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We study the fluctuations and the correlations between spatial regions generated in the
primordial quantum gravitational era of the universe. We point out that these can be
computed using the Lorentzian dynamics defined by the Loop Quantum Gravity
amplitudes. We evaluate these amplitudes numerically in the deep quantum regime.
Surprisingly, we find large fluctuations and strong correlations, although not maximal. This
suggests the possibility that early quantum gravity effects might be sufficient to account for
structure formation and solve the cosmological horizon problem.
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1 INTRODUCTION

Standard cosmology–with or without inflation–requires an initial state that exhibits fluctuations and
correlations between distinct regions of space. These play a key role, in particular as seeds for
structure formation. Here we investigate how these fluctuations and correlations can emerge from a
primordial quantum gravitational cosmological phase, using Loop Quantum Gravity (LQG) and a
simple model of the early universe.

We consider the quantum transition from an empty state to a 3-geometry. The amplitude of this
transition may be relevant in a Big Bang cosmology (Hartle and Hawking, 1983; Halliwell, 1987;
Halliwell et al., 2019), as well as in a bouncing cosmology, where it dominates the transition through
the bounce (Bianchi et al., 2010; Vidotto, 2011; Bahr et al., 2017). We treat the dynamics of gravity
non-perturbatively, using covariant LQG. This calculation does not require a Wick rotation and it is
well defined in the Lorentzian theory. The transition generates a quantum state that defines the
probability distribution over 3-geometries. This includes correlations between spatially separated
regions.

We truncate the degrees of freedom of the gravitational field to a small finite number in addition
to the scale factor [cfr (Rovelli and Vidotto, 2008; Borja et al., 2012; Vidotto, 2017)]. Using numerical
methods, we obtain four results: 1) The expectation value of the geometric variables at a given value
of the scale factor yields precisely (the truncation of) a metric 3-sphere. 2) Contrary to our initial
expectation, the variance of these variables is very large: the amplitude of the fluctuations is
significant. 3) Correlations between variables in distinct regions–and entanglement entropy between
regions–do not vanish with the increase of the scale factor. 4) Entanglement entropy appears to
converge to a stable value asymptotically.

All this indicates that the universe emerging from an early quantum era includes fluctuations,
homogeneity properties, and large scale correlations, due to the common quantum origin of spatially
separated regions. These can be studied theoretically and appear to be compatible with the observed
universe. In particular, inflation or a bounce might not be strictly necessary to circumvent the
horizon problem. If the initial quantum phase is taken into account, our result suggests that distant
regions may have not been causally disconnected in the past, as in classical cosmology.
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2 QUANTUM THEORY

We discretize a closed cosmological 3-geometry into five tetrahedra
glued to one another, giving an S3 topology. This is a regular
triangulation of a topological 3-sphere, and it corresponds to the
boundary of a 4-simplex. The geometry of a flat 4-simplex has twenty
degrees of freedom, which capture the gravitational field in this
truncation. The result of the transition from nothing to a 3-geometry
is described by its covariant LQG Lorentzian amplitude (Vidotto,
2011). The truncation we consider corresponds to the single vertex
amplitude, to the first order in the spinfoam expansion (Rovelli and
Smerlak, 2012). We take the areas of the faces of the tetrahedra to be
equal and use this common value as a proxy for the physical scale
factor. The remaining degrees of freedom characterize the shapes of
the five tetrahedra. We are interested in the fluctuations of these
variables and the correlations between variables in distinct tetrahedra,
at different values of the scale factor.

The LQG Hilbert space for this truncation is
H � L2[SU(2)10/SU(2)5]Γ5, where Γ5 is the complete graph with
five nodes. See (Rovelli and Vidotto, 2015) for the notation and an
introduction to the formalism. We label the (oriented) links as
l � 1, . . . , 10, or alternatively in terms of the two nodes they link:
l � nn′. The spin network basis in H is given by the states

∣∣∣∣jl, in〉
where the jl’s are spins (half-integer values labeling SU(2) irreps) and
the in’s are a basis in the corresponding intertwiner space
In � (⊗n′ ≠ n Vj

nn′
)/SU(2), where Vj is the spin-j representation

space of SU(2). We focus on the subspaces Hj of H defined by
jl � j. These have the tensorial structureHj � ⊗n In, where each In

is isomorphic to (Vj⊗Vj⊗Vj⊗Vj)/SU(2). The basis states are tensor
states, which we denote as

∣∣∣∣j, in〉 � ⊗n |in〉 (by this we mean∣∣∣∣j, i1, . . . , i5〉 � |i1〉⊗/⊗|i5〉). We choose a basis in In fixing a
pairing of the links at each node and the basis that diagonalizes the
modulus square of the sum of the SU(2) generators in the pair.

The transition amplitude from an empty state to a state
∣∣∣∣j, in〉

in Hj is given by the spinfoam amplitude of the boundary state∣∣∣∣j, in〉 alone. This is because this transition corresponds to the
amplitude of a boundary state that has only one connected
component, here interpreted as the future one. To first order
in the spinfoam expansion, the amplitude of a boundary state is
given by a single vertex. Hence the nothing-to-

∣∣∣∣j, in〉 amplitude is
the vertex amplitude for the boundary state

〈j, in
∣∣∣∣∅〉 � W(j, in) ≡ 〈j, in

∣∣∣∣ψo〉 (1)

whereW(j, in) is the Lorentzian EPRL vertex amplitude (Engle et al.,
2008). This implies that we can view the ket

∣∣∣∣ψo〉 with components
W(j, in), as the quantum state emerging from the Big Bang. This is
the analogue, in (Lorentzian) LQG, of the Hartle-Hawking “no-
boundary” initial state in (Euclidean) path-integral quantum gravity
(Hartle andHawking, 1983). This is the state we are interested in.We
study themean geometry it defines and the quantumfluctuations and
correlations it incorporates. Specifically, we study the expectation

value 〈A〉 � 〈ψo|A|ψo〉, the spread ΔA �
����������������
〈ψo|A2|ψo〉 − 〈A〉2

√
and the (normalized) correlations

C(A1,A2) � 〈ψo|A1A2|ψo〉 − 〈A1〉〈A2〉
(ΔA1) (ΔA2) (2)

of local geometry operators A,A1,A2, . . . defined on H. We
compute also the entanglement entropy S � −tr(ρn log ρn) of a
node with respect to the rest of the graph, where ρn is the reduced
density matrix of the state

∣∣∣∣ψo〉 at any node, all nodes being
equivalent by symmetry.

3 QUANTUM GEOMETRY

The spin-network basis states can be viewed as a collection of
quantum tetrahedra (Bianchi et al., 2011) glued together by
identifying faces. Shared faces have the same area but not
necessarily matching shapes, giving rise to a twisted geometry
(Freidel and Speziale, 2010). The areas of the faces are eigenvalues
of the area operator

Anl|in〉 �
��������
E
→

nl · E→nl

√
|in〉 � (8π c ZG) �������

jl(jl + 1)√
|in〉, (3)

written in terms of the flux operators

E
→

nl � (8π c ZG) J→l (4)

entering the node n on link l, where c is the Barbero-Immirzi
constant and J

→
l is the vector of SU(2) generators on link l.

The shape of the tetrahedron is measured by the angle
operator

Aab|in〉 � cos(θab)|in〉 (5)

that gives the cosine of the external dihedral angle between faces a
and b, where

2
∣∣∣∣∣∣ J
→

a
∣∣∣∣∣∣∣∣∣∣∣∣ J
→

b
∣∣∣∣∣∣Aab � 2 J

→
a · J→b � ( J

→
a + J

→
b)2

− J
→2

a − J
→2

b·

Say we use the recoupling basis that pairs links ja and jb at node
n, and let |kn〉 be the intertwiner state at node n. The operator
( J
→

a + J
→

b)2 is diagonal on |kn〉 with eigenvalue

( J
→

a + J
→

b)2

|kn〉 � kn(kn + 1)|kn〉 (6)

where kn is the intertwiner spin. Putting together Eqs 3, 5, and 6
we obtain

cos(θab) � kn(kn + 1) − ja(ja + 1) − jb(jb + 1)
2

���������������
ja(ja + 1)jb(jb + 1)√ (7)

for measuring the dihedral angle cos(θab) of |kn〉 in terms of
intertwiner spin kn.

4 NUMERICAL METHODS

The Lorentzian EPRL vertex amplitudeW(jl, in) can be written as
Speziale (2017)
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W(jl, in) � ∑
lf ,ke

⎛⎝∏
e

(2ke + 1)B(jl, lf ; in, ke)⎞⎠{15j}(lf , ke) (8)

where f and e label the faces and the half-edges touching the
vertex. The symbol {15j} is the invariant SU(2) symbol built from
contracting the five 4-valent intertwiners at the nodes, and can be
expressed as the contraction of five SU(2) 6j symbols as

{15j}(lf , ke) � ∑
x

(2x + 1) (−1)∑a
la+∑a

ka

×{ k1 l25 x
k5 l14 l15

}{ l14 k5 x
l35 k4 l45

}{ k4 l35 x
k3 l24 l34

}
×{ l24 k3 x

l13 k2 l23
}{ k2 l13 x

k1 l25 l12
}. (9)

The functions B(jl , lf ; in, ke) are defined as

B(jl, lf ; in, ke) � ∑
pi

( jl
pi
)(in)( lf

pi
)(ke)

(10)

×∫∞

0
dr

sinh2 r
4π

∏4
i�1

d(cji ,ji)ji lipi (r).

where the factors in front of the integral are SU(2) 4jm symbols
and the functions d(cji ,ji)ji lipi

(r) are boost matrix elements of the
Lorentz group. The product in Eq. 8 is over four of the five half-
edges because one redundant factor must be eliminated by gauge-
fixing. The sum is over a set of auxiliary spins lf and auxiliary
intertwiners ke. See Speziale (2017) for more details about this
formulation of the EPRL amplitude and the full definition and
analysis of all the quantities involved in the previous formulae.

Analytical results show that in the large spin limit this
amplitude is generally exponentially suppressed except in two
cases (Barrett et al., 2009; Donà et al., 2019). The first case is when
the boundary geometry is the geometry of the boundary of a
Lorentzian 4-simplex. This case can be naturally related to the
semiclassical limit, where spacetime is flat and Lorentzian at
scales smaller than the curvature radius. The second case is when
the boundary geometry is a vector geometry, which includes the
case when the boundary geometry is the geometry of the
boundary of a Euclidean 4-simplex. As we shall see below, the
mean geometry defined by

∣∣∣∣ψo〉 is that of a discretized metric 3-
sphere i.e., the boundary of a regular Euclidean 4-simplex.
Therefore this is a vector geometry. Vector geometries have
been considered as a puzzling feature of the theory (Donà
et al., 2018): here we can interpret them as a necessary
contribution to the primordial quantum cosmological state in
order to allow the tunneling from the empty state to the
semiclassical 3-sphere geometry.

The form of the amplitude Eq. 8 is suited for numerical evaluation.
The computational steps, in order of increasing complexity and cost,
are: 1) evaluation of the {15j} symbol; 2) evaluation of the B functions
and 3) contraction over all internal and boundary spin labels. We
limited our computation to spins (i.e., scale factor) j≤ 16 given the
time and memory constraints imposed by our computing facility. We
used a standard laptop computer for lower spins and a 32-cores server
with 196 GBs of RAM for higher spins.

The sum over spins lf in Eq. 8 is unconstrained, as lf ≥ jl , where
link l corresponds to face f. Hence it is necessary to introduce a cutoff
Δs so that lf � jl, jl + 1, . . . , jl + Δs and the exact value is in the limit
Δs→∞. The case with Δs � 0 has been called the simplified model
(Speziale, 2017). Since the computation time is proportional to
(Δs + 1)6, we are limited to very low values of the cutoff. It can
be shown that in the simplified model the Lorentzian part of the
amplitude is partially suppressed (Puchta, 2013; Speziale, 2017), and
the effect of increasing the cutoff Δs is to gradually enhance the
amplitude for Lorentzian configurations. It may seem necessary to
reach higher cutoffs in order to match the expected behavior in
semiclassical asymptotics of Lorentzian simplices (Donà et al., 2019).
However, we found that in our calculation, which spans the space of
vector geometries due to the chosen (Euclidean) boundary
conditions, the corrections due to higher cutoff values are minor
or even negligible, so that the simplified computations effectively
suffice to study the model numerically.

All the computations of the present work were carried out using
the sl2cfoam library (Donà and Sarno, 2018), which is a C library for
computing the spinfoam amplitude Eq. 8 using various optimization
strategies. For a complete treatize of all the technical and numerical
details that are relevant to this work we refer also to (Gozzetti, 20211),
which studies extensions of the model considered here using a
recently released version of the library (Gozzetti, 20212).

5 NUMERICAL RESULTS

The results below are given for increasing values of the scale
parameter j. In this section we fix the cutoff parameter to Δs � 0
and the Barbero-Immirzi constant to c � 1.2.

(1) The expectation value of the angle operator Aab|in〉 �
cos(θab)|in〉 that measures the external dihedral angles
between faces punctured by links a and b in any of the
boundary tetrahedra (by symmetry all of them are
equivalent) results to be

〈Aab〉 � −0.333 (11)

which is precisely the cosine of the external dihedral angle of an
equilateral tetrahedron, for any links a, b chosen. This shows that
the spatial metric of

∣∣∣∣ψo〉 averages to that of the 3-boundary of a
regular 4-simplex i.e., to that of a 3-sphere in our approximation.
The variation of the average with the scale parameter is minor and
due entirely to numerical fluctuations (Figure 1). The
independence of the result from the choice of the links was
tested by switching to a different recoupling basis, and also by
directly performing the change of basis.

(2) The spread ΔAab is large and increasing with the scale factor,
see Figure 2. This suggest that quantum fluctuations in the

1Gozzini (2021). High performance lorentzian spin foam numerics. In preparation.
2Gozzini (2021). Numerical simulation of the quantum cosmological vacuum with
many spin foam vertices. In preparation.
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metric are wide and are not suppressed in the large-scale
regime.

(3) The correlations between angle operators on different nodes
depend on the pairing. We write Ann′ ,nn″ for the angle
operator Aab at node n, where link a connects n with n′
and link b connects n with n″. The correlations are shown in
Figure 3. For each source node n there are two pairs of
correlated—anti-correlated nodes (for n � 4 these are (2, 3)
and (1, 5)). The correlations appear to reach an asymptotic
value, hence are not suppressed in the large-scale regime. The
3-metric that comes out from the quantum state

∣∣∣∣ψo〉 can
correlate different spatial patches of the primordial universe,
as required for solving the horizon problem of standard
cosmology. It would be interesting to verify that in finer

triangulations the correlations decay with the distance
between non-adjacent faces, as required by local effective
field theory.

(4) To quantify the degree of correlation between operators we
computed the entanglement entropy between different
tetrahedra, viewed as quantum subsystems. A result by Page
(Page, 1993) states that, given a splitting H � HR⊗HR of a
Hilbert space H into subspaces corresponding to a small
subsystem R and its complement R, the typical state in HR

is found to have an entanglement entropy equal to
SR ≈ log(dimHR) corresponding to a maximally-mixed state.
In other words, the vast majority of quantum states of a small

FIGURE 2 |Quantum spread of the cosine of the external dihedral angle
of boundary tetrahedra as function of the scale factor.

FIGURE 3 | Left: correlations of angle operator A42,43 with A23,24 (top,
positive) and A34,35 (bottom, negative). The same plot represents the
correlations of A41,45 with A14,15 (top, positive) and A54,53 (bottom, negative).

FIGURE 4 | The entanglement entropy of a boundary node with respect
to the rest of the graph. Gray continuous line shows the maximum entropy
attainable as function of the scale factor parameter. Gray diamonds show the
result of Bianchi et al. (2018). Black circles show our result for

∣∣∣∣ψo〉.

FIGURE 1 | The computed average external dihedral angle of boundary
tetrahedra as function of the scale factor. The gray line shows the dihedral
angle of a regular tetrahedron.
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subsystem are close to being, in a broad sense, thermal see
Popescu et al. (2006).

We studied the degree of non-typicality of the primordial state∣∣∣∣ψo〉 by looking at the entanglement entropy of any tetrahedron
as function of the scale factor. The result is shown in Figure 4. It
indicates that the entropy deviates significantly from the
maximally-mixed case, and it appears to get close to an
asymptotic value in the limit of large scale factor. We could
not push the computations to spins higher than j � 16, but the
qualitative behavior is clear. For comparison, we show also the
maximum entropy Smax(j) � log(2j + 1) and the result of
(Bianchi et al., 2018) on the so-called Bell-network states
(Baytaş et al., 2018), which are constructed in the same way as
our primordial state

∣∣∣∣ψo〉 but using the dynamics of the simpler
BF theory. See also (Bianchi et al., 2015; Bahr, 2020).

6 CONCLUSION

Summarizing, the quantum state for the primordial universe
predicted by the dynamics of Loop Quantum Gravity can be
computed in a kinematical truncation and at first order in the
vertex expansion. It describes the fluctuating metric of a
topologically closed universe in its early quantum regime. Its
degrees of freedom encode the shapes of neighboring spatial
regions. Their size (area), taken to be equal, is related to the
scale factor. We have found that the mean geometry of this
state is that of a (truncated) 3-sphere, as we expected by
symmetry, but the fluctuations are large. Neighboring regions
are correlated and correlations do not vanish as the scale factor
increases. This opens the possibility that an inflationary phase may
not be needed in order to circumvent the horizon problem, as the
primordial quantum phase may introduce stochastic correlations
in otherwise causally-independent spatial regions. We also
computed the entanglement entropy of a single region viewed
as a quantum subsystem of the whole universe. We found that the

cosmological state is highly non-typical, showing an entanglement
entropy that is apparently reaching an asymptotic value as the scale
factor increases. Our work is one of the first explorations of the
purely quantum regime of LQG—without resorting to the high-
spin semiclassical limit of the theory—and one of the first
applications to a concrete physical model of the numerical tools
that are recently being developed for covariant Loop Quantum
Gravity (Bianchi et al., 2018; Donà and Sarno, 2018; Donà et al.,
2019; Dona et al., 2020). Our results indicate that an early quantum
phase of the universe may provide an explanation for known
puzzling features of the standard cosmological model, such as the
horizon problem, possibly even without introducing additional
inflationary and/or bouncing phases.
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