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Interaction between Earth’s magnetotail and its inner magnetosphere plays an important
role in the transport of mass and energy in the ionosphere–magnetosphere coupled
system. A number of first-principles models are devoted to understanding the associated
dynamics. However, running these models, including both magnetohydrodynamic models
and kinetic drift models, can be computationally expensive when self-consistency and high
spatial resolution are required. In this study, we exploit an approach of building a parallel
statistical model, based on the long short-term memory (LSTM) type of recurrent neural
network, to forecast the results of a first-principles model, called the Rice Convection
Model (RCM). The RCM is used to simulate the transient injection events, in which the flux-
tube entropy parameter, dawn-to-dusk electric field component, and cumulative magnetic
flux transport are calculated in the central plasma sheet. These key parameters are then
used as initial inputs for training the LSTM. Using the trained LSTMmultivariate parameters,
we are able to forecast the plasma sheet parameters beyond the training time for several
tens of minutes that are found to be consistent with the subsequent RCM simulation
results. Our tests indicate that the recurrent neural network technique can be efficiently
used for forecasting numerical simulations of magnetospheric models. The potential to
apply this approach to other models is also discussed.
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KEY POINTS

1. Simulation results of the RCM (a physics-based model) are used as inputs for training the LSTM-
based RNN model for the forecast of the longer duration.

2. The approach is applied to multiple simulations of idealized low-entropy bubble injection events.
3. There is a great consistency between the LSTM-based forecast and the RCM results beyond the

training time.

INTRODUCTION

Data in Earth’s magnetosphere are less available than in other regions (e.g., the ionosphere, the
lower atmosphere, and ground-based observations of the upper atmosphere) based on their
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spatial and temporal continuity. Therefore, for developing a
machine learning model, the output from a physics-based
model can serve as an input asset due to the continuous
temporal/spatial availability of their outputs. Besides, it is
always good to train a machine learning model using a
known and stable environment (e.g., an existing model in
our case). This allows the machine learning model to learn
the time series quickly and understand the underlying
relationship among the time series of several physics-based
models’ output parameters.

Previous works have adapted artificial neural networks
(ANNs) to study space weather. For example, Koon and
Gorney (1991) used Los Alamos National Laboratory
(LANL) particle data for the prediction of daily averaged
electrons with an energy of >3 MeV. Stringer et al. (1996)
used ANNs on GOES-7 data for nowcasting 1-h
geosynchronous orbit electron flux at energies of 3–5 MeV.
The work of Stringer et al. (1996) was extended to one-day
forecast by Ukhorskiy et al. (2004) and Kitamura et al. (2011).
A relativistic electron flux at a geosynchronous
orbit––forecasting neural network (NN) model was
developed by Ling et al. (2010). They used historical
electron flux values and daily summed values of the
planetary Kp index over two neurons, and their neural
network model showed better prediction than the
Relativistic Electron Forecast Model (REFM) developed by
Baker et al. (1990). The NNs were also used on solar wind
inputs to predict geosynchronous electron distributions over
wide energy ranges and for a number of time resolutions
(Shin et al., 2016; Wei et al., 2018). Wiltberger et al. (2017)
used machine learning analysis of the
magnetosphere–ionosphere field-aligned current (FAC)
patterns and found out that the ratio of Region 1 (R1) to
Region 2 (R2) current decreases as the simulation resolution
increases. This application of machine learning to the FAC
analysis helped establish a better agreement in the simulation
results than the Weimer 2005 model (Weimer, 2005). They
used a Python-based open source Scikit-Learn algorithm
package developed by Pedregosa et al. (2011), which
allows supervised and unsupervised machine learning
algorithms. Other space weather–related research that uses
machine learning techniques has also been reviewed by
Camporeale (2019). Recently, Pires de Lima et al. (2020)
used a convolution neural network (CNN) to build a
predictive model for the MeV electrons inside Earth’s
outer radiation belt. The model of Pires de Lima and Lin,
known as PreMevE 2.0, is a supervised machine learning
model, and it can forecast the onset of MeV electron events in
2 days. The Pires de Lima and Lin model uses electron data
observed by the particle instruments of RBSP spacecraft, one
geo-satellite of the Los Alamos National Laboratory (LANL),
and one NOAA Polar Operational Environmental Satellite
(POES) for the time duration from February 2013 to
August 2016.

A recurrent neural network (RNN) is a state-of-the-art
approach that combines several algorithms to enable them to
learn the time series of datasets (Connor et al., 1994; Graves et al.,

2013). However, due to the limited memory, the error becomes
larger when the longer (e.g., more than a hundred data time steps)
training datasets in the RNN are used. The wait function, which is
a statistical and analytical tool used to characterize input
parameters’ influence on the prediction, also becomes
erroneous with time (Graves and Schmidhuber, 2005). On the
other hand, a long short-term memory (LSTM)–based neural
network is a kind of recurrent neural network which can
memorize time series datasets with very long duration and
also forget them if some part of the dataset is not necessary.
The LSTM uses the sigmoid function for keeping things in its
memory and TANH functions if the LSTM states decide to
remove the memory after finding it useless for future time
series forecasting (Eck and Schmidhuber, 2002). The sigmoid
functions are best for modeling the physical processes that start
with the small beginnings but attain a high saturated value over
time as the specific models often fail to reproduce such processes
(Gers et al., 2000).

LSTM has already been used in robot control, speech
recognition, rhythm learning, music composition, grammar
learning, handwriting recognition, human language
recognition, sign language translation, and many more
scientific and nonscientific disciplines. The LSTM-based
models can be made scientific by sensibly choosing the
input datasets and the training and testing periods of time.
To do this, one has to first think about what are the most
suitable inputs and in what order they should be fed in the
LSTM algorithm to bring satisfactory outputs. Once the inputs
and the training/testing periods are defined, the final LSTM
model can be fitted to the entire dataset. The magnetosphere is
a region where only sparse numbers of in situ measurements
exist so far. A machine learning model can prove them to be an
asset to better understand, analyze, and forecast the evolution
and dynamics of magnetosphere physics during different kinds
of space weather events or simulations. First-principles models
reflect purely physics-based laws, and such models are
generally represented by mathematical equations. They can
be effectively converted into a machine learning statistical
model by creating a multivariate time series of the variables
used in the mathematical equations of the parameters we are
going to model.

The phenomenon we will study in this article is the
earthward injection of plasma sheet bubbles. A plasma sheet
bubble has a lower flux-tube entropy parameter, PV5/3, than its
neighbors (Pontius and Wolf, 1990). Here, P is the plasma
pressure and V � ∫ds/B is the flux-tube volume per unit
magnetic flux. Dependent on their observational signatures,
they are also called earthward flow channels or bursty bulk
flows (BBFs) (Angelopoulos et al., 1992). They are found to be
associated with enhanced energetic particle flux near the
geosynchronous orbit (McIlwain 1972, 1974; Yang et al.,
2010a, Yang et al., 2010b; 2011 and references therein).
These earthward flows are associated with the dipolarized
northward magnetic field Bz, and they also lead to pulses of
the enhanced dawn-to-dusk electric field component Ey
(Nakamura et al., 2002; Runov et al., 2009; Liu et al., 2013;
Khotyaintsev et al., 2011; Birn et al., 2019). As a consequence,
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the magnetic flux transport is earthward with a positive Ey.
Here, the cumulative magnetic flux transport (CMFT) is
defined (Birn et al., 2019) as follows:

ϕ � ∫t

0
Ey dt. (1)

The Rice Convection Model (RCM) is a first-principles
physics-based model of the inner magnetosphere and the
plasma sheet which can simulate drifts of different isotropic
particles using the many-fluid formalism (Toffoletto et al.,
2003 and references therein). It has been widely used to
simulate the bubble injections and flow channels associated
with substorm activities (Zhang et al., 2008; Yang et al., 2011;
Lemon et al., 2004). Although the computational speed has been
greatly improved by using Message Passing Interface (MPI)
parallel programming in the RCM and the coupled MHD
code (Yang et al., 2019; Silin et al., 2013), it is still
computation-heavy. On the other hand, LSTM-based RNN
models learn from the time series and multivariate inputs, and
the underlying relationship between different variables can make
the LSTM learn the relative simultaneous changes in the different
input variables with time and it boosts the LSTM forecast
capabilities. Therefore, combining the RCM with the LSTM
technique can be a nice attempt at converting a first-principles
physics-based model into a statistical model that abides by
scientific laws used in the RCM.

In the next section, we will discuss the methodology, the
boundary condition in the RCM, and our RNN modeling
approach. In the third section, we will validate RNN results
by comparing them with the RCM outputs. A detailed error
analysis is discussed in the “LSTM Forecast Error Analysis”
section for all the three runs by dividing the entire simulation
region into four sectors. The last section will conclude the
presented study and discuss our future plans for developing
the statistical model using the well-established
magnetospheric models.

METHODOLOGY AND MODEL SETUP

Setup of RCM Simulations
In this study, we performed three different RCM runs. The initial
conditions are set the same way as in Yang et al. (2011), in which
the plasma distribution and the magnetic field configuration are
specified according to empirical models driven by idealized solar
wind parameters. In all the RCM runs used in this study, the solar
wind condition is assumed to be steady; IMF Bz is −5 nT and Bx
and By are assumed to be zero. The solar wind velocity Vx �
−400 km/s, and the other components are assumed to be zero.
The solar wind proton number density is 5 cm−3, and the solar
dynamic pressure is 1.34 nPa. The IRI-90 (International
Reference Ionosphere) empirical ionospheric model plus
conductance enhancement due to the electron precipitation is
used to calculate the ionospheric conductance. An ellipse is set in
the equatorial plane as the outer boundary of the RCM simulation
region. The total potential drop across the RCM boundary is set
to 30 kV (Yang et al., 2015; Yang et al., 2016).

Boundary Conditions for a Single Bubble Injection
A bubble is launched from the tailward boundary centered at
X � −18.0 Re and Y � 0 Re. The entropy parameter PV5/3 is
uniformly reduced to 2% in 10 min between 23.5 and 0.5 h
MLT. The magnetic local time noon 12 MLT corresponds to
Φ � 0 radians; 18 MLT, 0 MLT, and 6 MLT correspond to Φ �
π/2, π, and 1.5π radians, respectively. The
boundary condition for the flux-tube content ηes is written
as follows:

ηes(λs) �
⎧⎪⎨⎪⎩ ηgs(λs), (ΦE <Φ or ΦW >Φ,

and 1≤T ≤ 10) 0.02 ηgs(λs),
ηgs(λs),

(ΦW ≤Φ≤ΦE and 1≤T ≤ 10)
(T ≥ 10) .

(2)

Here, ηgs is the plasma flux-tube content in the initial
(background) condition; the single bubble simulation starts at
zero minutes, and we do not include the growth phase in our run;
and λs is the energy invariant (λs � ESV2/3, and ES is the particle

FIGURE 1 | Scheme for RNN-based LSTM modeling of cumulative
magnetic flux (CMFT) ϕ in Wb/Re; dawn-to-dusk electric field Ey in mV/m; and
entropy parameter PV5/3 in nPa [Re/nT]

5/3 using the first 0–30 min of the RCM
simulation as inputs.
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kinetic energy). The “T” in Eq. 2 is the simulation solution time in
minutes. The westward boundary of the bubble ΦW � 11.5/12 π,
and the eastward boundary of the bubble ΦE � 12.5/12 π.

Boundary Conditions for a Single Flow Channel
In this run, the depletion in PV5/3 is sustained until T � 59 min.
The flow channel is centered at midnight with a width of 0.5 h in

FIGURE 2 | Single bubble run at T � 8 min; (A) entropy parameter PV5/3 in nPa [Re/nT]
5/3; (B) dawn-to-dusk component of the electric field Ey in mV/m; (C)BZ in nT;

and (D) cumulative magnetic flux transport ϕ in Wb/Re. X and Y are in Earth’s radii (Re) units. The Sun is to the left.

FIGURE 3 | Single bubble run at T � 30 min; (A) entropy parameter PV5/3 in nPa [Re/nT]
5/3; (B) dawn-to-dusk component of the electric field Ey in mV/m; (C) BZ in

nT; and (D) cumulative magnetic flux transport ϕ in Wb/Re.
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local time, that is, from ΦW � 11.75/12 π toΦE � 12.25/12 π. The
boundary condition for the flux-tube content ηes is written as
follows:

ηes(λs) �
⎧⎪⎨⎪⎩

ηgs(λs), (ΦE <Φ or ΦW >Φ, and T ≤ 1)
0.3ηgs(λs),
ηgs(λs),

(ΦW ≤Φ≤ΦE , 1≤T ≤ 59)
(T ≥ 59)

.

(3)

Boundary Conditions for Three Flow Channels
Out of the three flows, one flow is centered at midnight with a
width of 0.5 h in local time, that is, fromΦW � 11.75/12 π toΦE �
12.25/12 π, and the other two are atΦW � 7/9 π toΦE � 5/6 π and
ΦW � 7/6 π to ΦE � 11/9 π. The flux-tube content ηes is like that
in Eq. 3.

We run the RCM simulation for 60 min. Out of several
output parameters, we have used the entropy parameter,
dawn-to-dusk electric field component, and cumulative
magnetic flux for the presented LSTM modeling of the three
plasma sheet parameters. The 1-h RCM simulations output
these parameters every minute.

LSTM–RNN–Based Modeling
We use Python’s Keras (https://keras.io/) deep learning library to
prepare and fit the LSTM forecast based on the RCM’s outputs.
To train the LSTM, 50 neurons are used in the first hidden layer
and one neuron is used for the output layer. After several
experiments, we found that 30 training epochs and 72 batch
sizes are good enough for the internal state of our LSTM model.
We have developed three independent LSTM models for PV5/3,
Ey, and cumulative magnetic flux ϕ. We cannot model the
magnetic field in the RCM-MHD code using LSTM, as for
now, it is hard to include additional constraint to the LSTM
to ensure the divergence-free nature of the magnetic field. On the
other hand, it is challenging to include some additional
constraints in the LSTM to make it satisfy the MHD force
balance equation for Bz and Vx. Due to these issues, we
decided to model only PV5/3, Ey, and ϕ. We use simulation
time for indexing the time series data, and we use the
multivariate LSTM to train the RCM boundary
condition–dependent machine learning model about the time
series and the underlying relationship of the different input
parameters used in our algorithm. All RCM and LSTM
variables in the following equations are in two dimensions
(i.e., in X and Y coordinates, which are in Re units).

PV
5
3 LSTM � f (time, PV

5
3 RCM, BRCM

Z , ϕRCM, ERCM
y , VRCM

x ), (4)

ELSTM
y � f (time, ERCM

y , VRCM
x , BRCM

Z , PV
5
3 RCM, ϕRCM), (5)

ϕLSTM � f (time, ϕRCM, ERCM
y , VRCM

x , PV
5
3 RCM, BRCM

Z ). (6)

The above input datasets are the best combination of the input
variables in terms of their order in the given function, as we get
the minimal root mean square error (RMSE) and minimal
training and test loss between the RCM and the LSTM for
these input combinations. From the left to the right in the

RHS of each equation, the weight of the variable gradually
decreases.

Figure 1 shows the scheme of our LSTM model. This scheme
demonstrates that we have 61 steps (0–60 min) of RCM
simulation, out of which we use 0–30 min of simulation to
train three independent multivariate time series LSTM models.
Using these models, we forecast 31–60 min of the RCM
simulation, and then we compare the LSTM forecast with the

FIGURE 4 | Single-point comparison of the RCM single bubble runwith the
LSTM-based RNN model at X � −9.9 and Y � −1.1; (A) PV5/3 in nPa [Re/nT]

5/3;
(B) Ey in mV/m; and (C) ϕ in Wb/Re.
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31–60 min of RCM simulation during three different runs. If
there is a good agreement between the LSTM forecast and the
RCM simulation for 31–60 min of the solution time, we fit the
same model for the entire data length of the time series, that is,
from 0 to 60 min of solution time. Using this LSTM model, we
have forecasted the entire series. As a final check after the
model fitting, we see if the final LSTM forecast is ±10% (in our
case) of the RCM simulation, in which case the LSTM forecast
meets our expectations, and we can forecast the entire RCM
runs’ data time series. Although the RCM simulation is in 2D
(X and Y both are in the unit of Earth radii–Re) coordinates, we
do not use the X and Y coordinates as an input parameter in
our LSTM model. The LSTM model for the presented three
parameters is represented by Eqs 4–6, and it is also presented
as a scheme diagram in Figure 1. The order of input
parameters for forecasting different inner magnetosphere
and plasma sheet variables will be according to their
modeling in Eqs 4–6.

Model Validation
In this section, we will use an example of the single bubble run to
demonstrate the consistency between the RCM simulation results
and the LSTM forecast at a given location.

Figure 2 shows the RCM simulation results at T � 8 min of
the single bubble event. Figure 2A shows a single low-
entropy bubble centered at the midnight region of the
plasma sheet. At the same time, Ey is significantly
enhanced (Figure 2B), which is around 1 mV/m at the
edge of the bubble, and it has a peak value of >2 mV/m
inside the bubble. The northward component of the magnetic
field Bz is enhanced to ∼20 nT (Figure 2C) at the leading head
of the bubble, and the cumulative magnetic flux ϕ
(Figure 2D) shows enhancement with respect to the
surrounding background.

Figure 3 shows the RCM simulation of the same event at the
solution time T � 30 min, where PV5/3 on the tailward boundary
is already recovered to the value prior to the injection. PV5/3

increases tailward. The most significant enhancement is ϕ, and
this enhancement is aligned with the direction of the launch of the
bubble and its vicinity where the ϕ is increasing with time. In
summary, this single bubble simulation shows features of typical
injections, which can cause abrupt changes in the magnetotail
parameters.

Using Eqs 4, 5 and 6, we have developed three independent
LSTM-based RNN models for ϕ, Ey, and PV5/3. To perform this
action, we trained our LSTM RNN model with the first 30 min of

FIGURE 5 | Comparison of the RCM single bubble injection run (left) with the LSTM forecast (right). From top to bottom are PV5/3, Ey, and ϕ at T � 31 min.
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the RCM simulation. The trained LSTM is used to reproduce the
60-min single bubble injection. Now, we will compare the entire
60 min between the RCM and the LSTM results. Figure 4 shows
the comparison of the single bubble RCM simulation (blue line)
to the LSTM forecast (orange line) for the single point at X �
−9.9 Re and Y � −1.1 Re. A satisfactory agreement is obtained
between the model and the forecast for the ϕ (Figure 4C), which
demonstrates the LSTM caliber in learning from the multivariate
time series input data (which is the first 30 min of the RCM single
bubble simulation output in our case). Following Eq. 6, the LSTM
model for Ey learned the time series using the first 30 min of the
RCM simulation outputs in the order Ey followed by VX, BZ,
PV5/3, and ϕ, respectively. The variations in the RCM and the
LSTM only differ slightly. The entropy parameter PV5/3

(Figure 4A) obtained from the RCM and the LSTM is in
good agreement as well. This location was inside the bubble,
so it is reflecting the injection of the bubble for the first 20 min.
Minutes before the bubble arrives, PV5/3 increases; then, the
bubble arrival causes a sudden enhancement in the Ey and a
sharp reduction in the PV5/3. The CMFT ϕ with a little hump
between 15 and 20 min keeps on increasing. All these features are
consistent with typical features of bubble injection (Yang et al.,
2011). After this validation in Figure 4, in the next section, we will

compare the 2Dmaps of the RCM and the LSTM forecast at three
different solution times.

In general, CMFT shows a better match between the LSTM
and the RCM simulation; however, there are some tiny timescale
deviations between the LSTM and the RCM for Ey and PV5/3. In
all the solution times presented in this section, we see that the
CMFT is the only parameter that steadily grows along the bubble
propagation path with time. The LSTM-based algorithms have
minimal errors while learning the time series trends of the
parameters which start from a small or zero numerical value
and tend to achieve a high numerical value with time (Eck and
Schmidhuber, 2002).

RESULTS

In this section, we will compare the LSTM forecast with the RCM
single bubble simulation in the entire 2-D equatorial plane for all
three simulations, focusing on the latter 30 min.

Figure 5 shows the single bubble injection run for T � 31 min.
At this time, the bubble injection has already been completed in
the plasma sheet, although variations in PV5/3 (Figure 5A) and Ey
(Figure 5B) are still visible along the injection path. Figure 5C

FIGURE 6 | Similar to Figure 5, but for T � 41 min.
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shows a significant enhancement in the CMFT in yellow-red
color from X � −5 to X � −16 Re. The LSTMmodeling reproduces
the distribution of these three key parameters very well, even for
the small-scale fluctuations. In order to check the forecast and the
quality of prediction, we also compare the RCM and the LSTM
model at different solution times to check if the LSTM forecast is
updating and able to track the changes that are evolving in the
RCM simulation with time. Figures 6, 7 compare the two
modeling results, 11 and 21 min after the training solution
time, respectively. The LSTM forecasts reasonably resemble
the RCM simulation. It can be seen that the residual
fluctuations in the electric field Ey and the associated
structures in the CMFT ϕ can also be reproduced in the
LSTM model.

Furthermore, we would like to compare the LSTM forecast
with the RCM results at the end of the simulation time. The
LSTM model has used part of the RCM simulation as an
input; therefore, the LSTM forecast performance must be
checked beyond the 30 min training solution time and up to
the end of the RCM simulation. Comparison of the end
solution time of the single bubble RCM simulation to the
LSTM forecast will boost the confidence of the LSTM-based
RNN model for its further development and extensive use in
parallel to the RCM simulation. Similar to previous times, the

LSTM forecast is very consistent with the RCM results, as
shown in Figure 8.

Similar to the above case, we have applied the same approach
to predict the RCM simulation results for the single-flow-channel
run and the three-flow-channel run. Again, we have trained the
LSTM model for the first 30 min and forecasted the next 30 min.
Figures 9A–D and Figures 9E–H are similar to Figure 2 and
Figure 3. This figure compares the single flow channel and the
three flow channels at T � 7 min. In Figures 8A–D, the changes in
the modeled parameters appear at one point near the magnetic
midnight in the equatorial plane. However, for the three flow
channels (Figures 9E–H), the changes related to the launch of the
three flow channels are present at the three points, and it is
consistent in all four modeled parameters. This figure is also
useful as it is reproducing the RCM simulation for the two
different cases whose simulation time is within the boundary
condition for both the runs.

As discussed earlier, for the single bubble run, the LSTM and
the forecast have to be compared at different times for the single-
flow-channel and three-flow-channel runs. Figures 10, 11
compare the four RCM parameters as compared in Figures
5–8. But this time, we compared the PV5/3 at T � 32 min, Ey
at T � 41 min, and CMFT at T � 49 min. The inputs provided
within the simulation boundary conditions triggered LSTM

FIGURE 7 | Similar to Figure 5, but for T � 51 min.
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fast learning of the correlation between different parameters
and the degree and order of their mutual variance. We also
train the LSTM model a little beyond the boundary condition
of the LSTM, which allows the forget gate to classify the
frequency of spatial and temporal vanishing gradients
among the input parameters in the time series. LSTM
forecasts were fully replicating the changes in the modeled
parameters at and around the flow channel existence regions,
at the boundary layer and near the geosynchronous orbit. In all
the three simulation times and the runs presented in the study,
there is a good agreement between the RCM simulation and
the LSTM forecast for the three modeled parameters. These
comparative pieces of evidence indicate that the LSTM is a
strong data learning tool when it comes to learning large time
series multivariate data trends, in particular when the variables
in the data trends are related to each other by well-defined
physics. LSTM’s supervised learning algorithm makes it
capable of extracting the degree of underlying correlation
among many variables of a multiparameter data series
through clustering, dimensionality reduction, structured
prediction, and reinforcement learning.

LSTM FORECAST ERROR ANALYSIS

To check and quantify the error in the LSTMprediction of the RCM
simulations during three different runs, we have calculated the
correlation coefficient (Corr), which is used to study the statistical
relationship between two parameters: the mean absolute error
(MAE), which is an arithmetic average of the absolute error, and
the mean squared error or mean squared deviation (MSE), which is
the mean of the squares of the errors and is used for checking the
quality of a procedure or method to predict an observed/simulated
quantity (Chai and Draxler, 2014). The root mean square error
(RMSE) is widely used to measure the difference between the
predicted or estimated value, using a model or an estimator with
respect to the observed or simulated value. The RMSE is the square
root of the second sample moment of the difference between
predicated and observed/simulated values or the quadratic mean
of these differences (Chai andDraxler, 2014 and references therein).
We calculated the Corr, MAE, MSE, and RMSE for the 30–60 min
of the RCM simulation and the LSTM forecast all through the three
simulations presented. We have divided the space/time into four
sectors using the magnetic local time (MLT) range. The four sectors

FIGURE 8 | Similar to Figure 5, but for T � 60 min.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 6910009

Priyadarshi et al. LSTM Forecast for RCM Simulations

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


are magnetic dawn (03:00–09:00 MLT), magnetic noon (09:00–15:
00 MLT), magnetic dusk (15:00–21:00 MLT), and magnetic
midnight (21:00–03:00 MLT). Table 1 shows the calculated error
for the single bubble run. Similarly, Tables 2, 3 show the Corr,
MAE, MSE, and RMSE for the 30–60 min for the single-flow-
channel run and the three-flow-channel run.

The Corr for all the runs and for all the parameters is more
than 0.80, which indicates that the LSTM forecast is in a good
statistical coherence to the RSM simulations. The Corr for the
CMFT is comparatively high as it is overall positive, and it has an
increasing trend from a very low value, which makes it easier for
LSTM to learn and reproduce the variation trend as compared to
the Ey and PV5/3. The correlation coefficient is close to 1, which
also indicates the linear statistical relationship between the LSTM
forecast and the RCM simulation.

RMSE and MAE are two variables used to measure the
accuracy between the two continuous variables, and RMSE
and MAE can vary between 0 and ∞. The MAE uses the
absolute difference between the observation and prediction.
The numerical value of the MAE and the RMSE is considered
well for a prediction if it is close to zero. The MAE is highly
dependent on the magnitude of the two continuous variables for
which the MAE is calculated. The RMSE uses the quadratic
scoring rule, and it also measures the error. Both the MAE
and the RMSE measure the average model prediction error
regardless of considering the direction of prediction. The
RMSE and MAE are always in the unit of the predicted/
observed variable. If we compare the MAE and RMSE values
for Ey, PV

5/3, and ϕ, they seem to be in coherence with these three
plasma sheet parameters.

FIGURE 9 | Similar to Figure 2 or Figure 3, from A–D is for the single flow channel and E–H is for the three flow channels at T � 7 min.
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RMSE values are generally higher than those of the MAE
because the RMSE uses the squared errors before averaging;
therefore, it gives more weight to the higher value errors. It is
hard to see any trend in the RMSE and MAE for the three different
runs at the four MLT sectors that are discussed in the study;
however, it is noticeable that with the increased number of flow
channels, the RMSE, MSE, and MAE have increased significantly.
This enhancement indicates that with an increasing number of flow
channels, it becomes challenging for the LSTMmodel to forecast the
RCM simulation. It is because each flow channel or each bubble
influences the entire modeled region and when there is a greater
number of flow channels and bubbles, LSTM-based models need to
assess the influence due to all the flow channels, considering their
launch location and the duration they exist for. We have also used
the MSE, which is generally used to evaluate the quality of the
predictor or estimator. The MSE is in the squared unit of the
observed parameter, as it is the second moment of the errors.
The MSE shows the variance of the estimator or model and
shows the error as the square of the quantity being measured. In
all the cases and MLT sectors, the MSE is close to the square of the
RMSE, which is consistent with all the other error analyses in the
presented study.

CONCLUDING REMARKS AND SUMMARY

The presented LSTM method is applied to build a parallel
statistical model using a physics-based magnetospheric model
like the RCM. There are other kinds of models which rely on the
observation data from the satellite and/or coupled with the
ground-based observation. The LSTM-based models can be
applicable to both physics-based models and analytical models
dependent on the observational data.

The three case studies (i.e., single bubble, one flow channel,
and three flow channels) presented in this article reflect that just
after LSTM was trained with the initial simulation results from
the RCM LSTM model, it was able to accurately replicate the
60 min RCM simulations. All the three LSTMmodels were able to
forecast temporal and spatial variations in entropy parameter
PV5/3, dawn-to-dusk electric field Ey, and CMFT ϕ. The LSTM
forecast quality was very satisfactory from the beginning until the
end of the forecast. The performance of the LSTM model for the
near-Earth plasma sheet parameter forecast in this study
demonstrates that the LSTM is a powerful RNN tool that can
be applied to any time series scientific data to learn the underlying
relationship among many scientific parameters and to forecast

FIGURE 10 | From top to bottom are comparison of the RCM and LSTM forecasts during the single-flow-channel run for PV5/3 at T � 32 min, Ey at T � 41 min, and ϕ

at T � 49 min.
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any desired scientific parameters until the produced forecasts
fully abide by the scientific laws.

The main limitation of the LSTM models is their dependence
on the input data that come from real observation or a physics-
based model’s simulation. Besides this, if the LSTM model is
multivariate (as in our case), one must find the best sequence of
the input parameters in terms of the degree of their dependence
on the parameter to be predicted. On the other hand, once these
two discussed steps are accomplished, the LSTM multivariate
algorithm is powerful in learning the underlying trends among
the input variables. However, these LSTM models must still be
trained up to the boundary condition implementation in the
RCM simulation, in order to produce reasonable and reliable
forecasts. Beyond the RCM simulation’s boundary condition, the
LSTM models are great in producing similar variation trends to
the RCM simulations.

In both cases, LSTM will need a significant amount of the
model inputs. The first step before training the LSTM algorithm is
to logically choose the best inputs and their order, which
influence model outputs the most. It can be done in two ways.
First, if the physical parameters we are going to model can be
written in the form of mathematical equations, then we know on
what it depends the most, and we prepare the input order

accordingly. But, in case there are two or more input
parameters, we can use different combinations of their orders
and compare the root mean square error (RMSE) of all the
outputs. The input combination with the least RMSE is the
best model. For training the LSTM algorithm in parallel to an
existing model, it is challenging and crucial to choose the
appropriate training and test duration. The modeler should
make sure that all the boundary conditions must fall within
the training duration for the model, and they should also train the
model by allowing it to learn the underlying relationship between
the different inputs once all the boundary conditions are defined.
In the presented case studies, all the boundary conditions are
defined within the first quarter of simulation time, and the LSTM
model is trained for the initial 30 min. Now, at this point, we can
test the model by splitting the entire dataset into the train and test
periods, which means we train the LSTM model with part of the
data and then forecast the remaining time series, which is
compared to the input data beyond the training time limit. If
there is a good match in the forecast and observation, we can fit
this model for the entire dataset, and the last LSTM product
would be the final model, which can forecast the entire data series.

Here, the readers should keep in mind that the presented
LSTM approach is to study an RCM simulation and not the

FIGURE 11 | Similar to Figure 10, but for the three-flow-channel run.
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general trend of variation of the inner magnetosphere and/or
plasma sheet parameters. Therefore, for a distinct kind of RCM
simulation (or other physics-based models), we must develop the
distinct input datasets and fit the LSTM model over it. For the
analytical model, it can prove itself to be more superior by
learning the long-term data trend during the different kinds of

solar activity, and it can be developed to forecast a few years of the
data in a few easy steps. For example, there is a time delay in the
ionospheric response for dayside and nightside as when the
interplanetary magnetic field (IMF) turns from northward to
southward, the IMF is measured at the dayside (Tenfjord et al.,
2017). Therefore, if we have real-time solar wind data, LSTM can
be used to develop an alarm for the hazardous events before an
hour or so. The physics-based model and the analytical model
dependent on observations are costlier in terms of their
computational costs and the huge amount of time and resources
spent in developing and maintaining them. On the other hand, the
LSTM-based modeling algorithm is purely statistical and
nonscientific in general. But the LSTM can be made scientific by
training it to learn the underlying relationship of any existing
models’ inputs. Once we are sure that the LSTM outputs satisfy
the scientific conditions and the produced outputs are satisfactory to
our goals, it can be used as a parallel forecasting/nowcasting system
to any space weather or magnetospheric model.

Three RCM simulation (single bubble, single flow channel, and
three flow channels) runs’ 50% data are used to train a multivariate
LSTM model for the three plasma sheet parameters. The LSTM
forecast is tested within the boundary condition and beyond the
boundary condition of the 60 min simulation. For all the
simulation times, there was a good agreement between the
RCM simulation and LSTM forecast. All the major and minor
fluctuations in the RCM parameters were fully noticeable at all the
times and regions of the RCM simulation. The inner
magnetospheric data are limited, and it is hard to build a
statistical model using the available satellite data (e.g., THEMIS,
MMS, ERG, and Cluster II). On the other hand, the RCM is a well-
established physics-based model, and we can produce any type of

TABLE 1 | Error Analysis for Single Bubble injection.

Single bubble event: magnetic dawn (03:00–09:00 MLT)

Parameter Corr [−1 to 1] MAE [0 to ‘] MSE [0 to ‘] RMSE [0 to ‘]

Ey 0.8500 0.5200 0.3137 0.5600
PV5/3 0.8300 0.0065 0.0005 0.0077
Φ 0.8900 6.8345 73.6009 8.5791

Single bubble event: magnetic noon (09:00–15:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8300 0.4700 0.2615 0.5100
PV5/3 0.8200 0.0028 0.0002 0.0032
Φ 0.8500 7.4265 86.7133 9.3120

Single bubble event: magnetic dusk (15:00–21:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8500 0.4100 0.2075 0.4500
PV5/3 0.8200 0.0057 0.0005 0.0075
Φ 0.8600 6.3853 71.7544 8.4708

Single bubble event: magnetic midnight (21:00–03:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8800 0.4900 0.2811 0.5300
PV5/3 0.8200 0.0123 0.0029 0.0171
Φ 0.8900 7.1538 70.9772 8.4248

TABLE 2 | Error Analysis for Single Flow Channel.

Single flow channel: magnetic dawn (03:00–09:00 MLT)

Parameter Corr MAE MSE RMSE

Ey 0.8300 0.3700 0.2116 0.4600
PV5/3 0.8600 0.0026 0.0014 0.0038
Φ 0.8700 6.9527 72.8786 8.5369

Single flow channel: magnetic noon (09:00–15:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8200 0.3500 0.1521 0.3900
PV5/3 0.8500 0.0021 0.0005 0.0024
Φ 0.8800 8.1437 91.1356 9.5465

Single flow channel: magnetic dusk (15:00–21:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8800 0.2200 0.0961 0.3100
PV5/3 0.8100 0.0029 0.0011 0.0034
Φ 0.8600 6.3572 68.8186 8.2957

Single flow channel: magnetic midnight (21:00–03:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8100 0.1900 0.0729 0.2700
PV5/3 0.8300 0.0024 0.0007 0.0027
Φ 0.8800 7.3645 67.5437 8.2185

TABLE 3 | Error Analysis for Three Flow Channel.

Three flow channel: magnetic dawn (03:00–09:00 MLT)

Parameter Corr MAE MSE RMSE

Ey 0.8000 0.2200 0.1189 0.3449
PV5/3 0.8500 0.00017 0.0004 0.0020
Φ 0.8800 19.2648 532.6864 23.0800

Three flow channel: magnetic noon (09:00–15:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8400 0.2300 0.0614 0.2478
PV5/3 0.8600 0.0058 0.0006 0.0078
Φ 0.8000 21.7847 648.7922 25.4714

Three flow channel: magnetic dusk (15:00–21:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8100 0.5800 0.4111 0.6412
PV5/3 0.8800 0.0017 0.0004 0.0022
Φ 0.8300 17.5739 477.6585 21.8554

Three flow channel: magnetic midnight (21:00–03:00 MLT)

Time Corr MAE MSE RMSE
Ey 0.8500 0.6900 0.6012 0.7754
PV5/3 0.8100 0.0029 0.0001 0.0035
Φ 0.8600 19.6746 484.1452 22.0033
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the run according to our need and concern. The RCM-simulated
results are stable for the deep learning–based statistical modeling,
and the input environment is well known. These merits of the
RCM simulation boundary conditions make them suitable inputs
for the LSTM-based RNN model of the inner magnetospheric
parameters. Here in this study, it is the very first time a
magnetospheric modeled output is being used in the recurrent
neural network for forecasting. We have used RCM single bubble,
single flow channel, and multiple flow channel runs for the initial
30-min simulation to train our LSTM model. We developed three
independent deep learning models for entropy parameter, dawn-
to-dusk electric field, and cumulative magnetic flux transport. We
have validated the LSTM model by comparing its single point’s
prediction time series with the RCM single bubble, one-flow-
channel, and three-flow-channel runs, the single-point time
series simulations. We found a great coherence in both the
models (RCM and LSTM). Later, we used 2D maps in the X
and Y coordinates to compare the LSTM forecast to the RCM
simulation at distinct solution times. In all the solution times, the
LSTM forecasts demonstrate a good agreement with the RCM
output for all three inner magnetospheric parameters modeled.

The CMFT comes out as the only parameter that steadily
grows along the bubble propagation path with time. The LSTM-
based algorithms are more appropriate for modeling such
parameters which start from a small numerical value and have
a tendency to achieve a high numerical value with time. Overall,
the LSTM predicted that all parameters are in good prediction
range as compared to the RCM simulations. The most significant
part of the presented modeling approach was that the prediction
efficiency did not compromise with time. The LSTM forecast’s

efficiency was very satisfactory within and beyond the boundary
condition run time. The forecasted parameters through the LSTM
were spatially evolving in the same way as in the RCM simulation,
and we are confident that the LSTM can be used to train and
predict different sophisticated runs of the inner magnetospheric
parameters in the future.
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