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Forecasting the arrival time of coronal mass ejections (CMEs) and their associated shocks
is one of the key aspects of space weather research. One of the commonly used models
is the analytical drag-based model (DBM) for heliospheric propagation of CMEs due
to its simplicity and calculation speed. The DBM relies on the observational fact that
slow CMEs accelerate whereas fast CMEs decelerate and is based on the concept of
magnetohydrodynamic (MHD) drag, which acts to adjust the CME speed to the ambient
solar wind. Although physically DBM is applicable only to the CME magnetic structure,
it is often used as a proxy for shock arrival. In recent years, the DBM equation has been
used in many studies to describe the propagation of CMEs and shocks with different
geometries and assumptions. In this study, we provide an overview of the five DBM
versions currently available and their respective tools, developed at Hvar Observatory
and frequently used by researchers and forecasters (1) basic 1D DBM, a 1D model
describing the propagation of a single point (i.e., the apex of the CME) or a concentric
arc (where all points propagate identically); (2) advanced 2D self-similar cone DBM, a 2D
model which combines basic DBM and cone geometry describing the propagation of the
CME leading edge which evolves in a self-similar manner; (3) 2D flattening cone DBM, a
2D model which combines basic DBM and cone geometry describing the propagation
of the CME leading edge which does not evolve in a self-similar manner; (4) DBEM, an
ensemble version of the 2D flattening cone DBMwhich uses CME ensembles as an input;
and (5) DBEMv3, an ensemble version of the 2D flattening cone DBM which creates
CME ensembles based on the input uncertainties. All five versions have been tested
and published in recent years and are available online or upon request. We provide an
overview of these five tools, as well as of their similarities and differences, and discuss
and demonstrate their application.
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1. INTRODUCTION

Coronal mass ejections (CMEs) are one of most prominent
drivers of space weather in the heliosphere. They are the causes
of largest geomagnetic storms (e.g., Zhang et al., 2003) as they
may carry enhanced and specifically oriented magnetic fields
(see e.g., Bothmer and Schwenn, 1998; Démoulin et al., 2008).
Forecasting the arrival time of CMEs and their associated shocks
is therefore one of the key aspects of space weather research.
Therefore, there is a variety of CME models available in recent
times, some focusing only on the arrival time forecast and other,
more complex models focusing on the forecast of other CME
properties (see e.g., Siscoe and Schwenn, 2006; Zhao and Dryer,
2014; Vourlidas et al., 2019; Zhang, 2021, and references therein).

Propagation of CMEs in the heliosphere with the purpose
of obtaining the time of arrival (ToA) and speed of arrival
(SoA) of CMEs can be modeled by empirical models (e.g.,
Gopalswamy et al., 2001; Paouris and Mavromichalaki, 2017),
kinematic shock propagation models (e.g., Dryer et al., 2001;
Zhao et al., 2016; Takahashi and Shibata, 2017), machine-learning
models (e.g., Sudar et al., 2016; Liu et al., 2018), numerical
3D magnetohydrodynamical (MHD) models [e.g., H3DMHD
model byWu et al. (2011), WSA-ENLIL+Cone model by Odstrcil
et al. (2004), EUHFORIA model by Pomoell and Poedts (2018),
CORHELmodel by Mikić et al. (1999), or AWSoMmodel by van
der Holst et al. (2014)], and drag-based models (see below). All
CME propagation models need CME input as well as input of
the background solar wind characteristics, where both may have
large uncertainties. Therefore, it is not surprising that, despite
their differences, ToA errors of different propagation models
revolve at around 10 h (Riley et al., 2018; Vourlidas et al., 2019).

One of the most popular CME propagation setups used in
forecast models in recent times is the drag-based propagation.
In this concept, the CME, which is initially under the influence
of Lorentz force, gravity, and drag force due to interaction with
the ambient medium, at a certain distance from the Sun is
influenced dominantly by the drag force (see e.g., Zhang et al.,
2006; Temmer, 2016, and references therein). This concept is
supported by the observational fact that slow CMEs accelerate
whereas fast CMEs decelerate (Sheeley et al., 1999; Gopalswamy
et al., 2000; Sachdeva et al., 2015). The drag force can be
represented by the aerodynamic drag equation describing the
kinetic drag effect in a fluid (Cargill, 2004; Vršnak and Žic,
2007); however, it should be noted that, in the interplanetary
(IP) space, i.e., collisionless solar wind environment, the drag is
caused primarily by the emission of MHD waves and not particle
collisions (Cargill et al., 1996).

Drag-based models (DBMs) typically use the same form of the
basic drag equation applied to various geometries representing
the CME structure of different dimensionality, e.g., 1D Drag-
Based Model (DBM, Vršnak et al., 2013, 2014) and Enhanced
DBM (Hess and Zhang, 2014, 2015), 2D Drag-Based Model
(Žic et al., 2015), the 2D Ellipse Evolution Model (ElEvo, Möstl
et al., 2015) and a version of ElEvo using data from Heliospheric
Imagers (ElEvoHi, Rollett et al., 2016), and 3D flux rope
models such as ANother Type of Ensemble Arrival Time Results
(ANTEATR, Kay and Gopalswamy, 2018) or 3-Dimensional

Coronal ROpe Ejection (3DCORE, Möstl et al., 2018). Since
DBMs use an analytical equation to describe the time-dependent
evolution of the CME, they are computationally efficient and thus
widely used in probabilistic/ensemble modeling approaches (e.g.,
Amerstorfer et al., 2018, 2021; Dumbović et al., 2018; Kay and
Gopalswamy, 2018; Napoletano et al., 2018; Kay et al., 2020). The
advantage of ensemble modeling is that it gives the probability of
arrival, as well as the range of possible arrival times and speeds.

Starting with a basic 1D DBM (Vršnak et al., 2013), five
versions of the drag-based model versions have been developed
by the Hvar Observatory solar and heliospheric group in close
collaboration with the solar and heliospheric group at the
University of Graz. These five versions include three different
geometries, as discussed in section 2.2, and two different
ensemble versions, as discussed in section 2.3. We provide an
overview of these five DBM versions and their respective tools
in section 2 and demonstrate their application on a real event
in section 3.

2. OVERVIEW OF DBM TOOLS

2.1. The Basic Description of the Model
The DBM tools are all based on the equation of motion analogous
to the aerodynamic drag:

a(t) = −γ (v(t)− w)|v(t)− w| , (1)

where a(t) = d2R(t)/dt2 is the CME acceleration, v(t) =

dR(t)/dt is the CME speed, R(t) is the heliospheric distance,
γ is the drag parameter, which describes the rate of change
of CME speed and is assumed to be constant, and w is the
solar wind speed, also assumed to be constant. Along with the
initial properties of the CME, which can be obtained from the
coronagraphic observation, γ andw have to be specified to obtain
analytical solutions of Equation (1) for a specific CME, R(t) and
v(t), given by Vršnak et al. (2013):

R(t) =
S

γ
ln[1+ Sγ (v0 − w)t]+ wt + R0

v(t) =
v0 − w

1+ Sγ (v0 − w)t
+ w ,

(2)

where v0 = v(t = 0) is the initial CME speed, R0 = R(t = 0)
is the corresponding starting radial distance, and S is a sign
function (S = 1 for v0 > w, S = −1 for v0 < w). These
solutions describe the time-dependent part of the drag-based
CME propagation and are thus the same in all tools, regardless
of their different geometries.

We note that, generally speaking, γ and w are not constant in
time. However, it can be shown that, at a sufficient distance from
the Sun, γ and w become approximetely constant and may be
represented by their asymptotic values, which are approximately
equal to the values at 1 AU (see Vršnak and Žic, 2007; Vršnak
et al., 2013; Žic et al., 2015; Manchester et al., 2017, for details).
Theoretically, the distance at which γ = const. and w = const.
assumptions should hold is beyond ≈ 15R⊙ (Žic et al., 2015).
On the other hand, the distance at which the drag force becomes
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dominant varies from case to case and is farther away for slower
CMEs (Vršnak, 2001; Vršnak et al., 2004; Sachdeva et al., 2015).
Therefore, R0 ≤ 15R⊙ might not be an optimal choice for the
model. The Lorentz force was found to generally peak between
1.65 and 2.45 R⊙ and becomes negligible for faster CMEs at
3.5 − 4R⊙ as well as for slower CMEs at 12 − 50R⊙ (Sachdeva
et al., 2017). As the optimal value for the starting radial distance,
the DBM tools recommendation is ≥ 20R⊙, as this assumption
was shown to be valid for a number of cases (Vršnak et al., 2010,
2013) and should hold unless the CME is very slow and/or has a
prolonged acceleration phase (Vršnak, 2001; Vršnak et al., 2004;
Sachdeva et al., 2015, 2017). Nevertheless, it is recommended
to always check whether the early CME kinematics indicates
that the starting radial distance ≥ 20R⊙ is suitable for the
observed CME.

2.1.1. Using Empirical w and γ Values in DBM
An important DBM issue is how to determine the input for
w and γ . There are several options to determine the input
for w: (1) using an empirical value determined from statistical
analysis; (2) using a solar wind model (e.g., the numerical
heliosphericmodel, an empirical model based on CH observation
or persistence model); (3) using the solar-wind speed based on
the in-situ measurements at 1 AU at the time of the ICME
take-off. Using w based on the in-situ measurements at the
time of the ICME take-off was shown to be the same or even
worse than using the empirically obtained values (Vršnak et al.,
2013). Statistical analysis has shown that the most appropriate
values for w should be in the range 300 − 600 km s−1, with
w = 500 km s−1 as the optimal value (i.e., applicable to
the broadest subset of CMEs Vršnak et al., 2013). However,
the optimal empirically derived value is sample-dependent and
was found to be lower for a different sample (Vršnak et al.,
2014). Therefore, as an optimal empiricallybased value, w is
set at−450 km s−1 for all tools. Recent analysis has shown that
this value seems optimal even during the conditions of low
solar activity (Čalogović et al., submitted to Solar Physics). It
should be noted that this value might not be valid if there is
an equatorial coronal hole in the vicinity of the CME source
region, where one should apply a higher value to take into
account CME propagation through the high speed stream. For
that purpose, one can use a model of the solar wind speed where
empirical solar wind models are especially suitable due to their
simplicity and speed. DBM tools available at the European Space
Agency (ESA) Space Situational Awareness (SSA) portal can be
coupled with the Empirical Solar Wind Forecast tool, which is
based on empirical modeling of the high-speed stream (HSS)
arrival derived from coronal hole area observations (see Temmer
et al., 2007; Vršnak et al., 2007; Rotter et al., 2012; Reiss et al.,
2016).

The γ parameter is given by the expression (e.g., Vršnak et al.,
2013):

γ =
cdAρw

M +Mv
=

cd

L( ρ
ρw

+ 1
2 )

, (3)

where A is the CME cross-sectional area, ρw is the solar-wind
density and M is the CME mass, Mv is the so-called virtual

mass (i.e., the mass of the material piled-up in front of the
CME, L is the CME thickness in the radial direction, ρ is
the CME density, and cd is the dimensionless drag coefficient,
which in the DBM tools is taken to be 1 according to Cargill,
2004). Theoretically, it is possible to estimate relative CME mass
density and radial size to determine γ based on coronagraphic
measurements. However, the errors corresponding to these
estimations (≈ 15% for the mass Bein et al., 2013) can yield γ

with a very large uncertainty. For a CME that is several times
denser than the surrounding corona (e.g., ρ/ρw ≈ 5) and of
the radial size 1 − 10R⊙, one finds an approximate range of
γ = 0.2 − 2 · 10−7 km−1, which roughly corresponds to the
range obtained from statistical analysis (Vršnak et al., 2013). The
distribution of the γ obtained from statistical analysis is highly
asymmetrical and weighted toward the lower values (Vršnak
et al., 2013), where γ = 0.2 · 10−7 km−1 was found as an optimal
value in combination with w = 450 km s−1 (Vršnak et al.,
2013, 2014). Therefore, this value has been chosen as optimal
empirically-based value for DBM tools (customized values
are allowed).

In addition, some of the DBM tools offer γ options for
slower and faster CMEs. Observationally, the CME peak speed is
related to the peak soft X-ray flux (Vršnak et al., 2005; Maričić
et al., 2007), and the flare fluence is related to the CME mass
(Yashiro and Gopalswamy, 2009; Dissauer et al., 2019). This is
interpreted in the context of a feedback relationship between
the CME dynamics and the reconnection process in the wake of
the CME (Vršnak, 2016). Consequently, we would expect faster
CMEs to be more massive and thus expect lower γ for faster
CMEs and higher γ for slower CMEs. Additional empirical-
based fine-tuning of the γ parameter may be performed by
the user according to the relative CME brightness in the
coronagraphic images, which is generally related to the CME
mass (see e.g., Colaninno and Vourlidas, 2009, and references
therein).Massive CMEs are generally observed as brighter objects
in the coronagraphic images; therefore, one may use a lower
value of γ in the case of very bright CMEs or increase it for
very faint CMEs. However, one needs to keep in mind that
the observed intensity of a CME (and thus mass calculation)
depends on the angle between the line-of-sight of the observer
and the plane-of-sight, i.e., the CME direction with respect to
the Thomson surface (for details see Colaninno and Vourlidas,
2009; Howard and Tappin, 2009). Finally, fine-tuning of the γ

parameter may be performed to account for the pre-conditioning
of the interplanetary space due to preceding CME(s). Namely,
preceding CME(s) may “deplete” the heliospheric sector before
the CME in question, resulting in lower density and thus lower
drag forces (Temmer and Nitta, 2015; Temmer et al., 2017; Desai
et al., 2020). This effect can be taken into account by using a
lower value for the γ parameter (see e.g., Temmer and Nitta,
2015; Dumbović et al., 2019). However, when “customizing” γ ,
one needs to be careful not to underestimate or overestimate it as
this can lead to underestimation or overestimation of the transit
time, respectively. It was recently shown by Paouris et al. (2021)
that underestimated γ can lead to significant underestimation of
the transit time, even if w is underestimated, especially for the
fast CMEs.
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2.1.2. Running DBM for Shock Propagation
While propagating in the interplanetary space, CMEs may or
may not drive shocks; however, if they do, the arrival of the
CMEmagnetic structure (i.e., ejected twisted magnetic structure)
is preceded by the shock arrival (for ICME overview see e.g.,
Zurbuchen and Richardson, 2006; Kilpua et al., 2017). Physically,
the DBM equation of motion describes the propagation of
the CME magnetic structure and not of the associated shock.
However, the comparison of the DBM with the heliospheric
model, ENLIL (Odstrcil et al., 2004), in which the CME is
initiated as a pressure pulse and thus more suitable to track the
shock front, has shown that there is, in general, a good agreement
between the two when a lower value of the γ parameter is applied
(Vršnak et al., 2014). Moreover, Hess and Zhang (2015) have
found that, both the shock front and the CME leading edge, can
be modeled in the heliosphere with a drag model, where the CME
ejecta front undergoes a more rapid deceleration than the shock
front and the propagation of the two fronts is not completely
coupled in the heliosphere. Indeed, some drag-basedmodels such
as the ElEvo (Möstl et al., 2015) and ElEvoHi (Rollett et al., 2016)
standardly follow the shock front. Dumbović et al. (2018) also
used a lower γ value (γ = 0.1 · 10−7 km−1) to apply the DBM
ensemble version to simulate CME shock propagation, whereas
Temmer and Nitta (2015) and Guo et al. (2018) have used
DBM to model both shock and CME propagation, separately,
both using a different input and a lower γ value for the shock
propagation. Therefore, we note that the DBM tools can be used
to simulate both CME and shock propagation; however, it is
important to keep in mind that:(1) the shock propagation is not
necessarily coupled to CME propagation; (2) proper CME/shock
input is used; and (3) lower γ values should be applied to shock
as compared to the CME propagation.

2.2. DBM Tools With Different Geometries
The basic form of the DBM was formulated by Vršnak and Žic
(2007) and Vršnak et al. (2010) and analyzed in detail by Vršnak
et al. (2013), where the basic 1D DBM tool was first presented.
The basic 1D version of DBM is available as an online tool at
the Hvar Observatory webpage1 and relies on solutions given in
Equation (2). Since it is a 1D equation, it considers propagation
of a single point, i.e., CME apex. The tool is also applicable to
determine the propagation of an arbitrary, non-apex point of the
CME leading edge, assuming that the CME leading edge evolves
self-similarly as a circular arc concentric with the solar surface
(i.e., all elements of the ICME front have the same heliocentric
distance). As can be seen in Figures 1, 2, this concentric geometry
results in a self-similarly evolving CME leading edge. However,
since the tool does not consider CME angular extent or its
direction, it does not provide information on whether or not this
point hits a specific target. The basic assumptions, input, output,
and tool specifications are given in the second column of Table 1.

The advanced form of the DBM was formulated by Žic et al.
(2015), who applied a 2D cone geometry to the basic 1D DBM
solutions given in Equation (2). The cone geometry was selected
as it is a standard geometry used in heliospheric models, such

1http://oh.geof.unizg.hr/DBM/dbm.php.

as ENLIL (Odstrcil et al., 2004) or EUHFORIA (Pomoell and
Poedts, 2018), and therefore, their input would be suitable for use
in DBM as well. The cone angular dependence is introduced in
DBM in the following form:

R(α) = R0
cosα +

√

tan2 ω − sin2 α

1+ tanω

v(α) = v0
cosα +

√

tan2 ω − sin2 α

1+ tanω
,

(4)

where R0 and v0 are distance and speed of the plasma element
at the CME apex, ω is the half-width of the cone (i.e., of the
CME opening angle), and α is the opening angle corresponding
to the plasma element in question. Depending on the applications
of the cone-geometry given by Equation (4) to the basic 1D
DBM solutions given in Equation (2), two different evolutions
of the CME leading edge are possible, namely self-similar cone
evolution and the flattening cone evolution.

The self-similar evolution of the cone leading edge is obtained
assuming that the CME front does not change its shape, i.e., when
theDBM solutions for a plasma element after time t at the angular
distance α from the apex at the leading edge is given by:

R(α, t) = R0(t)
cosα +

√

tan2 ω − sin2 α

1+ tanω

v(α, t) = v0(t)
cosα +

√

tan2 ω − sin2 α

1+ tanω
,

(5)

where R0(t) and v0(t) are given by Equation (2). The self-
similar cone leading edge is compared to the concentric geometry
as well as the flattening cone leading edge in Figures 1, 2.
This has been adopted by the online DBM tool that runs on
the Hvar Observatory webpage2, as well as the Community
Coordinated Modeling Centre (CCMC)3. Since the tool does
implement information on the CME angular extent and its
direction, it also provides information of whether or not the CME
hits the target.The basic assumptions, input, output, and tool
specifications are given in the third column of Table 1.

The flattening cone leading edge evolution is obtained by
propagating each plasma element of the CME leading edge
independently, using the CME 2D cone geometry given by
Equation (4) as the initial leading edge. The DBM solutions for
a plasma element after time t at the angular distance α from the
apex at the leading edge is given by:

R(α, t) =
S

γ
ln[1+ Sγ (v0(α)− w)t]+ wt + R0(α)

v(α, t) =
v0(α)− w

1+ Sγ (v0(α)− w)t
+ w ,

(6)

where R0(α) and v0(α) are given by Equation (4). The flattening
cone leading edge is also shown in Figures 1, 2 and similarly
as 2D self-similar DBM provides information whether or

2http://oh.geof.unizg.hr/DBM/dbm.php.
3https://ccmc.gsfc.nasa.gov.
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FIGURE 1 | The differences between the fronts at six arbitrarily chosen time-steps for the three DBM tools: basic 1D DBM (the concentric leading edge, blue),
advanced 2D DBM with self-similar cone geometry (green), and the advanced 2D DBM with flattening cone geometry (red). The subplots show the position of the
leading edge in the XY coordinate system (i.e., the solar equatorial plane). The heliospheric distance of the apex, Ra, is highlighted in each time-step. The following
DBM parameters were used to create the plots: initial CME speed of 1,000 kms−1, initial distance of 20R⊙, γ of 0.2 · 10−7 km−1, and solar wind speed w of
450 kms−1.

not the CME hits the target. The basic assumptions, input,
output, and tool specifications are given in the fourth column
of Table 1.

To summarize, three different geometries of the CME leading
edge (CME front) are considered in DBM tools: concentric arc,
self-similarly evolving cone, and flattening cone. The differences
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FIGURE 2 | The differences between the curvatures of the fronts at different time-steps for the three DBM tools: basic 1D DBM (the concentric leading edge, blue),
advanced 2D DBM with self-similar cone geometry (green), and the advanced 2D DBM with flattening cone geometry (red). The time-steps and DBM parameters
correspond to those used in Figure 1. The subplots (A–F) show how the curvature K along the leading edge behaves in time. The curvature at the apex, Ka, is
highlighted in each time-step. The subplot (G) shows how the ratio of the flank heliospheric distance and the apex heliospheric distance (Rf/Ra) evolves in time,
whereas subplot (H) shows how the ratio of the curvature at the flank and at the apex (Kf/Ka) evolves in time.

between the fronts and their evolution for the three tools
described above are shown in Figure 1 for halfwidth < 90◦ at
several arbitrarily chosen time-steps. The x subplots (a–f) show

the position of the leading edge in the XY coordinate system for
six different time-steps. It can be seen that initially (at t = 0)
we differentiate only 2 geometries, the concentric arc and the
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TABLE 1 | Comparison of DBM tools.

1D DBM 2D DBM DBEM DBEMv3

self-similar cone flattening cone

BASIC ASSUMPTIONS drag parameter γ = const γ = const γ = const γ = const γ = const

solar wind speed w = const w = const w = const w = const w = const

self-similarity Y Y N N N

2D geometry concentric circular
arc

ice cream cone ice cream cone ice cream cone ice cream cone

INPUTa optimal R0[R⊙] R0 = 20 R0 = 20 R0 = 20 R0 = 20 R0 = 20

CME width input N Y Y Y Y

source position input N Y Y Y Y

GCS input N N N N Y

optimal w[ km s−1] w = 450 w = 450 w = 450 w = 450 w = 450

modeled w optionb N N Y N Y

optimal γ [10−7 km−1] 0.2 0.2

0.1 (fast CME) 0.1 (fast CME) 0.1 (fast CME)

0.2 (normal CME) 0.2 (normal CME) 0.2 (normal CME)

0.5 (slow CME) 0.5 (slow CME) 0.5 (slow CME)

OUTPUT CME arrival time Y Y Y Y Y

CME arrival speed Y Y Y Y Y

CME arrival probability N N N Y Y

TOOL SPECS typical runtime 0.5 sec 2 sec 2 sec < 2 min (average PC) 6 sec

source OHc OH, CCMCd ESA SSAe run-on-requestf ESA SSA

reference (Vršnak et al., 2013) (Žic et al., 2015) (Žic et al., 2015) (Dumbović et al., 2018) (Čalogović et al.,
submitted to Solar
Physics)

anot including basic CME input which is the same for all tools: CME take-off date & time, CME initial speed.
busing the ESWF tool, see section2.1.1.
chttp://oh.geof.unizg.hr/DBM/dbm.php.
dhttps://ccmc.gsfc.nasa.gov.
ehttp://swe.ssa.esa.int.
f runs are available upon request to mdumbovic@geof.hr.

cone geometry leading edge. Although the initial shape of the
flattening cone leading edge is that of a 2D cone, at t > 0, the
shape of the leading edge starts to increasingly deviate from the
initial cone shape. This is because each plasma element of the
leading edge is propagated independently using different initial
parameters. A plasma element at the flank will have a lower value
of the initial speed than, e.g., a plasma element at the apex andwill
therefore experience less drag if the CME is faster than the solar
wind and more drag if the CME is slower than the solar wind.
Since the drag will not act equally on each plasma element across
the leading edge, the evolution of the leading edge will not be self-
similar. Instead, as can be seen in Figure 1, during the evolution,
the leading edge will gradually change from the initial cone shape
toward a flatter shape.

This can be seen more prominently in Figure 2, which shows
the time-evolution of the curvature of the CME leading edge with
respect to the center of the Sun, calculated as K = 12/1L,
where 12 = |21 − 22| is the angular distance and 1L =
∫ 22
21

√

r2 + (dr/d2)2 d2 is the corresponding arc length of the
curve in polar coordinates. Note that thus defined K does not
correspond to the standard mathematical term curvature, which
is defined with respect to the center of the circle and thus
remains always constant across the circular arc. Instead, we define
quantity K to differ between the concentric arc and self-similar
cone in the polar coordinates with the origin at the center of

the Sun. We can see that K of the concentric arc is constant
across the leading edge, whereas K of the 2D cone at the apex
is identical to that of the concentric arc but increases toward the
flanks. However, the difference in K between the flank and the
apex remains constant in time for a self-similarly evolving cone
front, whereas it reduces for the flattening cone front.

The last two subplots of Figure 2 show the ratio of the
flank distance to the apex distance, Rf /Ra, and the ratio of the
curvature at the flank and at the apex, Kf /Ka. For self-similarly
evolving fronts, Rf /Ra andKf /Ka are constant and, in the specific
case of a concentric leading edge, both equal to 1 (values at the
flank are equal to the values at the apex). We see that the apex
evolves identically in all three cases. For a self-similarly evolving
cone, Rf /Ra and Kf /Ka remain constant. For the flattening cone,
Rf /Ra and Kf /Ka are not constant, as the Rf /Ra increases and
Kf /Ka decreases in time, both approaching the values for the
concentric leading edge. It should be noted, however, that they
never actually reach the values for the concentric leading edge.
This is because, although the flank experiences different drag than
the apex, it is slower than the apex. The difference between Rf
and Ra is increasing, converging to a certain value, as the drag
eventually adjusts the speed of both the apex and the flank to the
ambient solar wind speed. As the distance from the Sun increases,
the difference between Rf and Ra becomes very small compared
to values of Rf and Ra; therefore, Rf /Ra seems to converge to 1,
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although mathematically it will never reach it and the flattening
cone will never truly become a concentric arc. It is also important
to note that, for a halfwidth of 90◦, all three fronts are semi-circles
with the origin at the center of the Sun and thus evolve identically,
as the concentric arc.

2.3. The Ensemble Versions of the DBM
As noted in section 1, DBMs are computationally efficient and
thus widely used in probabilistic/ensemble modeling approaches.
Ensemble forecasting takes into account the errors and
uncertainties of the input to quantify the resulting uncertainties
in the model predictions. The variability of an observational
input is introduced by making an ensemble, i.e., sets of CME
observations to calculate a distribution of predictions and
forecast the confidence in the likelihood of the prediction.
This can be achieved in two ways: (1) by taking independently
built sets of CME observations (e.g., as provided by different
observers) or (2) by creating sets of CME observations (by, e.g.,
using measurements and error estimations provided by a single
observer). These two ensemble options were adopted in the Drag-
based ensemble model (DBEM) (Dumbović et al., 2018) and
DBEMv3 web tool (Čalogović et al., submitted to Solar Physics),
respectively, which both use 2D DBM with flattening cone as
a background physical model. The output of both tools is the
probability of arrival, which is calculated as the ratio of the
number of runs that predict a hit and total number of runs.
Based on the runs that predict a hit, distributions of arrival time
and speed are generated, where the calculated medians represent
the likeliest arrival time and speed, and the uncertainty range is
given by 95% confidence interval. Note that initially there was a
DBEMv2, which was replaced by a more advanced DBEMv3.

For a single CME, DBEMuses an ensemble of nmeasurements
of the same CME, which may not be mutually related in any
way (e.g., it might be obtained by different observers, different
methods, or even measurements from different instruments).
Each ensemble member has the same weight. Moreover, there
is no assumption that the CME measurements of a particular
CME, i.e., ensemble member, are independent of each other or
that their spread in values follow a certain distribution. The
variability of solar wind speed, w, and drag parameter, γ , are
taken into account by producing m of their synthetic values.
These synthetic values are combined with an ensemble of n CME
measurements to give a final ensemble of n · m2 members as
an input, which, after n · m2 runs, produces a distribution of
n · m2 calculated CME transit times and arrival speeds. The
synthetic values for w and γ are produced by assuming that their
real measurements follow a normal distribution with a mean
value and SD serving as the model input. A cumulative standard
normal distribution is then generated, defined on an interval
[0,m − 1], where m is the number of synthetic measurements,
also used as the model input. The m values which correspond to
the integer values of the cumulative standard normal distribution
are selected as synthetic measurements. This way, for identical
distribution and m, the selection always results in an identical
set of synthetic values, which include the tips of the distribution
tail. Therefore, for small m the distribution of chosen synthetic
measurements is too heavily weighed to the tail compared to

the normal distribution, and larger m is needed for synthetic
measurements to be weighted properly, m > 15 (Dumbović
et al., 2018). The basic assumptions, input, output, and tool
specifications of DBEM are given in the fifth column of Table 1.

In DBEMv3, the CME ensemble is not produced by
the observer, but the tool. Observational input values and
uncertainties are provided for the CME input as well as for w
and γ , from which the tool generates m ensemble members.
Each ensemble member is produced by randomly picking one
value for each input parameter, assuming that it follows a
normal distribution with the observational input value as mean
and SD derived from uncertainty (uncertainty= 3σ ). Due to
this randomness (which cannot be controlled), the ensemble
is not likely to be identical each time an identical input is
used, which produces small differences in the output of the
model for different runs using identical input. However, for
large ensembles, m > 10, 000, the differences of the output are
negligible (see documentation of the DBEMv3 at ESA/SSA4 as
well as Čalogović et al., submitted to Solar Physics). The basic
assumptions, input, output, and tool specifications of DBEMv3
are given in the last column of Table 1.

We note that, in the DBEMv3, the CME input parameters
are considered to be independent of each other and therefore,
the procedure is somewhat similar to error propagation. In
DBEM, the CME parameters within one measurement set are not
necessarily independent of each other, CME sets are independent
of each other. This is important due to the nature of the
model input used, i.e., obtaining CME input from coronagraphic
measurements. Coronagraphs only display a projection of a
3D structure. Therefore, in order to derive parameters of a
3D CME, some assumptions need to be made on the CME
geometry. These assumptions, as well as their applications can
vary from observer-to-observer and result in CME measurement
sets where the distribution of single parameter variability may
differ substantially from the normal distribution. A single
observer, on the other hand, is more likely to provide CME
measurements with errors that follow a normal distribution.
While a single observer is more likely to bias the mean of the
normal distribution of an input parameter and thus introduce
errors, we note that, in the near-real-time forecasting, where
a quick estimation of the CME input is needed, DBEMv3
is more applicable, since it uses input provided by only one
observer/method.

3. RUNNING THE DBM TOOLS: EXAMPLE
EVENT

We demonstrate the performance of DBM tools described in
section 2 by running all the tools using the same example event.
As the example event, we chose a previously studied CME that
erupted on April 3, 2010 and hit Earth on April 5, 2010 (e.g.,
Möstl et al., 2010; Wood et al., 2011; Rodari et al., 2018). This
event can be found in the SOHO/LASCO CME catalog 5, where
it is listed as a halo with the first appearance in LASCO-C2 on

4https://swe.ssa.esa.int.
5https://cdaw.gsfc.nasa.gov/CME_list/.
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TABLE 2 | CME measurements and the corresponding DBM input and output for the April 3rd 2010 CME for 5 different observers using 3 different methods.

observer 1 (GCS) (Rodari et al., 2018) (GCS) Wood+2017 AFFECTS-GCS AFFECTS-CAT

IN
P
U
T

obs time 04/03 10:54 04/03 11:24 04/03 10:00 04/03 12:08 04/03 12:08

height [R⊙] 8.1 15.6 7.3 13.6 21.5

CME lon [deg] 5 3 3 4 0

measurements lat [deg] -26 -28.5 -16 -26 24.6

tilt [deg] 11 1.7 -80 -1 –

kappa 0.35 0.3 0.21 0.42 –

halfangle [deg] 37 24.3 60 16 –

DBM input

liftoff time 04/03 13:24 04/03 12:19 04/03 12:30 04/03 13:29 04/03 11:47

v0 [ kms−1] 920 920 960 920 812

lon [deg] 5 3 3 4 0

half width [deg] 53 41 19 41 30

ICME ToA* 04/05 12:00 04/05 12:00 04/05 12:00 04/05 12:00 04/05 12:00

OBSERVATION SoA** [ km s−1] 640 (790) 640 (790) 640 (790) 640 (790) 640 (790)

O
U
TP

U
T

ToA 04/05 17:39 04/05 16:34 04/05 16:45 04/05 17:44 04/05 19:43

basic ToA O− C [h]*** 5.7 4.6 4.7 5.7 7.7

1D DBM SoA [ kms−1] 620 620 620 620 597

SoA O− C [ km s−1] 20 (170) 20 (170) 20 (170) 20 (170) 43 (193)

ToA 04/05 17:51 04/05 16:41 04/05 17:01 04/05 17:56 04/05 19:43

2D self-similar ToA O− C [h] 5.9 4.7 5.0 5.9 7.7

cone DBM SoA [ kms−1] 618 619 617 618 597

SoA O− C [ km s−1] 22 (172) 21 (171) 23 (173) 22 (172) 43 (193)

ToA 04/05 17:47 04/05 16:36 04/05 15:37 04/05 17:46 04/05 19:37

2D flattening ToA O− C [h] 5.8 4.6 3.6 5.8 7.6

cone DBM SoA [ kms−1] 619 620 627 620 598

SoA O− C [ km s−1] 21 (171) 20 (170) 13 (163) 20 (170) 42 (192)

DBEMv3

arrival probability [%] 100% 100% 91.5% 100% 99.2%

ToA 04/05 18:06 04/05 17:14 04/05 18:04 04/05 18:28 04/05 20:51

ToA CI [h]**** +5.6/-5.1 +5.1/-5.8 +5.6/-6.9 +5.3/-5.8 +5.9/-7.7

ToA O− C [h] 6.1 5.2 6.1 6.5 8.9

SoA [ kms−1] 618 616 612 615 591

SoA CI [ km s−1] +64/-52 +70/-63 +54/-65 +51/-68 +51/-59

SoA O− C [ km s−1] 22 (172) 24 (174) 28 (178) 25 (175) 49 (199)

DBEM

arrival probability [%] 100%

ToA 04/05 16:44

ToA CI [h] +5.8/-5.4

ToA O− C [h] 4.7

SoA [ kms−1] 617

SoA CI [ km s−1] +97/-65

SoA O− C [ km s−1] 23 (173)

*ToA=time of arrival.
**SoA=speed of arrival; observed mean ICME speed (peak speed is given in brackets).
***O-C=absolute value of the difference between observed and calculated values.
****CI=confidence interval (95%).

April 3, 2010 at 10:33 UT. In order to reconstruct the flux rope
structure of the CME, we used the graduated cylindrical shell
(GCS) model (Thernisien et al., 2006, 2009; Thernisien, 2011).

Graduated cylindrical shell is a geometrical model used to
describe the flux rope structure of the CME to study its three-
dimensional morphology, position, and kinematics. The flux
rope is approximated with a self-similarly expanding hollow
croissant originating from the center of the Sun, where the legs

are conical and cross-section circular and the front is pseudo-
circular. The croissant is fully defined by six GCS parameters: (1)
longitude, (2) latitude, (3) height corresponding to the apex of the
croissant, (4) the tilt of the croissant axis to the solar equatorial
plane, (5) the croissant half-anglemeasured between the apex and
the central axis of its leg, and (6) the “aspect ratio” (i.e., the sine
of the angle defining the “thickness” of the croissant leg). The
GCS parameters were obtained by fitting its 2D projections to
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FIGURE 3 | The CME of April 3, 2010, observed in running difference images in STEREO/COR2 and SOHO/LASCO coronagraphs and the GCS reconstruction of the
CME (green mesh).

the respective coronagraphic images, where at least two different
vantage points are needed to constrain the geometry (for further
details on GCS, see Thernisien et al., 2006, 2009; Thernisien,
2011).

To perform the reconstruction, we used coronagraph images
taken by SECCHI/COR2 (Howard et al., 2008) onboard
STEREO-A and B, as well as LASCO-C3 (Brueckner et al.,
1995) onboard SOHO spacecraft on April 3, 2010 at 10:54
UT. Furthermore, the GCS reconstruction was done in four
consecutive time-steps, following the CME leading edge while
changing only the height parameter, i.e., assuming self-similar
expansion. Based on these four measurements, a CME linear
speed of 920 km s−1 was estimated. The GCS best fit parameters
and linear speed are given in the second column of Table 2 and
the reconstruction is shown in Figure 3.

Based on the results of the GCS reconstruction, we derived
the input for the DBM tools (see column 4 in Table 2). Using the
CME linear speed, we extrapolated the CME apex to R0 = 20R⊙

assuming constant speed, which is taken as the initial CME speed,
v0. The CME angular extent (i.e., CME angular half width, λ)
in the solar equatorial plane was estimated based on the GCS-
derived tilt, as well as the GCS face-on and edge-on widths, as
described by Dumbović et al. (2019) and adopted in DBEMv3.
The projection of the GCS reconstructed CME in the solar
equatorial plane is shown in Figure 4, as well as the calculated

CME angular extent and the positions of the spacecraft. We
can see that, due to relatively small tilt and large half-angle,
the angular extent of the CME is quite large. In addition, we
can see that the direction of the apex (given by the longitude
of the CME source region, φCME) is very close to the Sun-
Earth line. We next ran DBM tools for the input obtained from
the GCS reconstruction (bottom rows of Table 2). In order to
run DBEM, for which different sets of CME measurements are
needed as input, we utilized measurements from previous studies
on this event (Wood et al., 2017; Rodari et al., 2018) and from
online catalogs provided by the Advanced Forecast For Ensuring
Communications Through Space (AFFECTS)6 catalogs. We used
CME input provided by the AFFECTS-GCS database and the
AFFECTS-CAT database, where the latter is obtained with the
CME Analysis Tool (CAT) modeling technique developed by
Millward et al. (2013). We also ran all other DBM tools for these
various CME inputs [as given in columns (5-8)]. The DBM input
for these CME measurements was derived the same way as for
the GCS reconstruction performed here. The CME speed for
AFFECTS-GCS catalog was assumed to be the same as that in
other two GCS reconstructions. CME measurements provided
by five different observers using three different measurement

6http://www.affects-fp7.eu/home/.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 10 May 2021 | Volume 8 | Article 639986

http://www.affects-fp7.eu/home/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
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FIGURE 4 | (Left) The projection of the GCS croissant of the on April 3, 2010, CME in the XY plane of the Heliocentric Earth Equatorial (HEEQ) coordinate system
(i.e., plane of the solar equator). The direction of the apex is marked by a solid black line. (Right) The direction and angular extent of the April 3rd 2010 CME (black
arrow and black arc, respectively) and the positions of the three spacecrafts in the HEEQ coordinate system at the CME liftoff time: STEREO-B (blue), SOHO (green),
and STEREO-A (red).

methods, as well as the corresponding five DBM inputs the are
given in Table 2.

The inner boundary, the drag parameter, the solar wind speed,
and target distance are the same for each of the five DBM inputs
and are R0 = 20 R⊙, γ = 0.2 · 10−7 km−1, w = 450 km s−1, and
Rtarget = 1 au, respectively. In DBEM, 15 synthetic values of γ

and w were used within the uncertainty ranges±0.1 · 10−7 km−1

and ±50 km s−1, respectively. In DBEMv3, default uncertainty
ranges of the tool were used: ±30min, ±0.1 · 10−7 km−1,
±50 km s−1, ±200 km s−1, ±15◦, and ±30◦ for lift-off time, γ ,
w, v0, λ, and φCME, respectively, and 10,000 runs were performed
to obtain the results. It can be seen in Table 2 that the difference
in the output of different DBM tools is very similar for all DBM
tools that use a single input set (basic 1D DBM, 2D self-similar
DBM, 2D flattening cone DBM, and DBEMv3). This is because
the direction of the apex is very close to the direction of the
target, i.e., the CME is likely to hit the target close to the apex,
where all geometries evolve similarly. This is also the reason for
very high arrival probability, given that the most of the input sets
consider a relatively wide CME. The input set derived based on
measurements given by Wood et al. (2017) in their study is the
only one yielding a DBEMv3 arrival probability < 100%, because
the estimated CMEhalf width is low compared to the uncertainty.
The difference of the output is more prominent between different
input sets than between different tools, with the exception of
DBEM, which shows slightly different results compared to other
tools. This is because, unlike other DBM tools, DBEM does not
use a single input but takes into account the variability of different
input sets.

The last two rows of Table 2 show the observational results for
the CME arrival, which are based on the CME-ICME association
made by Möstl et al. (2010) and the arrival time and speed values
provided by the ICME catalog of Richardson and Cane (2010)7,

7http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

where the mean ICME speed is taken as the arrival speed and the
ICME start (not the start of the disturbance) is taken as the arrival
time. Measured ICME peak speed is also given for reference. We
can see that, all DBM outputs in Table 2 overestimate arrival time
by a couple of hours and underestimate arrival speed by couple of
tens of km s−1, which indicated that the drag was overestimated.
Indeed, as this is a fast event, 2D flattening cone DBM, DBEM,
and DBEMv3 would suggest the γ = 0.1 · 10−7 km−1 option.
Running DBEMv3 and DBEM with γ = 0.1 · 10−7 km−1 and
keeping other input identical, as given in Table 2 yield arrival
times 2010-04-05 13:20 and 2010-04-05 11:50 UT, respectively,
i.e., very close to the observed arrival time. The DBEMv3 and
DBEM outputs, for arrival speed are 705 km s−1 for both, which
is closer to the observed ICME peak speed instead of the ICME
mean speed.

4. DISCUSSION AND CONCLUSION

The basic DBM equations (Equations 1, 2) describe CME
propagation in a simple, physics-based and analytical way.
Therefore, even when CME geometry is included (2D DBM) and
in the ensemble mode, the model runs very quickly (Table 1).
With the development of different tools and their performance
analysis, optimized DBM parameters (e.g., initial distance, solar
wind speed, and drag parameter) have been established, which
are offered as default parameters in the DBM tools (Table 1).
This makes the tools very easy to use, even for the unexperienced
users. On the other hand, the tools allow customized input for
more experienced users (as described in section 2.1.1). Therefore,
DBM tools are simple to use and computationally efficient, which
is their main advantage, compared to numerical MHDmodels.

DBM tools offer three different geometries, which identically
describe the propagation of the CME apex, but differ in the
description of the CME flanks, and might therefore differ in the
applicability. For instance, both 2D DBM tools assume initial
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cone geometry; however, one propagates it in a self-similar
manner, whereas the other does not. Therefore, it is reasonable
to assume that 2D self-similar DBM might be more suitable
for CMEs with (near) the self-similar expansion. This might
be the case with slower CMEs, which show more symmetric
in situ profiles (Masías-Meza et al., 2016). Since they propagate
with speeds closer to the solar wind speed, they experience less
drag. On the other hand, 2D flattening cone DBM might be
more suitable for very fast CMEs, which show quite asymmetric
in situ profiles (Masías-Meza et al., 2016), indicating non-self
similar expansion. They propagate with speeds much larger than
the solar wind speed and thus experience more drag. The non-
self similar vs. self-similar evolution might become even more
important for considerations of 3D geometries. It is important
to note that 2D flattening cone DBM does not consider change
of the front in a manner that the flanks catch-up or overtake
the apex. It is a purely geometrical effect, a change from a
highly-curved cone geometry toward a less-curved concentric-
arc-like geometry, and is not related to, e.g., non-homogeneous
drag or internal forces that might cause the “pancaking effect”
(e.g., Cargill et al., 1994). The cone geometry is also suitable
to describe the propagation of a CME driven shock, which is
typically faster and stronger at the nose compared to flanks (e.g.,
Neugebauer, 2013); thus, the flanks are “delayed” with respect
to the nose. On the other hand, for a freely propagating shock,
assuming it propagates in a homogeneous medium, a concentric
arc geometry might be more suitable. As demonstrated on
an example event, for CME propagation near the apex, all
geometries and, therefore, all DBM tools show similar results
(provided that the CME input is the same, see Table 2).

The ensemble options of the DBM provide a more
comprehensive prediction compared to the other three tools,
as they additionally calculate arrival probability and confidence
interval of the arrival time and speed. In addition, although
they rely on a large number of DBM runs (> 1, 000), they are
still computationally inexpensive (Table 1). Therefore, they are
quite useful from the aspect of space weather forecast and its
evaluation. Since there is a difference in the implementation of
the CME input in DBEM and DBEMv3, their applicability may
also differ. The DBEMv3 tool is much faster and only needs

input from one observer; thus, it is easy to use in near-real
time forecasts. On the other hand, DBEM may use various CME
input sets, provided by different observers, different methods, or
even different instruments, and may thus be more suitable for
evaluation purposes.

To summarize, this study provides an overview of the
assumptions, applications, and performance of the five DBM
tools developed at Hvar Observatory. It is important to note that,
although these tools were developed sequentially and therefore
each more recent tool contains improvements compared to the
older version, the older versions still have their applicability.
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