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The study of stellar oscillations allows us to infer the properties of stellar interiors.

Meanwhile, fundamental parameters such as mass and radius can be obtained by

studying stars in binary systems. The synergy between binarity and asteroseismology

can constrain the parameter space of stellar properties and facilitate the asteroseismic

inference. On the other hand, binarity also introduces additional complexities such tides

and mass transfer. From an observational perspective, we briefly review the recent

advances in the study of tidal effects on stellar oscillations, focusing on upper main

sequence stars (F-, A-, or OB- type). The effect can be roughly divided into two

categories. The first one concerns the tidally excited oscillations (TEOs) in eccentric

binaries where TEOs are mostly due to resonances between dynamical tides and

gravity modes of the star. TEOs appear as orbital-harmonic oscillations on top of the

eccentric ellipsoidal light curve variations (the “heartbeat” feature). The second category

is regarding the self-excited oscillations perturbed by static tides in circularized and

synchronized close binaries. It includes the tidal deformation of the propagation cavity

and its effect on eigenfrequencies, eigenfunctions, and the pulsation alignment. We list

binary systems that show these two types of tidal effect and summarize the orbital

and pulsation observables. We also discuss the theoretical approaches used to model

these tidal oscillations and relevant complications such as non-linear mode coupling

and resonance locking. Further information can be extracted from the observations of

these oscillations which will improve our understanding of tides. We also discuss the

effect of mass transfer, the extreme result of tides, on stellar oscillations. We bring to

the readers’ attention: (1) oscillating stars undergoing mass accretion (A-, F-, and OB

type pulsators and white dwarfs), for which the pulsation properties may be changed

significantly by accretion; (2) post-mass transfer pulsators, which have undergone a

stable or unstable Roche-Lobe overflow. These pulsators have great potential in probing

detailed physical processes in stellar interiors and mass transfer, as well as in studying

the binary star populations.

Keywords: stars early-type, evolution, oscillations, stars: binaries, asteroseismology

1. INTRODUCTION

Stars tend to reside in binary or multiple systems, especially for those of early-type (Raghavan et al.,
2010; Moe and Di Stefano, 2017). The intermediate and massive stars also possess a stably stratified
radiative envelope which facilitates the propagation of gravity waves. When forming global normal
modes, these gravity (g) modes can be observed in photometry or spectroscopcy and be used to

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2021.663026
http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2021.663026&domain=pdf&date_stamp=2021-05-14
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zg281@cam.ac.uk
https://doi.org/10.3389/fspas.2021.663026
https://www.frontiersin.org/articles/10.3389/fspas.2021.663026/full


Guo Tides and Oscillations

study the stellar interiors. Thanks to the recent space telescopes,
significant advances have been made in asteroseismology (Aerts
et al., 2010; Bowman, 2020) including, e.g., the self-excited g-
mode pulsators such as the F or A type γ Dor stars (Van
Reeth et al., 2016; Li et al., 2020b) and the Slowly Pulsating B-
stars (SPB) (Pápics et al., 2017). In binary stars, tidal forcing
from the companion star naturally falls into the low-frequency
(inertial and gravity mode) regime1, with characteristic periods
on the order of days. The tidally excited oscillations are crucial
for the orbital evolution of binaries (Zahn, 1975, 1977; Ogilvie,
2014). It requires precise (generally<10−4 magnitude), long, and
continuous observations to detect the direct effect of tides on
stellar oscillations. We are witnessing a huge amount of evidence
of tidal effects on stellar oscillations, including both the tidally
excited modes and perturbed modes.

The effect of tides can be classified into two categories. First,
the non-wavelike, equilibrium tide regime, where the tidal effect
is a global static deformation (Remus et al., 2012). The shape
can be approximated as a spheroid or, more generally, as the
Roche model, which is frequently used in the modeling of binary
star light curves (Wilson and Devinney, 1971; Prša and Zwitter,
2005; Sepinsky et al., 2007). Second, in the wave-like, dynamical
tide regime, the harmonic tidal forcing induces gravity waves in
the radiative envelope and inertial waves in the convective core.
If the waves suffer from less damping and manifest themselves
as temperature variations on the stellar surface, they can be
observed and studied.

Observationally, we discuss two classes of pulsating binaries.
The first is pulsating eccentric binaries, i.e., the heartbeat stars
(HBs). HBs are eccentric binary systems showing the eccentric
ellipsoidal variations (the “heartbeat,” sometimes similar to the
electrocardiogram) near the periastron passage. Figure 1 shows
the typical light curves of three HBs observed by Kepler from
low to high inclinations. The heartbeat feature stems from the
ellipsoidal variation (mainly from the temperature and geometric
perturbations due to tidal deformation) and the reflection effect
(mutual heating). Doppler boosting also contributes to the
feature but to a much lesser degree (Loeb and Gaudi, 2003; van
Kerkwijk et al., 2010; Hambleton et al., 2016). The prototype
of HB is KOI-54, which consists of two A-type main-sequence
stars in a face-on, very eccentric orbit (Welsh et al., 2011). Later
compilations of HBs include Thompson et al. (2012) and Kirk
et al. (2016). The spectroscopic follow-up studies include Smullen
and Kobulnicky (2015), Shporer et al. (2016), Kjurkchieva et al.
(2016), and Dimitrov et al. (2017). Detailed studies of individual
systems have been performed (see below). SomeHBs show tidally
excited oscillations (TEOs) on top of the heartbeat feature, i.e.,
additional g-mode oscillations induced by the dynamical tide.

The other class is circularized and synchronized close binaries
with self-excited oscillations. For example, the A or F-type,
pressure(p)-mode pulsating stars of δ Scuti type (Breger, 1979;
Rodríguez et al., 2000) have been frequently found in close
binaries. Some systems show p-modes perturbed by static tides.
The manifestation can be seen in the perturbed eigenfrequencies

1In some rare cases, pressure modes can also be tidally excited, e.g., in the central
red giant star of the triple system HD181068 (Fuller et al., 2013).

and pulsational alignment (tidal splittings) and the modified
eigenfunctions (e.g., flux may be non-uniformly distributed on
the stellar surface).

Lastly, in section 4, we also discuss the extreme case of tides:
mass transfer, and its effect on stellar oscillations. Particular
attention is paid to the mode excitation and the binary-channel
formation of pulsating stars via mass transfer.

2. ECCENTRIC BINARIES WITH TIDALLY
EXCITED OSCILLATIONS (TEOs)

The HBs depict the upper envelope of the classical orbital period-
eccentricity diagram (Shporer et al., 2016). The relatively short
period (mostly P . 50 d) and high eccentricity (e & 0.2)
indicate an on-going strong tidal evolution (Dong et al., 2013).
Zimmerman et al. (2017) showed that about 20 HBs have a
surface rotation period ≈ 1.5 times longer than the pseudo-
synchronous rotation period (Hut, 1981). Some heartbeat stars
are actually in a hierarchical system. For example, high-resolution
spectroscopy reveals a third spectral component in KIC 3230227
(Guo et al., 2017a; Lampens, 20172). The high eccentricity (e =

0.89) and spin-orbit misalignment of the heartbeat binary KIC
8164262 (Hambleton et al., 2018) suggest that it is probably
formed via the Kozai-Lidov mechanism (Kozai, 1962; Lidov,
1962; Naoz, 2016), a possible formation channel for some HBs. It
is quite possible that manyHBs have a hidden tertiary companion
(Anderson et al., 2017).

The heartbeat signature can be present in the light curve
irrespective of the spectral type. We will not discuss HBs with
red giant components (Nicholls and Wood, 2012; Gaulme et al.,
2013, 2014; Beck et al., 2014; Kuszlewicz et al., 2019) but focus
on HBs with A- F- and OB-type stars. These stars possess
radiative envelopes which facilitate the observability of tidally
excited oscillations.

Observationally, we subtract the contribution from the
equilibrium tide (the heartbeat feature, red lines in Figure 1)
before studying the oscillations in the Fourier domain (Figure 1,
right panel). TEOs represent the dynamical tidal response of
the star to the companion, mostly manifest as exact orbital-
harmonic frequencies (except for non-linear TEOs, see section
2.2 below). In the right panels of Figure 1, the peaks labeled
with red numbers or gray squares are orbital-harmonic TEOs.
Very-low-inclination HBs usually show l = 2,m = 0 TEOs
while near-edge-on HBs tend to show l = 2,m = 2 TEOs.
Tentative mode identification (l and m) of TEOs are labeled in
Figure 1. The amplitude and frequency range (orbital harmonic
number N) of TEOs can be predicted from theory and these
expectations can be used to distinguish from the aliases resulting
from imperfect equilibrium-tide light curve removal and other
artifacts generated in the data reduction (e.g., frequency peaks
without labels in the Fourier spectra of the upper and middle
panels of Figure 1). An estimate can be made to the largest
possible amplitude of these aliases and thus they can usually be
distinguished from real TEOs. Note that the Fourier spectrum

2Presented as a poster at the KASOC conference.
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FIGURE 1 | (Left) Kepler Light curves of three heartbeat binaries with TEOs, from low to high orbital inclinations (i). In particular, KIC 4142768 has an eclipse near the

periastron (phase = 1.0). (Right) Fourier spectrum of the light curves after removing the equilibrium tide contribution (red lines in left panels). The TEOs (red symbols

or gray squares) are labeled by their orbital harmonic number (N) in red, and their tentative mode identification (l and m) are also shown. In the lower panel, intrinsic

self-excited oscillations (γ Dor g-modes in the frequency range f < 2 d−1 and δ Scuti p-modes in f > 15 d−1) are also present. Imperfect equilibrium-tide removal also

generates a series of consecutive low-amplitude peaks, most notably in the upper and middle panels (see text). Adopted from Guo et al. (2019, 2020).

can also contain self-excited oscillations (e.g., γ Dor type g-
modes and δ Scuti p-modes in KIC 4142768, lower panel
of Figure 1). Furthermore, modulations from the stellar spin
also introduce frequency peaks at the rotation frequency and
its harmonics.

We compile a list of 22 heartbeat binaries with TEOs:
OB- type: HD 177863 (Willems and Aerts, 2002); ι Ori

(Pablo et al., 2017); MACHO80.7443.1718 (Jayasinghe et al.,
2019); QX Car and V1294 Sco (Kołaczek-Szymański et al., 2020);
two possible candidates: η Car (Richardson et al., 2018); R81
(Tubbesing et al., 2002).

A-F- type: HD209295 (Handler et al., 2002); KOI-54 (Welsh
et al., 2011); KIC 3230227 (Guo et al., 2017a); KIC 4142768 (Guo
et al., 2019); KIC 9016693, KIC 8719324 and KIC 4248941, KIC
5034333 (Guo et al., 2020); KIC 11494130 and KIC 5790807
(Cheng et al., 2020), KIC 4544587 (Hambleton et al., 2013); KIC
3749404 (Hambleton et al., 2016), KIC 8164262 (Fuller et al.,
2017; Hambleton et al., 2018); p Vel, θ1 Cru, η1 UMa, HD158013
and 14 Peg (Kołaczek-Szymański et al., 2020).

This list is of course incomplete. Kirk et al. (2016) included
24 HBs with TEOs, which is about 15% of all heartbeat binaries
in the Kepler eclipsing catalog. Only ten systems are included
here since TEOs in the rest have not been studied in detail.
Table 1 contains the stellar, orbital and oscillation parameters of
22 heartbeat binaries (A detailed online version can be found at:
http://www.astro.gsu.edu/~guo/tides_review_table.pdf).

2.1. Tidally Excited Oscillations (TEOs) in
Heartbeat Stars
We briefly describe the general physical picture of tidally excited
waves in early-type stars. Early seminal studies used asymptotic
approximations of gravity waves (Zahn, 1975, 1977; Goldreich
and Nicholson, 1989), and it was extended to include the effect
of rotation (Mathis, 2009). Later numerical calculations include
the effect of non-adiabaticity and rotation (Savonije et al., 1995;
Papaloizou and Savonije, 1997; Savonije and Papaloizou, 1997).
Dedicated calculations (Witte and Savonije, 1999a,b) on massive
stars studied the binary evolution and the intricate effects such
as resonance locking. Other studies implemented the mode
decomposition approach (Alexander, 1987; Lai et al., 1993; Lai,
1997; Schenk et al., 2002; Fuller, 2017).

Intermediate and massive stars possess a convective core and
radiative envelope. In binaries containing these stars, internal
gravity waves (IGW) are generated by the tidal potential (also
by the convective motion in the core) at the radiative-convective
boundary and propagate outward (Goldreich and Nicholson,
1989; Lecoanet and Quataert, 2013; Rogers et al., 2013; Edelmann
et al., 2019; Lecoanet et al., 2019; Horst et al., 2020). They
suffer from linear damping due to radiative diffusion (Press,
1981; Garcia Lopez and Spruit, 1991; Zahn et al., 1997). The
low-frequency, short-wavelength waves are damped strongly and
behave like traveling waves (Ratnasingam et al., 2019). Higher-
frequency waves can be reflected at the outer turning points and
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interfere constructively to form global normal modes (Prat et al.,
2016).

Most of the observed prominent TEOs in HBs are standing
waves, suffering from less damping. When the TEO amplitudes
surpass the parametric instability threshold, the TEOs begin
to suffer from non-linear mode coupling and transfer energy
to daughter modes or multiple pairs of daughter modes
(Weinberg et al., 2012; Yu et al., 2020). The daughter modes
may again become unstable and couple with grand-daughter
modes. In general, a mode coupling network can be formed.
Observationally, this can be seen as mode triplets or multiplets
satisfying the resonance conditions. This weakly-nonlinear
regime will be discussed in the next section.

The amplitudes of the tidally excited gravity waves, when
propagating to the near-surface layers with smaller densities,
increase significantly. If the waves become significantly non-
linear (the multiplication of the radial wavenumber and radial
displacement krξr & 1), they overturn the stratification
and break (Su et al., 2020). Thus, they deposit their energy
(tidal heating) and angular momentum (tidal synchronization),
and turn into small-scale turbulence. Thus, the surface layers
are synchronized first and a differential rotation profile may
be produced (Goldreich and Nicholson, 1989), although the
hydromagnetic effects tend to smooth out differential rotation
(Rüdiger et al., 2015; Townsend et al., 2018). Critical layers where
the Doppler-shifted wave frequency approaches zero, may form
and move inward (Alvan et al., 2013). The subsequent gravity
waves cannot pass the critical layer and waves dissipate strongly.
Observationally, single upper main-sequence stars tend to have a
nearly uniform rotation profile in the radiative envelope, inferred
from asteroseismology (Bowman, 2020; Aerts, 2021)3. The g-
mode pulsating γ Dor stars (spectral type A-F-) in close binaries
with Porb ≤ 10 d show a convective-core-boundary rotation
period that is similar to the orbital period, suggesting that
the tidal synchronization has already reached the deep interior
(Guo et al., 2019; Li et al., 2020a; Saio, 2020). Nevertheless,
Kallinger et al. (2017) found a Slowly Pulsating B-star in a
triple system that appears to show a faster-rotating surface layer,
which may fall into the Goldreich and Nicholson’s outside-in
synchronization scenario.

Since the TEOs are direct manifestation of dynamical tides,
they are crucial for our understanding of the above physical
processes. First, we show some general properties of the TEOs
in heartbeat stars.

The overall strength of the tidal response of star 1 due to star
2 is determined by the tidal parameter ǫl:

ǫl =

(

M2

M1

) (

R1

Dperi

)l+1

(1)

where Dperi = a(1 − e). Since R1
Dperi

≪ 1, it is usually sufficient to

consider the dominant l = 2 component.

3Asteroseismology of pre-Kepler β Cephei stars (since none were observed by
Kepler) have a large range in their inferred interior rotation profiles.

Thus, to have a larger tidal amplitude, one could (1) make
the mass ratio M2/M1

4 larger (i.e., close to 1.0); (2) make the
stellar radius R1 bigger; (3) have a smaller periastron distance
Dperi. And indeed, observationally: (1) many heartbeat stars have
a mass ratio close to unity5; (2) lots of heartbeat stars with tidally
excited oscillations are slightly evolved main-sequence stars (e.g.,
KIC 4142768 has a primary star withM = 2.05M⊙,R = 2.96R⊙,
Guo et al., 2019); (3) heartbeat binaries have a high eccentricity
(≈ 0.2 − 0.9) and short periastron distance. The Dperi of 19
HBs in Shporer et al. (2016) ranges from 0.05 to 0.1AU, and the
corresponding tidal parameter ǫ2 values are≈ 10−3.

The observed TEOs correspond to the frequencies of stellar
g-modes with radial orders from ≈ 10 to a few tens. For
example, the primary star in KIC 3230227 (M = 1.84M⊙,R =

2.01R⊙, Guo et al., 2017a) shows orbital-harmonic oscillations
corresponding to l = 2,m = 2 g modes, with radial order
ng ∼ 10 − 30; KOI 54 (M = 2.05M⊙,R = 2.33R⊙, O’Leary
and Burkart, 2014) shows TEOs that mostly have l = 2,m = 0,
corresponding to radial order ng ∼ 10− 50. The slightly evolved
primary in KIC4142768 (Guo et al., 2017a) shows TEOs that are
in agreement with ng ≈ 30− 70 g modes.

In Figure 2, we stack the observed TEOs in 22 heartbeat
binaries together, with decreasing orbital eccentricities from the
top to the bottom. These Fourier spectra show that the TEOs
generally have oscillation frequencies <∼ 5 d−1. They mostly
correspond to orbital harmonics N from 4 to 40, although in
some special cases the N can reach much larger values (N ∼ 300
in KIC 8164262). The TEO amplitudes can be as large as > 10
milli-mag although the majority are lower than 0.5 milli-mag
(right panel in Figure 2).

In general, most of the observed TEOs are likely (linearly)
excited by the dynamical tide (exact orbital-harmonic frequencies
(Nforb, see next section for nonlinear non-harmonic TEOs),
with the stellar response dominated by the closest frequency
g-mode. But which orbital harmonics N are favorably excited?
Following Burkart et al. (2012), the favorable range of orbital
harmonics depends essentially on the multiplication of Qnl and
Xlm (see immediately later in this paragraph for the definitions).
First, not all g-modes couple with the tidal potential equally.
The weights are described by the tidal overlap integral Qnl,
which peaks around the dynamical frequency of the star. Qnl

decreases toward lower frequencies since higher order g-modes
have shorter wavelength and cannot couple well spatially with
the tidal potential. Secondly, stars in eccentric orbits experience
a series of forcing frequencies (Nforb, with |N| < ∞) which
are weighted by the eccentricity-dependent Hansen coefficient
Xlm. Xl = 2,m = 2 peaks at the periastron-passage frequency and
decreases toward larger N; Xl=2,m=0 monotonically decreases as
N increases (Willems, 2003, Figures 1, 2; Fuller, 2017, Figure 3).
Thus, the favored range of orbital harmonics N is between the
peaks of Qnl and Xlm (Burkart et al., 2012, Figures 2, 3).

In Figure 3, we show the observed TEO amplitudes (in
magnitude variation1mag or luminosity variation1L/L, related
by 1L/L ≈ 1.0861mag) as a function of the orbital harmonic

4Usually defined so thatM2 ≤ M1.
5(if the two components can be resolved in the spectra).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 4 May 2021 | Volume 8 | Article 663026

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Guo Tides and Oscillations

FIGURE 2 | Fourier amplitude spectrum of all 22 heartbeat binaries with TEOs. The TEO amplitudes are shown in mmag. The inset plots show the TEO amplitude

histogram (upper) and the orbital harmonic N histogram (lower).

number (N) in four HBs KIC4142768, KIC3230227, ι Ori and
KOI-54 (gray squares, circles, red squares, and red crosses,
respectively). These observed TEOs should be compared with
the theoretical amplitudes for m = 2, m = 2, m = 2,
m = 0 modes (blue diamonds, open diamonds, blue circles,
and open triangles, respectively, same ordering as above). It can
be seen that the observed TEO range (between the two vertical
lines) matches well with the theoretical expectations (the “bump”
formed by background symbols. For ι Ori, the theoretical TEO
amplitudes of m = 0 modes (cyan open circles) are below the
detection limit and much lower than observed TEOs (m = 2).
For KOI-54, the 1mag from the temperature effect (1magT ;
upper) and geometrical effect (1magG; lower) are distinguished.
Note that the observed magnitude variations are primarily due to
the temperature perturbations (slightly overestimated in Fuller
and Lai, 2012).

However, to model the TEO amplitudes individually, one
needs to consider the Lorentzian term 1nlmN (a term describing
the resonances, see Equation 13, Burkart et al., 2012), which
depends sensitively on the frequency detuning, i.e., the closeness
of a certain forcing frequency (Nforb) to the nearest eigenmode
frequency. Unfortunately, even a change of 0.001M⊙ in stellar
models can significantly change the detuning parameter, thus the
Lorentzian term. A better way is to treat the detuning parameter
as a random variable, which is uniformly distributed between its
minimum value (= 0, perfect resonance) and maximum values
(half of the adjacent g-mode spacing). In this way, a credible

interval can be calculated for the Lorentzian term and thus the
observed TEO amplitude (Fuller, 2017). For example, the 95%
credible interval (±2σ ) of theoretical TEO amplitude for KIC
4142768 is shown as the shaded region in the upper left panel
of Figure 3.

TEO phases, measured with respect to the periastron, deserve
a particular discussion. We expect most observed TEOs are
standing waves and nearly adiabatic, and their phases are close to
the adiabatic expectations which are essentially only a function
of ω (argument of periastron) and m (Burkart et al., 2012; Guo
et al., 2020). In Figure 4, we show the observed TEO phases
(symbols) and the theoretical adiabatic phases (vertical lines) for
five HBs. As expected, low inclination HBs tend to show m = 0
modes (top two systems), and intermediate/high inclination HBs
usually present both m = 0 and m = 2 modes. The low-
frequency TEOs experience more radiative damping, and they
can be distinguished by their relatively large phase offset from
adiabatic phases (O’Leary and Burkart, 2014, Figure 4; Guo et al.,
2019, Figure 7). Weakly non-linear TEOs that experience non-
linear mode coupling also show deviations from the adiabatic
phases. It is possible that TEOs locked in resonance with the orbit
still have relatively large frequency detuning compared with the
mode damping rate, and thus they do not show arbitrary phases
as in the perfect-resonance case.

To summarize, the tidal response to a forcing frequency
(Nforb) is a summation of the mode eigenfunctions weighted by
the mode amplitude AnlmN ∝ ǫlQnlXlm1nlmN (Burkart et al.,
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FIGURE 3 | The amplitude of TEOs in magnitude variation (1mag) or relative luminosity variation (1L/L) as a function of orbital harmonic (N) for four heartbeat

binaries. The observed TEOs are indicated by the gray squares (upper left, KIC 4142768), open circles (upper right, KIC 3230227), red squares (lower left, ι Ori),

and red crosses (lower right, KOI-54). The theoretical TEO amplitudes are shown as blue diamonds (upper left, m = 2 modes), open diamonds (upper right,

m = 2 modes), blue/cyan circles (lower left, m = 2/m = 0 modes), and open triangles/filled circles (lower right, m = 0/m = 2 modes, respectively). The two vertical

lines in each panel show the lower and upper frequency limits of the observed TEOs.

2012; Fuller, 2017). Roughly speaking, ǫl determines the overall
strength, QnlXlm controls the range of excited orbital harmonics
N, and 1nlmN sets the detailed amplitude of each TEO. TEO
phases are primarily determined by the orbital orientation. Most
observed TEOs in HBs are chance resonances (i.e., random
frequency detuning) with g-modes and can be modeled by
the above theoretical framework. In fact, the aforementioned
statistical approach is good for finding TEOs larger than
expectation. These TEOs may be locked in resonance with the
orbit and require a different modeling approach (see section 2.3).

2.2. Weakly Non-linear TEOs: Mode
Coupling
Modes near resonances can non-linearly interact and
observationally, this can generate combination frequencies
in the form ofmfa ± nfb, withm and n being integers. Resonance

mode couplings have been observed and studied in free
oscillations for B-type pulsators (Degroote et al., 2009), δ Scuti
pulsators (Breger and Montgomery, 2014; Bowman et al., 2016)
as well as compact pulsators (Zong et al., 2016a,b) and other
types of variables. Theoretical studies include, e.g., Dziembowski
and Krolikowska (1985), Van Hoolst (1994), and Buchler et al.
(1997).

In the context of tidal oscillations, a striking feature
in the observed TEOs is that some of them are not
orbital harmonics. And the anharmonic frequencies can
pair up and sum to an orbital harmonic (fa + fb ≈

Nforb). This can be explained by the non-linear resonance
mode coupling.

When the tidally excited oscillations surpass the linear regime
and become weakly non-linear, the oscillation mode can suffer
from parametric instability (Schenk et al., 2002; Arras et al.,
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FIGURE 4 | Observed TEO phases (symbols) as a function of orbital harmonics (N) for five heartbeat binary systems. The theoretical phases in the adiabatic

approximation are indicated by vertical lines, with the azimuthal number m = 0, or ±2 labeled. Adopted from Guo et al. (2017a, 2020).

2003), which is the leading-order non-linear effect (Weinberg
et al., 2012). In the dominant three-mode resonance coupling
scenario (fA = fa + fb), the parent mode A is resonantly excited
by a linear dynamical tide (an orbital harmonic Nforb); and when
its amplitude exceeds the three-mode instability threshold, it can
transfer energy to two daughter modes (a, b). In Figure 5, we
show different mode coupling patterns. The upper left is the
aforementioned basic three-mode coupling. The mode-coupling
triplet (A, a, b) can also couple to other mode triplets, either by
sharing the parent (lower left) or sharing a daughter mode (upper
middle panel). Multiple mode-triplets can also couple together
(lower middle panel). In KIC 3230227, we find that two mode-
coupling triplets share one daughter mode. And the resonance
conditions for the two mode triplets are labeled in Figure 5:
fA(22) = fa(9.88)+ fb(12.12) and fB(26) = fd(13.88)+ fb(12.12),
where all frequencies are in units of the orbital frequency. In
KOI-54, it is found that the 91st orbital harmonic resonantly
excites an eigenmode very close to it, and this parent mode
has at least four pairs of daughter modes. Some of the pairs
even share daughters (O’Leary and Burkart, 2014). Furthermore,

third-order mode coupling is also evidenced (the rightmost panel
in Figure 5).

Observationally, these non-linear coupled TEOs can offer us
lots of information beyond the linear theory. Firstly, the selection
rules (relating the modes’ l and m, Dziembowski, 1982) in mode
coupling can help to identify the daughter modes (O’Leary
and Burkart, 2014; Guo, 2020). If we have a large number of
these mode triplets, since the linearly driven parent modes can
be identified from phases, we may be able to discern the g-
mode period spacings among the daughter modes and possibly
among the close-to-resonance parent modes. The asymptotic
period spacing pattern has been routinely found in self-excited
g-modes in γ Dor stars and SPB stars, but not in tidally excited
modes. Secondly, parent modes that suffer from mode-coupling
instability should be close to the eigenmode frequency (although
they do not necessarily have a larger amplitude than the daughter
modes). Together with the anharmonic daughter modes, these
mode frequencies provide a list of eigenmodes that can be
compared with stellar models. This kind of tidal asteroseismology
can thus be performed. After the preliminary effort by Burkart
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FIGURE 5 | The patterns of multi-mode coupling observed in TEOs. Capital letters (A,B,D) represent parent modes and lowercase letters (a,b, c,d) correspond to

daughter modes. The left four cases are second-order coupling and the right is a third-order coupling. For the upper middle pattern, we use the observed TEOs in

KIC3230227 and label the TEO frequencies (fA, fB, fa, fb, fd ) in units of the orbital frequency �orb.

et al. (2012), we are still waiting for its first concrete application
in a real star. Thirdly, the observed parent mode amplitude
can be compared to the mode-coupling threshold. This helps
to determine the nature of coupling. For KOI-54, O’Leary and
Burkart (2014) showed that five-mode coupling can decrease
the threshold amplitude of parametric instability (i.e., smaller
than three-mode coupling threshold). This explains the observed
parent-mode amplitude being much smaller than the three-
mode instability threshold. In fact, Weinberg et al. (2012)
showed that, if the parent mode couples to N daughter-mode
pairs, the threshold amplitude can decrease by a factor of
N. Fourthly, the mode coupling systems can have different
behavior (Wersinger et al., 1980; Wu and Goldreich, 2001),
depending on the frequency detuning (the difference between
the parent-mode frequency fA and the resonant linear tide at
Nforb ≈ fA, and also between the parent-mode frequency and
the daughter-mode frequency sum fa + fb) and the daughter-
mode damping rates. Guo (2020) showed that the observed
stable amplitudes/phases of the parent and daughter modes in
KIC3230227 indicate the five-mode-coupling system has settled
into an equilibrium state, and this agrees with the theoretical
mode damping rates. The mode-coupling systems can show limit

cycles (Moskalik, 1985) and observables such as cycle period
can help to constrain mode parameters (e.g., damping rates).
In ZZ Ceti (DAV) type pulsating white dwarfs, it is in fact
limit cycles that explain the observed outbursts in the light
curves (Luan and Goldreich, 2018). Non-linear mode coupling
is believed to be the dominant amplitude limitation mechanism
in many types of pulsators such as δ Scuti (Dziembowski and
Krolikowska, 1985; Dziembowski et al., 1988) and SPB stars
(Lee, 2012). The same limitation mechanism applies to the
tidally excited g modes. Unfortunately, relevant studies in this
direction are rare.

2.3. Resonance Locking
When the evolution of a mode frequency is in pace with that of
the forcing frequency (i.e., their time derivatives are the same),
the oscillation mode can be locked into resonance with the
orbit. This resonance locking phenomenon can have significant
consequences on the orbital evolution of not only stellar binaries,
but also satellites of gaseous giant planets (Fuller et al., 2016;
Lainey et al., 2020). In the context of heartbeat stars, it can have
several observational implications. Firstly, the mode in resonance
locking has a larger-than-expected amplitude (i.e., compared to
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the amplitude from the aforementioned statistical approach).
This has been demonstrated for the dominant oscillationmode in
the primary star of KIC 8164262 (Fuller et al., 2017; Hambleton
et al., 2018). The mode in resonance locking has an orbital
harmonic of N = 229 and is likely an m = 1 mode in this
misaligned binary. Cheng et al. (2020) found that the oscillation
at 53rd orbital harmonic is a possible candidate for resonance
locking in KIC 11494130. Resonance locking can significantly
enhance the tidal dissipation and orbital evolution (e.g., see
Figure 3 in Witte and Savonije, 1999b for a 10M⊙ + 1.4M⊙

binary). For KIC 8164262, Fuller et al. (2017) estimated that
the tidal quality factor Q′ is reduced from ≈ 2 × 107 to
≈ 5 × 104 due to the mode in resonance locking. Secondly,
it remains to be seen observationally whether the TEOs in
resonance locking suffer more from the (weakly) non-linear
mode coupling and strong non-linear damping. In fact, the
dominant TEO in KOI-54 at 91 times of orbital frequency
has multiple daughter pairs, although the resonance-locking
nature of this l = 2,m = 0 mode is still under debate. An
examination of the resonantly-locked TEO amplitude and phase
is desirable. Resonance locking depends on the evolutionary
speed of the oscillation mode due to stellar evolution, and thus
it is sensitive to the stellar age. A study of the resonance-locking
condition spanning from ZAMS to TAMS, and for different
orbital parameters would be very useful. The orbital harmonic N
of a resonantly locked mode as a limited range and a predictable
amplitude, allow for inference about whether resonance locking
is occurring (Fuller and Lai, 2012; Burkart et al., 2014; Fuller,
2017).

3. CIRCULAR BINARIES WITH TIDALLY
PERTURBED MODES

In the circularized and synchronized close binaries, tides do
not dynamically excite oscillation modes but rather perturb
the propagation cavity and pulsation alignment. The effects of
equilibrium tides on stellar oscillations include:

(a) perturbed eigenfrequencies (tidal splitting):
The study of oscillations of tidally distorted polytropes can

date back to early work by Chandrasekhar (1969). Other works
using polytrope models include Saio (1981), Horedt (2004),
Reyniers and Smeyers (2003), and also Roxburgh (unpublished).
These works use the perturbative method and concentrate on
the perturbing effect on eigenfrequencies. Preece et al. (2019)
implemented a different method to calculate the oscillation
frequencies of a tidally distorted sub-dwarf B star. It involves
performing the surface-averaging of local oscillation frequencies
calculated from the local density profile.

Observational work includes Balona (2018), in which he
applied the above perturbative theory to KIC 41427686. Tidally
perturbed oscillations have been found in U Gru (Bowman
et al., 2019b), V453 Cyg (Southworth et al., 2020), VV Ori
(Southworth et al., 2021), and RS Cha (Steindl et al., 2021).

6Although the method is valid, this system is found to be an eccentric binary with
TEOs and the application is thus questionable.

These are mostly close, nearly circular and synchronous, Algol-
like binary systems with self-excited oscillations. In addition,
tidally perturbed gravity modes (tidal splittings) have been found
in the SPB star π5 Orionis (Jerzykiewicz et al., 2020), and this
3.7-day-binary also shows ellipsoidal variations7.

(b) perturbed eigenfunctions and pulsation alignment.
Recently, tidally tilted binaries have been found which show

modulated oscillation amplitude and phase (similar to the
oblique roAp pulsators, Kurtz, 1982). The pulsation axis is almost
aligned with the tidal axis, and thus pulsation frequencies have
side-lobes separated by the orbital frequencies. The first system
HD74423, was found by Handler et al. (2020) and was termed
a “single-sided pulsator.” Subsequent discoveries include CO
Cam by Kurtz et al. (2020) and TIC 63328020 by Rappaport
et al. (2021). Fuller et al. (2020) used the more general operator-
perturbation method in Dahlen and Tromp (1998) and modeled
the stellar response to the static tides by decomposing it into
free-oscillation eigenfunctions. Thus, they obtained not only
tidally perturbed eigenfrequencies, but also eigenfunctions. It is
found that modes can be trapped at the pole, equator, or some
intermediate latitude. The amplitude/phase modulation can be
modeled and thus be used to as a mode identification method.
Springer and Shaviv (2013) studied the propagation and damping
of high-frequency acoustic waves in a Roche-lobe filling star.

The above tidal perturbation effect due to equilibrium tide
should also work in the case of eccentric orbits, maybe in a
different fashion since the tidal deformation is quite different
at different orbital phases. In fact, in the eccentric binary KIC
4544587 (Hambleton et al., 2013), in addition to the orbital
harmonic g-modes excited by the dynamical tide, p-modes
separated by orbital frequency are also present. These modes are
interpreted as tidally perturbed p modes. It would be interesting
to re-examine this system and study the equilibrium tidal effect
on the self-excited oscillations.

4. OSCILLATING CLOSE BINARIES WITH
MASS TRANSFER

4.1. Mass-Accreting Pulsators
In the strong-tide regime when a star fills its Roche lobe,
tides induce mass transfer. Depending on the adjustment of
the stellar radius and the Roche-lobe radius, the mass transfer
can be in the form of stable or unstable Roche-lobe overflow
(RLOF) (Vanbeveren and De Loore, 1994; Soberman et al.,
1997). Mass transfer affects the evolution of the binary orbit
(Dosopoulou and Kalogera, 2016a,b). But the asteroseismic
consequences of accretion have not been studied. How does the
mixing process modify the excitation of heat-driven pulsations?
The κ-mechanism excitation occurs at the near-surface layer
where the opacity due to the hydrogen/helium or iron-group
elements ionization zones have a local maximum (Unno et al.,
1989, chapter 5). In addition, another necessary condition
for the driving is that the local thermal timescale has to be
comparable to the oscillation period (Pamyatnykh, 1999). Even

7Some of these systemsmay be slightly out of synchronization, and dynamical tides
can also be viable in asynchronous rotating stars in circular orbits.
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without material mixing, the accretion may drive the star out
of thermal equilibrium, and this may also change the geometric
depth of the ionization zone and thus the pulsation excitation
and frequencies. If mixing (e.g., thermohaline mixing when a
negative chemical composition gradient is present) does happen
(Stancliffe and Glebbeek, 2008), the change of composition also
needs to be taken into account.

Observationally, many mass-accreting stars do show
pulsations. The Oscillating Algol (oEA) systems are a class of δ

Scuti/γ Dor pulsators in Algol-type binaries with mass accretion
(Mkrtichian et al., 2004, 2020). The companion is usually a
low-mass star filling or nearly-filling its Roche lobe, depending
on whether the mass transfer process is finished or not. To
name a few, AS Eri (Mkrtichian et al., 2004), KIC 4739791 (Lee
et al., 2016), KIC 8553788 (Liakos, 2018), V392 Orionis (Hong
et al., 2019), KIC 10736223 (Cheng et al., 2020). Guo and Li
(2019) found the period spacing pattern of dipole g modes in
mass-accreting γ Dor star in KIC 9592855. A comparison with
theoretical g-mode period spacings suggests that the mass of this
primary star is lower than previously reported. Streamer et al.
(2018) did detailed binary star evolution modeling and calculate
the pulsation properties of the mass-accreting δ Scuti primary
(≈ 2.2M⊙) in TT Hor. They managed to match the observed
oscillation frequencies and found a likely evolutionary history
for the δ Scuti pulsator. It was initially a 1.3M⊙ star and accreted
about 0.9M⊙ from the companion. Accretion-driven variability
in oEA binaries has been studied (Mkrtichian et al., 2018) and
the Fourier spectrum of accreting δ Scuti pulsators can change
during the outburst. Although some of these variabilities may
be attributed to the variation of mass transfer rate, the pulsation
changes also contribute to the variability. A significant number of
Agol-type eclipsing binaries have δ Scuti pulsating components
and it seems that many of them show very high-frequency
p-modes (∼ 60 d−1), which is a signature of youth and probably
the result of rejuvenation from RLOF (Dray and Tout, 2007).

Previous works on how mass-transfer modifies stellar
oscillations are scarce. Note that numerous oscillations of mass-
accreting white dwarfs (WD) in Cataclysmic Variables (CVs)
have been discovered (Mukadam et al., 2007, 2011). Arras et al.
(2006) studied the g-mode pulsational instabilities of accreting
WDs in CVs. He found that an envelope of solar-like composition
(accreted material) on top of the pure-hydrogen layer of the WD
can change the edge of the instability strip significantly. During
the accretion, outbursts can heat the WD, bringing it out of
the instability strip. Similar work to the pulsational instability of
other types of opacity-driven pulsators would be interesting.

4.2. Post-mass Transfer Pulsating Binaries
Post-mass transfer binaries with a δ Scuti pulsating component
have been discovered, including KIC 10661783 (Southworth
et al., 2011; Lehmann et al., 2013), KIC 8262223 (Guo et al.,
2017c), and the aforementioned TIC 63328020 (Rappaport et al.,
2021). The previous-mass-gainer δ Scuti star in KIC 8262223
pulsates at about 60 d−1, suggesting that the system only just
finished the mass transfer, i.e., the effect of rejuvenation is still
present. In contrast, KIC 10661783 pulsates at much lower
frequencies (15 d−1). This is likely due to the fact that it has

finished the mass transfer long ago and the δ Scuti pulsator
is already evolved. Similarly, post-mass transfer γ Dor and
SPB-type pulsating binaries have also been identified (Matson
et al., 2015; Guo et al., 2017b). It is quite clear that δ Scuti
and γ Dor type pulsations are not suppressed in close binaries.
This is in contrast with red giants in binaries, in which solar-
like oscillations seem to be suppressed by binarity, probably
due to the enhanced magnetic activity. The majority of the
aforementioned binary can be formed in the formation channel
of EL CVn binaries8 (Maxted et al., 2013, 2014). The formation
involves the evolution of two low-mass stars with stable RLOF
andmass reversal (Chen et al., 2017). In Figure 6, we show typical
evolutionary tracks of an EL CVn type binary. Staring with two
low-mass stars (M1 = 1.35,M2 = 1.15M⊙), the mass gainer
can evolve to a δ Scuti/γ Dor pulsator (M = 1.72M⊙) or even
an SPB star with slightly changed initial conditions. The mass
donor can become a pre-ELM WD (extremely low-mass white
dwarf precursor) pulsator (M . 0.2M⊙) with p, or g-mode
pulsations (Maxted et al., 2013; Gianninas et al., 2016; Istrate
et al., 2016), and possibly later on the WD cooling track, become
a g-mode pulsating helium WD. These five types of post-mass
transfer pulsators have been marked in Figure 6 as ellipses.

Post-mass transfer RR Lyrae and Cepheid pulsators have
been found by Pietrzyński et al. (2012) and Pilecki et al.
(2017), respectively. Gautschy and Saio (2017) studied the
binary evolution channel to form anomalous Cepheids via RLOF
and merger-like evolution. Similar work by Karczmarek et al.
(2017) found stars crossing the classical instability strip of RR
Lyrae and Cepheids via the binary channel. The formation
of recently-discovered Blue Large-Amplitude Pulsators (BLAP)
also involves binary evolution with mass transfer (Pietrukowicz
et al., 2017). Recently, Byrne and Jeffery (2020) studied the non-
adiabatic pulsational properties by using the post-mass-transfer
stellar models. We also know sub-dwarf B-stars (sdB) and blue
stragglers can be formed by mass-transfer or merger (Han et al.,
2002, 2003). The list of post-mass transfer pulsators can go
on and on. Binary channels can generate all kinds of exotic
binary systems (de Loore and Doom, 1992; Hurley et al., 2002;
Eggleton, 2006). It can also generate new types of pulsating stars
and also contaminate the existing pulsators (Jeffery and Saio,
2016). Pulsational analysis of post-mass transfer systems is still
the frontier of asteroseismology, and it holds great promise to
improve our understanding on stellar structure and evolution.

5. DISCUSSION AND FUTURE PROSPECTS

Detailed analysis of existing Kepler HBs needs to be done on
a one-by-one basis. There are also tidal oscillations in binaries
that are not identified yet in Kepler data. Gaulme and Guzik
(2019) identified KIC 11572363 as an HB with TEOs. They
also find some other “tidal pulsators,” and most of them have
circular orbits with self-excited modes, probably perturbed by
tides. Sekaran et al. (2020) compiled 95 g-mode pulsators in
eclipsing binaries. The sample may contain tidally perturbed

8EL CVn binary is a type of binary consisting of an F-,A-type dwarf and a low-mass
helium white dwarf precursor.
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FIGURE 6 | Typical evolutionary tracks for the formation an EL CVn type binary via stable RLOF mass transfer. This binary channel can generate 5 type of pulsating

stars: Slowly Pulsating B-stars (SPB), δ Scuti stars (indicated by the red instability strip edges), γ Dor pulsators (green ellipses), Pre-ELM white dwarf, and He white

dwarf pulsator (purple ellipses).

modes or tidally excited modes. More tidally excited or perturbed
oscillations can be obtained from the on-going surveys such as
TESS (Ricker et al., 2015), KELT (Pepper et al., 2007), etc.

Willems and Aerts (2002) modeled the radial velocity (RV)
variation from tides in an eccentric binary HD177863 with
a B-type star component. Arras et al. (2012) predicted the
tidally induced RV amplitude in exoplanet hosts. For heartbeat
binaries, it was already noted by Welsh et al. (2011) that the
radial velocity variations 1vr in KOI-54 show significant non-
Gaussian RV residuals after removing the Keplerian orbit. The
RV variations due to the equilibrium tide and dynamical tide
can be calculated and compared with observations (Bunting
and Terquem, 2021). Massive stars can show periastron
activities, including non-Keplerian RV variations and line-profile
variations (Koenigsberger et al., 2012; Richardson et al., 2017;
Koenigsberger and Schmutz, 2020). It is worth a modeling effort
although other effects (e.g., stellar wind and magnetic field) are
also important in these hot stars. Other types of observation
can also reveal the signature of tides, e.g., line profile variations

from high-resolution spectroscopy, and spectro-polarimetric
observations. In particular, multi-color observations of stellar
oscillations are going to gain importance as more space surveys
are underway.

The potential of tidal asteroseismology in constraining stellar
parameters has not been exploited yet. Fuller et al. (2017)
experimented with KIC 8164262 and found small amounts
of convective core overshoot and diffusive mixing can yield
better agreement with observed TEO amplitude. The convective
boundary criterion adopted can also be important (Chernov,
2017). A detailed analysis would involve scanning the largemulti-
dimensional parameter space. Actually, Burkart et al. (2012) did
preliminary asteroseismic modeling of the TEOs in KOI-54 by
varying the stellar masses and radii, assuming fixed metallicity
and the rotation period. They found that the TEO amplitude
sensitively depends on the stellar models, and to match with
observations requires a fined-tuned degree of resonance which
is very difficult to capture in a grid of stellar models. Even a small
difference in stellar models can significantly change the degree

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 11 May 2021 | Volume 8 | Article 663026

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Guo Tides and Oscillations

TABLE 1 | Heartbeat binaries with Tidally Excited Oscillations.

Name Porb(d) i Teff TEO TEO Remark

forb(d
−1) e logg harmonic amplitude

ω M(M⊙) (N = f/forb) (mmag)

R(R⊙)

KIC 8164262 87.45717 65◦ 6890/3500 K 229 10.1

0.01143417 0.886 3.9/– 241 0.353

84.79◦ 1.70, 0.36M⊙ 123 0.229

2.4, −R⊙ 158 0.152

124 0.151

132 0.133

194 0.123

128 0.118

317 0.095

129 0.083

125 0.069

137 0.068

114 0.064

264 0.056

22 0.056

KIC 5790807 79.996246 85.82◦ 6466 K 48 0.017 m = 2

0.01250 0.855 3.42 107 0.015 m = 2

155.6◦ 1.74, 0.44M⊙

KOI54 41.8050 5.5◦ 8500/8800 K

=KIC8112039 0.023921 0.8335 4.12/4.08 90 0.294 m = 0

36.7◦ 2.33, 2.39M⊙ 91 0.227 m = 0

Only A≥ 2µmag 2.20, 2.33R⊙ 44 0.0958

40 0.0826

72 0.0297

27 0.0013

53 0.0144

47 0.0134

39 0.0112

60 0.0068

37 0.0103

71 0.0110

75 0.0104

27 0.0084

43 0.0085

45 0.0088

36 0.0063

52 0.0071

33 0.0057

29 0.0044

48 0.0059

78 0.0051

49 0.0051

32 0.0047

57 0.0045

46 0.0043

31 0.0042

26 0.0041

(Continued)
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TABLE 1 | Continued

Name Porb(d) i Teff TEO TEO Remark

forb(d
−1) e logg harmonic amplitude

ω M(M⊙) (N = f/forb) (mmag)

R(R⊙)

42 0.0040

51 0.0040

55 0.0036

35 0.0034

50 0.0034

25 0.0030

38 0.0029

22 0.0028

34 0.0026

30 0.0025

24 0.0025

23 0.0021

127 0.0021

54 0.0020

Aharmonic:

22.419 0.00787

68.582 0.00490

63.076 0.00246

57.577 0.00157

25.846 0.00112

35.844 0.00090

60.419 0.00059

42.106 0.00066

59.969 0.00057

41.417 0.00041

49.589 0.00036

25.076 0.00030

24.844 0.00029

44.078 0.00029

93.197 0.00029

80.087 0.00021

72.088 0.00020

27.581 0.00020

ι Ori 29.13376 62.86◦ Red/Blue

0.034324 0.7452 31,18.3(103K) 23 0.92/0.97 m = 2

122.15◦ 3.89, 4.18 25 0.44/– m = 2

23.18,13.94M⊙ 27 0.66/0.78 m = 2

9.10, 4.94R⊙ 33 0.58/0.7 m = 2

θ1 Cru 24.5314 26.12◦

A3-A8 0.04076 0.707 4 0.1184

119.96◦ 7 0.1999

KIC 11494130 18.9554 79.2◦ 6600 K, 53 0.03 m = 0

0.052755 0.66 4.2

263◦ ∼1.4, ∼0.5M⊙

KIC 3749404 20.3063852 62◦ 8000/6900 K 21 0.0807

0.04924567 0.659 4.4/4.1 20 0.0670

123.2◦ 1.78, 1.32M⊙ 26 0.0374

1.98,1.20R⊙ 22 0.0491

(Continued)
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TABLE 1 | Continued

Name Porb(d) i Teff TEO TEO Remark

forb(d
−1) e logg harmonic amplitude

ω M(M⊙) (N = f/forb) (mmag)

R(R⊙)

19 0.0266

7 0.021

24 0.0347

23 0.0344

5 0.0121

17 0.0096

27 0.0091

MACHO 32.83 44.9◦ 8 3

80.7443.1718 0.0305 0.565 10 6

61.1◦ ∼ 30M⊙ 17 9

25 14

ζ 1 UMa 20.5351 44.66◦ 3 0.0394

A2,A2 0.048697 0.621 5 0.0140

114.5◦ ∼2.2, 2.2M⊙ 6 0.0181

8 0.0111

10 0.0101

KIC 3230227 7.0471062 73.42◦ 8000/8180 K 13.88 0.338

0.141902 0.60 4.10/4.23 21 0.194 m = 2

293.0◦ 1.84, 1.73M⊙ 15 0.198 m = 2

2.01,1.68R⊙ 17 0.177 m = 2

19 0.154 m = 2

12.12 0.192

18 0.124 m = 2

9.88 0.179

20 0.073 m = 2

13 0.085 m = 2

22 0.043 m = 2

12 0.069 m = 2

24.12 0.033

23 0.031 m = 2

26 0.024 m = 2

13 0.042 m = 2

31 0.016 m = 2

28 0.017 m = 2

16 0.027 m = 2

27 0.017 m = 2

10 0.036 m = 2

5 0.065 m = 2

14.13 0.025

40 0.010 m = 2

30 0.009 m = 2

16.13 0.014

11 0.018 m = 2

KIC8719324 10.2326979 73.54◦ 7,750 K 26 0.64472 m = 0

0.0977259 0.6 4.5 29 0.0789 m = 2

-17.1◦ –

–

(Continued)
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TABLE 1 | Continued

Name Porb(d) i Teff TEO TEO Remark

forb(d
−1) e logg harmonic amplitude

ω M(M⊙) (N = f/forb) (mmag)

R(R⊙)

KIC9016693 26.3680271 25.6◦ 7,262 K 24 0.19238 m = 0

0.0379247 0.596 –

108.4◦ ≈ 1.6

-

KIC 4142768 13.9958015 75.81◦ 7327/7383 K 9 0.995 m = 2

0.071449999 0.582 3.81/3.95 8 1.129 m = 2

328.2◦ 2.05, 2.05M⊙ 17 0.325 m = 2

2.96,2.51R⊙ 14 0.332 m = 2

13 0.304 m = 2

12 0.252 m = 2

10 0.251 m = 2

18 0.105 m = 2

20 0.096 m = 2

24 0.078 m = 2

KIC 5034333 6.9322800 49.88◦ 9,250 K 18 0.1760

0.1442527 0.58 4.5 13 0.1500

−17.1◦ − 20 0.1465

– 27 0.0878

19 0.0802

66 0.0723

4 0.0613

12 0.0602

14 Peg 5.30824 17.32◦ 8 0.040

A1V,A1V 0.18839 0.5333 17 0.041

310.9◦

KIC4248941 8.6445976 68.3◦ 6,750 K 5 0.48790 m = 2

0.1156792 0.423 4.5

-50.5◦

p Vel A 10.2437 32.72◦ 5 0.1346

F5 IV, F1 V 0.09762 0.3528 8 0.0458

169.4◦ 11 0.0562

18 0.0235

HD209295 3.10575 40-45◦ 7,750 K B, V (filter)

0.32198 0.352 4.3 8 18.3, 13.2

31.1◦ 1.84,0.6-1M⊙ 7 8.4, 6.6

– 3 7.0, 6.2

5 4.6, 3.9

9 4.5, 3.5

HD158013 8.21675 50.97◦ 7 0.0468

Am 0.12170 0.3327 9 0.2078

129.57◦ 18 0.0229

KIC 4544587 2.189 094 87.9◦ 8,600/7,750 K

0.456810 0.275 4.24/4.33 4 0.593

328.9◦ 1.98, 1.61M⊙ 3 0.520

1.76, 1.42R⊙ 97 0.134

10 0.116

8 0.106

(Continued)
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TABLE 1 | Continued

Name Porb(d) i Teff TEO TEO Remark

forb(d
−1) e logg harmonic amplitude

ω M(M⊙) (N = f/forb) (mmag)

R(R⊙)

9 0.093

QX Car 4.47948 34.77◦ 5 0.156

B2V, B2V 0.22324 0.2677 7 0.221

174.7◦ 10 0.131

12 0.137

V1294 Sco 5.6010 46.2◦ 7 1.14

O9IV,O9.7V 0.17854 0.2578

130.8◦

HD174884 3.65705 73.35◦ 13140,12044

K

8 0.120

0.27344 0.2939 3.89,4.26 13 0.111

51.31◦ 4.04,2.72M⊙ 3 0.091

3.77,2.04R⊙ 4 0.097

of resonance and thus the TEO amplitude. Their final adopted
models have Fourier spectra semi-quantitatively consistent with
the observations, although they also find that there are many
local minima which can produce comparably good fits. Other
factors also make tidal seismic modeling challenging, e.g., weak
non-linearity of TEOs can set in and detailed mode-coupling
calculations may involve many mode-coupling networks (Essick
and Weinberg, 2016; Yu et al., 2020).

Convective motion in the core can excite internal gravity
waves (Lecoanet and Quataert, 2013; Rogers et al., 2013;
Edelmann et al., 2019; Lecoanet et al., 2019). This has have
been observed as the low-frequency power excess of OB stars
by Bowman et al. (2019a, 2020) (Other interpretation also exists,
e.g., arising from the subsurface convection zone, Cantiello et al.,
2021). Similarly, tidally excited internal gravity/gravito-inertial
waves are also expected to be present in the observed Fourier
spectra. It would be interesting to do a similar study of the
low-frequency background of the Fourier spectrum and check
if there is evidence of tidal origin.

The Rossby (r) modes and inertial modes constitute the very
low-frequency part of the tidal response. Global r-modes have
been discovered (Van Reeth et al., 2016; Saio et al., 2018; Saio,
2019) in many single γ Dor stars, B-type stars, eclipsing binaries
including HBs, and white dwarfs in Cataclysmic Variables.
Although r-modes can be heat-driven, the observations seem
to favor a mechanical origin since most discoveries are related
to fast-rotating systems. Theoretically, tidally excited r-modes
can also be present in rotating early-type stars (e.g., see Witte
and Savonije, 1999b, Figure 2 for a 10M⊙ example), although
an observational confirmation is still awaiting. Recently, indirect
evidence of pure inertial modes in the convective core has been
discovered from their coupling effect with the dipole g-modes
in the radiative envelope of γ Dor stars (Ouazzani et al., 2020;
Saio et al., 2021). Observationally, this is inferred from the
unexpected dips in the g-mode period spacing pattern which
requires computations beyond the traditional approximation for
rotation. Pure inertial waves can be induced by tides, similar to

the inertial waves in the convective envelope of solar-type stars
(Ogilvie and Lin, 2007). Again, the confirmation of theory awaits
future observations.

In addition to the tidally excited oscillation, self-excited
oscillations may also affect the orbital evolution. In the “inverse-
tide” scenario (Fuller, 2021), angular momentum can be
transferred from the self-excited modes to the orbit, and this
may explain some of the very-slowly rotating convective cores
discovered in γ Dor binaries (Guo and Li, 2019; Li et al., 2020a).

Studies on the tidal perturbative effect on the mode properties
are still at an early stage, e.g., oscillations of tidally distorted
stars are generally limited to simplified stellar models. Also
some important factors have not been included. For example,
detailed calculations in Fuller et al. (2020) only considered the
effect of static tidal distortion on the mode eigenfrequencies
and eigenfunctions and ignored the effect of Coriolis force.
Close binaries with circular/synchronized orbits are easier to
follow up observationally. Their oscillation properties are only
studied on a one-by-one basis. Observationally, photometric and
spectroscopic surveys are starting to offer a large sample of binary
stars. The potential of these stars in constraining the tidal theory
is still yet to be fully exploited (Justesen andAlbrecht, 2021).With
a large sample of various of binaries with pulsations and better
theoretical understanding on mode properties, we may begin to
perform the binary population synthesis with stellar oscillations
included. The studies of stellar oscillations in binaries are, and
will continue, revolutionizing the field of stellar astrophysics.
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Pietrzyński, G., Thompson, I. B., Gieren, W., Graczyk, D., Stepień, K., Bono, G.,
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