsieh and Otto,
2014): our ability to map magnetic-field lines in the nightside
magnetosphere is insufficient to determine which is the correct
location.

Developing the technology to attain accurate “Magnetosphere-
to-Ionosphere Field-Line-Tracing Technology” has been cited as an
“instrument development need and emerging technology”
necessary for the future of space science (National Research
Council, 2012). For several decades a team of researchers
centered around Los Alamos National Laboratory has worked
to develop a viable spacecraft mission to unambiguously
determine the magnetic connection between equatorial-
magnetospheric measurements and optical auroral

observations (Borovsky et al., 1998; Borovsky, 2002; NASA,
2003; NASA, 2006; Delzanno et al., 2016; Borovsky and
Delzanno, 2019; Borovsky et al., 2020c). That research team
has consisted of auroral observers, magnetospheric instrument
designers, optical physicists, ionospheric physicists, plasma
physicists, spacecraft systems scientists, and two compact-
accelerator design groups. That mission concept (and the
technical challenges that it must overcome) is the focus of this
brief report.

THE MISSION CONCEPT: AN ELECTRON
BEAM ILLUMINATING THE MAGNETIC
CONNECTION BETWEEN AN EQUATORIAL
MAGNETOSPHERIC SPACECRAFT AND
THE ATMOSPHERE/IONOSPHERE

As sketched in Figure 1, the mission concept is for a
magnetospheric spacecraft to carry an electron accelerator, to
fire an electron beam along the magnetospheric magnetic field
into the atmospheric loss cone, and with a ground-based camera
to optically image the beam spot in the upper atmosphere. If that
is accomplished then it is unambiguously known that a
measurement taken by the magnetospheric spacecraft
magnetically connects to the location in the ionosphere where
the beam spot is imaged (Note that one can also approximately
account for the eastward curvature-drift shift of the electron
beam to more-accurately identify the magnetic location of the
spacecraft.)

There are a number of challenges with this simple concept, and
a good deal of research has been performed to overcome those
difficulties: the technical challenges include spacecraft charging,
beam aiming, beam dynamics and stability, and the detection of
the beam spot in the presence of aurora. The major challenges
and the associated mission-design tradeoffs are discussed in
Sections 3 and 4.

FIGURE 1 | A sketch of the equatorial magnetospheric spacecraft firing an electron beam into the northern loss cone where the beam spot can be located by a
ground-based camera. Conjugate northern and southern auroral arcs are noted in the upper atmosphere, the near-Earth acceleration regions for auroral-arc electrons
are indicated, and the equatorial and near-equatorial regions where the auroral-arc generator mechanisms operate are noted.
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Mission concepts have been examined that involve either
(A) a single magnetospheric spacecraft making measurements
and carrying an electron accelerator or (B) a swarm of
measuring spacecraft with one member of the swarm
carrying the electron accelerator. The spacecraft carrying the
accelerator will also carry a power-storage system and a plasma
contactor (for spacecraft-charging mitigation). The purpose of
a swarm is to measure perpendicular-to-B gradients in the
magnetosphere, which are important for diverting
perpendicular magnetospheric currents into field-aligned
currents, a critical part of the processes of driving of auroral
arcs; the perpendicular gradients of interest are ion-pressure
gradients, electron-pressure gradients, mass-density gradients,
temperature gradients, flow shear, and gradients in the field
strength, and the cross products of the various gradients are of
interest (cf. eq. 12 of Strangeway 2012 or eq. 1 of Borovsky et al.
2020b). As analyzed in Borovsky et al. 2020c, the measurement
requirements for quiescent auroral arcs in the equatorial
magnetosphere appear in Table 1. For some theories of
auroral arcs (e.g., Schindler and Birn, 2002; Birn et al.,
2004a; Birn et al., 2012; Yang et al., 2013; Hsieh and Otto,
2014; Coroniti and Pritchett, 2014), Hall effects are important
and so measuring both the perpendicular ion flow and the
perpendicular electron flow is desirable; this can be
accomplished by measuring both the ion flow and the
electric field.

Two mission concepts have been considered. The first,
Magnetosphere-Ionosphere Observatory (MIO) (Borovsky
et al., 1998; Borovsky, 2002) consists of a tight (100’s of km)
swarm of spacecraft in the equator at geosynchronous orbit
(6.6 RE where RE is the radius of the Earth), with a single
ground-based observatory in the vicinity of the swarm’s
magnetic footpoints. In Figure 2 the location at 100 km
altitude of the magnetic footpoint of a spacecraft in the
geographic equator at geosynchronous orbit is estimated using
the T89 (Tsyganenko, 1989) and the IGRF (Maus et al., 2005)
magnetic-field models. The spacecraft is located in the “Alaska
sector” of geosynchronous orbit where the geographic and
geomagnetic equators are close to each other. The
“observatory” in the figure is located at Eagle, Alaska (64o47´
N,121o12´W). The red circles in Figure 2 are the angle from
zenith where the 100 km altitude is seen by the observatory. In
Figure 3 a similar plot is made for a spacecraft in the geographic
equator at geosynchronous orbit in the “Scandinavian sector”.
The ground-based observatory would have at least one camera
dedicated to beam spot imaging, although, owing to uncertainty
in the estimation of the magnetic-footpoint location using
magnetic-field models, a network of beamspotting cameras
around the observatory location will probably be needed. The
observatory would have cameras for auroral imaging and other
instrumentation for ionospheric physics. In the MIO mission
concept a ground-based radar could be used to help locate the
beam spot (e.g., Izhovkina et al., 1980; Uspensky et al., 1980;
Zhulin et al., 1980; Marshall et al., 2014); additionally the radar
could be used for physics studies with the electron beam as an
element of upper-atmosphere experiments. Other
instrumentation at the observatory could be ionosondes, an

ionospheric heater, a wave transmitter, and a magnetometer
network. An important aspect of the MIO mission concept is
the ability to concentrate ground-based infrastructure at a single
location.

The second mission concept, called connections (Borovsky
et al., 2020c), has a swarm of spacecraft in an eccentric orbit and
takes advantage of the Canadian TREx (Transition Region
Explorer) (Spanswick et al., 2018) network of auroral cameras.
Orbits are chosen with periods of 24 h so that the magnetic
footpoint of the swarm wanders over Western Canada with a 24-
h period. A 5 RE by 8 RE orbit was studied for its desirable
footpoint locations (Borovsky et al., 2020c); note with an 8-RE

apogee, the spacecraft swarm can magnetically map further
downtail than 8 RE owing to orbital inclination and dipole tilt.
The approximate magnetic-footpoint locations for the 5 RE by
8 RE 24-h orbit are shown as the blue curve in Figure 4 and the
approximate footpoint locations of a 4 RE by 8 RE 24-h orbit are
also shown as the yellow curve in Figure 4. In Figure 4 the field-
of-views of the individual (Transition Region Explorer) TREx
cameras are indicated as the red circles. An eccentric 24 h orbit
can better sample the stretched-magnetotail portion of
the nightside magnetosphere than can a circular
geosynchronous orbit.

CHALLENGES TO OVERCOME

Four challenges that must be overcome for this magnetospheric-
electron-beam mission concept are discussed in this section.

Spacecraft Charging
The most critical issue for operating a high-power electron beam
from an ungrounded spacecraft in the tenuous magnetospheric
plasma is spacecraft charging. The beam must deposit sufficient
power (∼5 kW) in the upper atmosphere to be seen in the
presence of ongoing aurora: if the beam energy is 50 keV then
a beam current of 100 mA is required and if the beam energy is
1 MeV then a beam current of 5 mA is required. Firing the beam
will result in a fraction of a Coulomb of negative being removed
from the spacecraft in a time on the order of 1 s. A substantial
computer-simulation-based research effort (Delzanno et al.,

TABLE 1 | Magnetospheric measurement requirements for quiescent arcs.

Measurement quantity Typical value Desired accuracy

Proton number density 1 cm−3 0.1 cm−3

Proton temperature 10 keV 1 keV
Proton pressure 1.6 nPa 0.16 nPa
Proton pressure anisotropy 0.16 nPa –

Electron number density 1 cm−3 0.1 cm−3

Electron temperature 2 keV 200 eV
Electron pressure 0.32 nPa 0.03 nPa
Electron pressure anisotropy 0.03 nPa –

Proton flow along arc 150 km/s 15 km/s
Electron flow along arc 150 km/s 15 km/s
Proton or electron flow across arc 6.6 km/s 1.5 km/s
Magnetic-field direction vector – 0.5°

Magnetic-field strength 80 nT 1 nT

Frontiers in Astronomy and Space Sciences | www.frontiersin.org November 2020 | Volume 7 | Article 5959293

Borovsky et al. Cause-of-Aurora Mission Concept

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


2015a; Delzanno et al., 2015b; Delzanno et al., 2016; Lucco
Castello et al., 2018), supported by laboratory experiments
(Miars et al., 2020), has demonstrated that the operation of a
plasma contactor releasing a high-density charge-neutral plasma
plume before and during a beam firing can greatly mitigate the
charging of the spacecraft during the beam operation. Contrary to
prior discussion of an emitted plasma plume acting to collect
charge from the ambient plasma (e.g., Hastings and Blandino,
1989; Gerver et al., 1990; Williams and Wilbur, 1990; Davis et al.,
1991), the research effort demonstrated that the surface of the
plasma plume acts as an ion emitter, producing an ion current
equal to the current of the electron beam.

Getting the Beam to the Atmosphere
Getting the electron beam from the spacecraft in the
magnetospheric equator to the atmosphere involves aiming the
beam into the atmospheric loss cone, fitting the beam within
the loss cone, ensuring that the propagating beam is stable, and
ensuring that the propagating beam electrons are not scattered by
magnetospheric plasma waves.

Assuming that the magnetic-field strength in the auroral
upper atmosphere is ∼0.5 Gauss, the radius of the atmospheric
loss cone is 2.5o if the spacecraft is in a 100 nT field (e.g., in
geosynchronous orbit) and the radius is 1.1o if the spacecraft is in
a 20 nT field (e.g., in the stretched magnetotail). Knowledge of the
direction of the ambient magnetic field to an accuracy of about
0.5o is needed, and an ability to aim the beam with an accuracy of
about 0.5o is also needed. A complication to the aiming into the

loss cone occurs if the electron beam is very energetic: finite-
gyroradii effects shift the direction of the loss cone eastward (for
electrons) from the local magnetic-field direction (Il’ina et al.,
1993; Mozer, 1966; Porazik et al., 2014; Powis et al., 2019; Willard
et al., 2019; Borovsky et al., 2020c). For a dipole magnetic field the
magnitude of this eastward angular shift is easily predictable
(Mozer, 1966; Borovsky et al., 2020c), but for non-dipolar
magnetic fields this shift is not predictable and a space
experiment would need to determine the loss-cone shift by
repeatedly test firing the electron beam with differing amounts
of eastward shift while ground cameras work to detect the beam
spot. If onboard energy-storage resources are limited, this would
not be desirable, and if the optical beam-spot-location image
analysis is not instantaneous, this trial-and-error methodology
cannot be implemented.

After the electron beam is emitted from the accelerator and as
it travels along the Earth’s magnetic field, the nonzero net
negative space charge of the beam acts to repulsively accelerate
beam electrons transverse to the magnetic field; this transverse
acceleration results in a spread of pitch angles of the beam
electrons, turning a narrowly focused beam into a “shotgun”
(cf. Appendix B of Borovsky, 2002). The space charge per unit
length of the beam Q/L is given by Q/L � Ibeam/vbeam, where Ibeam
is the current of the beam and vbeam is the speed of the beam. The
beam power Pbeam is Pbeam � IbeamVbeam, where Vbeam is the beam
voltage (accelerator energy). The speed of the beam increases with
the beam voltage. For the same amount of beam power, a
high-voltage beam has less current and higher speed, hence it
has much less charge per unit length Q/L, and the space-

FIGURE 2 | Looking down onto Alaska, the approximate location each
hour of the day in Winter of the magnetic footpoint at 100 km altitude of a
spacecraft in the geosynchronous orbit geographic equator is plotted. The
green points are for Kp � 0 and the blue points are for Kp � 4. The
observatory is located at Eagle, Alaska. The red circles are the zenith angle of
the 100 km altitude as seen from the ground-based observatory.

FIGURE 3 | Looking down onto Scandinavia, the approximate location
each hour of the day in Winter of the magnetic footpoint at 100 km altitude of a
spacecraft in the geosynchronous orbit geographic equator is plotted. The
green points are for Kp � 0 and the blue points are for Kp � 4.
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charge transverse spreading of the beam is much less. Figure 2
of Borovsky et al., (2020c) looks at the maximum power of a
beam that will stay within the loss cone as a function of the
beam voltage. Greater beam voltage is very advantageous from
the beam-spreading point of view.

Calculating the stability of the electron beam propagating
through the ambient magnetospheric plasma is an ongoing
area of research. Fortunately, the powerful electrostatic two-
stream instabilities are greatly weakened by the fact that the
beam has a small cylindrical cross section (Galvez and Borovsky,
1988). Relativistic electron beams have been calculated to be
stable to electromagnetic hose and filamentation instabilities
(Gilchrist et al., 2001; Neubert and Gilchrist, 2002; Neubert
and Gilchrist, 2004). Experimentally, similar beams have been
detected after long-distance propagation through the
magnetosphere. Beams with energies of up to 40 keV were
propagated long distances through the magnetosphere in the
Echo series of experiments (Hallinan et al., 1990; Winckler, 1992)
and electron beams of 27 keV, 0.5 Amp and 15 keV, 0.5 Amp on
the two ARAKS experiments were propagated 8.2 RE through the
magnetosphere without disruption (Pellat and Sagdeev, 1980;
Lavergnat, 1982).

Finally, an issue of ongoing research is estimating the amount
of pitch-angle scattering that beam electrons will undergo from
the action of ambient magnetospheric plasma waves when the
spacecraft is in various locations of the magnetosphere during
different levels of geomagnetic activity. The degree of pitch-angle
scattering will vary significantly with the beam voltage. At higher
(relativistic) beam voltages electromagnetic ion-cyclotron
(EMIC) waves and whistler-mode chorus are of concern, as is
field-line curvature acting to scatter the beam. At lower beam
voltages whistler-mode chorus and electromagnetic electron-

cyclotron waves are of concern. Section 6.3 of Borovsky et al.
(2020c) provides some preliminary estimates of the amount of
pitch-angle scattering of beam electrons in the nightside
magnetosphere: those estimates are favorable for the beam
surviving from the equator to the atmosphere. Note also that
(electromagnetic ion-cyclotron) EMIC waves are prevalent in the
noon and afternoon sectors and not prevalent in the nightside
auroral zone (Clausen et al., 2011; Usanova et al., 2012).

Detecting the Beam Spot
To produce a beam spot that is optically detectable from the
ground in the presence of active aurora, a beam power of 5 kW or
more needs to be deposited in the atmosphere. Each 1 kW of
beam power results in about 1.1 W of 4278 Å emission [Bryant
et al., 1970) and about 3W of 3914 Å emission. The spectral lines
emitted by the beam spot will be the same spectral lines as emitted
by the electron aurora. The beam spot will be cylindrical, 10’s of
m in diameter across the magnetic field and ∼10 km long along
the magnetic field; this will produce a multi-pixel streak in the
camera images. The technology of optically detecting the
illuminated footpoint from the ground has been verified:
electron beams with less than 5 kW of power have been
optically detected from the ground after they have propagated
through the magnetosphere into the upper atmosphere. Two
examples are the detection of a 3.4 kW beam by Davis et al. (1980)
during the NASA 12.18 NE beam experiment and the detection of
a 2.4 kW beam in the Echo-4 experiment by Hallinan et al. (1990)
using a ground-based image-orthicon television. In the Echo-4
experiment, the beamspot was imaged after the beam had
propagated twice through the magnetosphere at L � 6.5. To
identify the beam spot in the presence of aurora, an on-off
temporal blink pattern of beam firings must be used along

FIGURE 4 | The estimated magnetic footpoints over Canada and the (Transition Region Explorer) TREx fields of view of two elliptical orbits: a 5 RE × 8 RE 24 hr-
period orbit (blue) and a 4 RE × 9 RE 24 h orbit (yellow). The arrows on the footpoint curves are the temporal direction of the movement of the footpoint relative to the
ground. The red circles are the fields-of-view at 100 km altitude of the present (Transition Region Explorer) TREx cameras. The low-latitude portions of the footpoint
curves correspond to spacecraft perigee’s and the hash marks on the footpoint curves are at 1 h intervals in the 24 h orbits.
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with temporal processing of the camera images to locate the
blinking streak. If the mission has a “scientist in the loop”
commanding the firing of the beam as the beam spot crosses
critical auroral features, the image processing must be automatic
and prompt.

For beams of 10’s of keV the beam spot altitude is around
90–100 km; for beams of 1 MeV the beam spot altitude is around
60 km. If the beam has a narrow spread of pitch angles, the beam
spot altitude can be raised by aiming the beam away from the
center of the loss cone. At 60 km there is some collisional
quenching of the 3914 and 4278 Å prompt emission bands
(Marshall et al., 2014; Borovsky et al., 2020c), so more beam
power is required to image the beam spot. Unless it is overhead of
the camera, a beam spot at 60 km altitude will also suffer more
extinction from Rayleigh scattering (Penndorf, 1957;
International Telephone and Telegraph Corporation, 1977),
again requiring more beam power.

Safety of Other Magnetospheric Spacecraft
Since there are other spacecraft in orbit around the Earth, an
important aspect to consider is whether the electron beam
emitted could intercept another spacecraft and induce
catastrophic charging on it. After the beam is emitted, it
expands and contracts periodically with time due to space-
charge and Lorentz forces as well as due to spreading in pitch
angle and energy due to the electron accelerator design
(Borovsky, 2002; Powis et al., 2019). As a result the beam
current density will change significantly along the beam path.
Any mission design will need a beam-safety plan. To estimate the
beam flux to another spacecraft, the beam dynamics must be
modeled and beam-connection dwell times with other spacecraft
must be calculated using orbital considerations.

From preliminary calculations of the dynamics of a 1 MeV
10 mA beam in the dipolar magnetosphere with a criterion that
the current flux to a second spacecraft must be less than 10−6 A/m2

yields a “current safety distance” of 0.5 RE along the Earth’s
magnetic field from the accelerator to another spacecraft. In the
tenuous plasma of the magnetosphere an electron beam flux of
10−6 A/m2 would only induce ∼1 kV of spacecraft charging to the
second spacecraft.

MAJOR TRADEOFFS FOR A MISSION

There are many tradeoffs that must be made in designing a
mission. A major tradeoff is whether to have a single-observatory
geosynchronous mission or an elliptic orbit distributed-camera-
network mission (cf. Sect. 2). Two other major tradeoffs are
discussed below.

Relativistic vs. Nonrelativistic Electron
Beams
The accelerator technology for relativistic (∼MeV) vs.
nonrelativistic (10’s-of-keV) beams differs:10’s-of-keV beams
can be produced with direct-current electron guns that
accelerate the electrons through a static potential drop whereas

MeV beams must be produced with a radio-frequency electron
accelerator that accelerates the electrons with a propagating
wavefront. Direct-current electron guns with 10’s of keV
energies and 10’s of kW powers have been flown in space
numerous times (Winckler et al., 1975; O’Neil et al., 1978;
Rappaport et al., 1993; Prech et al., 1995; McNutt et al., 1995;
Prech et al., 2018), while a radio-frequency accelerator has only
been flown once (a 1-MeV H− beam) (Pongratz, 2018). Designs
for compact space-based relativistic-electron accelerators are
underway (Lewellen et al., 2019) and spaceflight tests of the
accelerator concepts are planned (Reeves et al., 2020).

The advantages of a relativistic electron accelerator over a 10’s-
of-keV electron gun are 1) lower beam space charge for the same
beam power, resulting in a beam with less angular spread to
more-easily fit into the loss cone, and 2) lower total charge
removed from the spacecraft in a beam pulse, requiring less-
stringent spacecraft-charging mitigation. For beam energies
below a few 10’s of keV, the space charge of the beam
drastically limits the amount of beam power that can be
delivered into the loss cone.

The disadvantages of a relativistic accelerator compared
with a 10’s-of-keV electron gun are 1) a lower-altitude beam
spot subject to quenching, 2) for a non-dipole magnetic field
the location of the loss cone is not known, 3) more difficulty in
steering the beam mechanically or electrostatically, 4) there can
be accelerator-thermal issues that de-tune the radio-frequency
cavities after several beam firings, and 5) there are more-critical
safety considerations for other spacecraft. For beams with
energies above about 1 MeV, the loss-cone shift becomes
severe.

The relativistic vs. nonrelativistic beams will also have
tradeoffs concerning beam stability and scattering and the
accelerator and gun will have tradeoffs concerning the power-
conversion efficiency and mass of the required energy-storage
system. For any mission with a powerful electron beam, energy
storage will require substantial spacecraft mass.

Spinning vs. 3-Axis Stabilized Spacecraft
A spinning spacecraft is better, in general, for measuring plasma
properties and fields. Spinning has the distinct advantage that
offsets in the magnetometer can be corrected, resulting in a
more-accurate determination of the magnetic field direction for
beam aiming. If a relativistic accelerator is used, which will have a
length of 1 m or so, mechanically steering the accelerator into the
moving loss cone seen by a spinning spacecraft will be
challenging. At relativistic energies, electrostatic steering of
the electron beam after it exits the accelerator is very limited
in angle.

A 3-axis stabilized spacecraft makes it easier to direct the beam
into the loss cone, particularly if a long (0.5-s or 1-s) beam pulse is
used. A de-spun platform on a spinning spacecraft is another
option.

Note that if an electron drift instrument (Torbert et al., 2016)
is used to measure the electric field, that instrument works in
concert with a magnetometer and magnetometer offsets can be
detected and corrected, even on a non-spinning spacecraft.
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OTHER SCIENCE

Most of the work on the development of this magnetospheric-
electron-beam mission concept has been motivated by the desire
to understand the generator mechanisms of low-latitude
quiescent auroral arcs (Borovsky, 2002; Delzanno et al., 2016;
Borovsky et al., 2020c). However, such a beam experiment could
be used to explore a wide variety of scientific problems.

The magnetospheric causes of various other types of aurora
could be investigated if there is appropriate instrumentation on
the magnetospheric accelerator spacecraft or the swarm
spacecraft. Discerning the causes of other aurora may require
wave measurements, cold-ion and cold-electron measurements,
and particle-anisotropy measurements: examples of this would be
the diffuse and pulsating aurora. Other auroral forms include
undulations of the equatorward auroral boundary, omega bands,
torches, black aurora, and patches. Investigating high-latitude
auroral forms such as streamers or high-latitude Alfvenic arcs will
require a spacecraft orbit that is eccentric.

The mapping of boundaries and regions between the
magnetosphere and the ionosphere could be
unambiguously performed with a magnetospheric-electron-
beam spacecraft, provided it is instrumented to identify those
boundaries and regions. Of interest are the mapping to the
ionosphere of a) the inner edge of the electron plasma sheet, b)
the remnant layer, c) the plasmapause, d) detached
plasmasphere regions, e) ion-isotropy boundaries, f)
substorm-injection boundaries, and g) the Earthward edge
of the cross-tail current sheet. The magnetospheric
boundaries (a)–(f) are clearly seen at the geosynchronous-
orbit equator: the magnetic field at geosynchronous orbit
often exhibits a stretched-tail morphology at local midningt
(cf. Figure 11 of Borovsky and Denton (2010)) but boundary
(g) is ambiguous to detect in the magnetosphere. Conversely,
the mapping of ionospheric troughs out into the
magnetosphere is of interest.

The magnetic connections between magnetospheric and
ionospheric processes such as SAPS, SAID, STEVE,
convection reversals, and bursty bulk flows could be
determined with certainty. An eccentric orbit provides
more-regular access to these various phenomena, in
particular to bursty bulk flows.

Magnetosphere-ionosphere coupling can be studied by
comparing temporal onsets of convection in the
magnetosphere (via spacecraft flow measurements) with
temporal onsets of ionospheric convection (measured, for
example, by the SuperDARN radar network (Greenwald et al.,
1995; Baker et al., 2011; Bristow et al., 2016)) and could answer
questions about when and where the magnetosphere drives
ionospheric convection and when and where the ionosphere
drives magnetospheric convection.

Finally, there is an extensive literature describing how
energetic electron beams could be used to study
mesospheric chemistry (Neubert et al., 1990; Marshall et al.,
2019), atmospheric electricity (Banks et al., 1990; Neubert
et al., 1990; Neubert and Gilchrist, 2004; Marshall et al.,
2019; Sanchez et al., 2019; Borovsky et al., 2020c),

atmospheric electron-attachment physics and electrical
conductivity (Banks et al., 1990; Neubert et al., 1996;
Neubert and Gilchrist, 2004; Borovsky, 2017), and plasma-
wave generation (Carlsten et al., 2018; Delzanno and
Roytershteyn, 2019; Reeves et al., 2020).
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