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The Naval Research Laboratory (NRL) Sami2 is Another Model of the Ionosphere (SAMI2)
and Sami3 is Also a Model of the Ionosphere (SAMI3) ionosphere/plasmasphere codes
have shown that thermosphere composition and winds significantly affect H+ outflows
from the topside ionosphere. In particular, O density inhibits upward diffusion of O+ from
the ionosphere F layer, especially during solar maximum conditions. In addition, winds
affect the quiet-time latitudinal extent of the F layer, affecting densities at mid-to-high
latitudes that are the source of plasmasphere refilling outflows. Evidence for these effects is
reviewed and prospects for forecasting these outflows are explored. Open questions for
future research are highlighted.
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1 INTRODUCTION

Light ions, H+ and He+, commonly flow upward from the topside ionosphere. At high latitudes,
these ions constitute the classical polar wind (Bauer and Frihagen, 1966; Dessler and Michel,
1966). At lower latitudes, these outflows fill the plasmasphere (Park, 1970; Gallagher and
Comfort, 2016). Because the polar wind and plasmasphere serve as a source and a sink,
respectively, for geoeffective energetic ions, thermal (non-energized, Maxwellian) outflows
are essential elements of space weather (Bortnik and Thorne, 2007; Millan and Thorne,
2007). Further, observations suggest significant day-to-day variability in thermosphere
composition (Krall et al., 2016a; Cai et al., 2020) and winds (McDonald et al., 2015). In this
brief review, we consider the effect of thermosphere composition and winds on refilling outflows.
Thermosphere dynamics and ionosphere outflows at polar latitudes, a much bigger subject, will
not be addressed.

Because the solar cycle so strongly affects thermosphere and exosphere composition, the
variation of cold H+ refilling outflows with the solar cycle, specifically with the F10.7 extreme
ultraviolet (EUV) index, is quite counter-intuitive. At high F10.7, when the ionosphere F layer
is relatively strong, observed plasmasphere refilling rates at geosynchronous altitudes are
relatively weak (Lawrence et al., 1999; Gallagher et al., 2021). As shown graphically in
Figure 1D, and described by Richards and Torr (1985), the limiting H+ outflow flux is
proportional to the supply of O+ ions and H atoms at outflow source height Z0

(700–1,100 km):

ϕ[cm−2s−1] � 2.85 × 10−11Tn[K]1/2nH[cm
−3]nO+[cm−3]HO+[cm], (1)

where Tn is the thermosphere temperature,HO+ is the O+ scale height, and the leading coefficient has
been updated from 2.50 to 2.85 based on a corresponding update to the H-O+ charge exchange
reaction rate. Previously, the H-O+ charge exchange reaction rate was based on data for the reverse
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reaction (Fehsenfeld and Ferguson, 1972) and the finding that the
ratio of the forward to reverse reaction rates is 9/8 (Hanson and
Ortenburger, 1961). However, recent analysis (Stancil et al., 1999)
and measurements (Waldrop et al., 2006; Joshi and Waldrop,
2019) suggest that this ratio is somewhat ( ≃ 14%) larger,
increasing the coefficient in the reaction rate, and in Eq. 1,
from 2.50 to 2.85.

Let us consider the factors in Eq. 1. Relative to densities at
solar minimum (low F10.7), nH at solar maximum is much lower
(Bishop et al., 2001; Bishop et al., 2004; Nossal et al., 2012; Qian
et al., 2018) while nO+ is only somewhat higher (this is at altitude
Z0, which increases with F10.7). These densities are shown in
Figure 1C, where high F10.7 is indicated by red curves. This basic
understanding of thermal ion outflows, particularly as expressed
in Eq. 1, compares well to simulations (Richards and Torr, 1985;
Krall and Huba, 2019a). However, we are not yet able to forecast
these outflows.

In addition, the ionosphere F layer that is the source of these
outflows is strongly affected by thermosphere winds (Rishbeth,
1998). Specifically, winds effect the degree to which the
ionosphere, which is most strongly generated near the sub-
solar point, is transported to the mid-to-high latitudes that
are the source of the plasmasphere. While numerical
simulations by Krall et al. (2014) demonstrate that
plasmasphere morphology and refilling rates are impacted
by thermosphere winds, these effects have yet to be directly
observed. As it stands, measured post-storm plasmasphere
refilling rates at any given height vary by as much as an
order of magnitude (Denton et al., 2012), Figure 1. These
variations are not yet fully explained.

This brief review is based on results from the Sami2 is Another
Model of the Ionosphere (SAMI2) and Sami3 is Also a Model
of the Ionosphere (SAMI3) ionosphere/plasmasphere codes
(Huba et al., 2000; Huba and Krall, 2013). SAMI3 simulates
the interaction between ionosphere and plasmasphere ion
populations and the thermosphere (Huba and Liu, 2020) and
magnetosphere (Huba et al., 2005; Huba and Sazykin, 2014).
SAMI2 solves the same equations as SAMI3, but in only a single
magnetic longitude. For the results included here, SAMI2 was
modified to accommodate counterstreaming H+ outflows as in
Krall and Huba (2019b).

In the next section, the effect of thermosphere composition,
particularly the O density, will be demonstrated using SAMI2.
This will be followed by SAMI3 results showing the effect of
winds. We then discuss the challenge of forecasting these
outflows, given observed day-to-day variability in
thermosphere composition and winds. We close with a brief
list of open questions for future research.

2 SAMI2 RESULTS: THERMOSPHERE
COMPOSITION

In a recent simulation (Krall et al., 2016b) of post-storm
plasmasphere refilling (Singh and Horwitz, 1992), it was found
that model-data agreement was not attainable without careful
attention to the thermosphere O density. In particular, O atoms
tend to act as a barrier to the upward diffusion of O+ ions
(Figure 1D). This effect, which is not explicit in Eq. 1, was
recently illustrated using the SAMI2 code (Krall and Huba,

FIGURE 1 | (A)H+
flux from SAMI2 and from Eq. 1 (B) refilling rate, and (C) nH and nO+ , plotted vs. nO/nO,MSIS .Black curves are for low solar activity, F10.7 � 90.Red

curves are for high solar activity, F10.7 � 210. (D) Diagram showing the production and upward diffusion of O+ and H+ ions. The O density inhibits upward diffusion; this
sensitivity to the O density is not explicit in Eq. 1. Note: these results (Krall and Huba, 2019a) use 2.50 instead of 2.85 in Eq. 1 and in the charge-exchange rate.
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2019a). The SAMI2 code, which simulates a single magnetic-
longitude plane, runs quickly enough to support parameter
studies such as described here.

In a series of simulations of outflow and refilling following a
model storm, the thermosphere O density was varied relative to
values provided by the NRLMSISE-00 (Picone et al., 2002)
version of the Magnetic Spectrometer Incoherent Scatter
(MSIS) empirical atmosphere model (Hedin, 1987). This was
done for solar maximum (F10.7 � 210) and minimum (F10.7 � 90)
conditions. In this study we recorded conditions at outflow source
height Z0, values computed using Eq. 1, and the simulated
outflow flux above Z0. At height Z0, an H+ ion has an equal
chance of being lost to charge exchange or to outflow; these
processes are indicated by red arrows in Figure 1D.

The results are presented in Figure 1. In Figure 1C, nH and
nO+ at the outflow source height are plotted vs. nO/nO,MSIS. Note
that the much lower value of nH at F10.7 � 210 accounts for the
counter-intuitive result that outflow fluxes are smaller at solar
maximum, when the ionosphere is strongest.

Increased O levels in the thermosphere affect outflows in two
ways, both of which are illustrated in Figures 1A,B. First,
increased O increases the O supply in the ionosphere. At solar

minimum (black curves), this effect dominates; note the increase
in O+ in Figure 1C. Second, increased O slows the upward
diffusion of O+. At solar maximum (red curves) the diffusion
effect tends to dominate, slowing outflow and refilling.
Further results (Krall and Huba, 2019a)], show that the O+

scale height falls with increasing nO, but only for solar
maximum conditions.

Good agreement between SAMI2 and Eq. 1, shown in
Figure 1A, demonstrates that the effect of the O density is
fully consistent with the outflow formulation of Richards and
Torr (1985).

3 SAMI3 RESULTS: THERMOSPHERE
WINDS

We now consider the effect of thermosphere winds on
plasmasphere refilling. As is well known (Rishbeth, 1998; Lühr
et al., 2011), the wind-driven dynamo potential drives E × B drifts
that affect the buildup of plasma density in the ionosphere. The
impact of wind-driven ionosphere variability on plasmasphere
refilling was demonstrated in Krall et al. (2014). Here, SAMI3

FIGURE 2 | Left column: electron density averaged over longitude in the equatorial plane plotted vs. time for L � 4.0, 4.8 and 5.4 (solid curves) for SAMI3/NoWind,
SAMI3/HWM07, SAMI3/HWM93 and SAMI3/TIMEGCM. Dashed lines in each plot indicate observed refilling rates. Right column: total electron content in TEC units is
plotted vs. longitude and latitude at 0600 UT on Day 36 for each case. White lines indicate latitude ± 61.5+ (L � 4.8).
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simulations were shown to compare well to in situmeasurements
of plasmasphere ne during post-storm refilling, with model-data
agreement improving as the thermosphere component of the
simulation was improved.

In order to run SAMI3 (or SAMI2), thermosphere densities
and winds must be specified. Typically, as in the SAMI2 runs
above, we compute densities using MSIS (Hedin, 1987; Picone
et al., 2002) and compute winds using the Horizontal Wind
Model (Hedin, 1991; Drob et al., 2008; Drob et al., 2015).
However, we can instead obtain a thermosphere specification
from a first-principles model, such as the Thermosphere
Ionosphere Mesosphere Electrodynamics General Circulation
Model (TIMEGCM) (Roble and Ridley, 1994). For the results
presented here TIMEGCM was driven, at the lower boundary, by
climatological tides.

In each of the SAMI3 simulations of Krall et al. (2014), and
Figure 2, we model five days of refilling following a geomagnetic
storm on day 31 of 2001. Figure 2 (left column) shows refilling as
globally averaged ne at the apex of L � 4.0, 4.8, and 5.0 field lines,
where L is the McIlwain parameter (McIlwain, 1961). Globally
averaged ne (solid curves) are compared to global refilling rates
based on in situ measurements (dashed lines) for a variety of
thermosphere models: MSIS/No Wind, MSIS/HWM07, MSIS/
HWM93 and TIMEGCM. The most realistic model, TIMEGCM,
gives the best results; MSIS/HWM07 also works well.

The state of the ionosphere for each case is shown in the right-
hand column, where Total Electron Content (vertically integrated
ne) is plotted vs. latitude and longitude at a fixed time. Of interest
is the strength of the ionosphere at the mid-to-high latitude
source of refilling. In each plot, a horizontal line at latitude
± 61.5+ indicates the source of refilling for L � 4.8 (in this
version of SAMI3, the geomagnetic field is modeled as an
aligned dipole; geographic and geomagnetic coordinates are
the same). We see that the case with the strongest refilling
(No Wind) has the strongest ionosphere TEC values at this
relatively high latitude.

4 DISCUSSION: CAN THESE EFFECTS BE
FORECASTED?

Any event that affects thermosphere O densities, exosphere H
densities, or thermosphere winds on a global scale, such as a
geomagnetic storm or a sudden stratosphere warming (SSW)
(Chau et al., 2009; Oberheide et al., 2020), has the potential to
affect global refilling rates. For example, Jones et al. (2020)
suggests that both SSW events and magnetospheric cooling
events affect the density of H atoms in the exobase. In order
to understand and predict outflows, it is necessary to understand
and predict these episodic events.

In addition, thermosphere observations (McDonald et al.,
2015; Cai et al., 2020) suggest significant day-to-day
variability. For example, satellite data can be used to estimate
the globally averaged O density at altitude 400 km, where O is the
dominant atom (Picone et al., 2005). In Krall et al. (2016a),
Figure 3, we presented such data with a 4-day resolution, finding
that global nO varies by ± 16% on time scales of less than 30 days.

Lei et al. (2008) analyzed similar data, finding density oscillations
with periods of 7 and 9 days. While these data do not demonstrate
day-to-day variability, they are suggestive. Further, because tides
transport O density (Jones et al., 2014), wind variability could be a
source of density variability.

Day-to-day variability of thermosphere winds can be observed
in daily measurements of TEC. McDonald et al. (2015) presented
such TEC data and showed that, when driven from below by
assimilated data, a computer simulation of the thermosphere
reproduces about 50% of the observed variability. This forcing
from below (McCormack et al., 2017) and resulting impacts
(Jones et al., 2014) are increasingly well-understood in terms
of tides. Specific mechanisms, such as tidal amplification
(Goncharenko et al., 2010; Klimenko et al., 2019) and specific
ionosphere signatures (Immel et al., 2006) have been identified.
While older simulations (Fang et al., 2013) support the finding
that tidal forcing accounts for about one half of observed
variability, recent work (Zawdie et al., 2020) comes closer to
determining the state of the ionosphere-thermosphere system in
enough detail to now-cast the upper-atmospheric source of
refilling outflows.

While even less is known about day-to-day variability in the
exosphere, recent results are suggestive. For example,
climatological analysis of exosphere observations revealed both
solar cycle dependence and significant scatter, perhaps indicative
of variability (Joshi et al., 2019). Diurnal variability has been
quantified (Qian et al., 2018), but does not necessarily imply day-
to-day variability. Perhaps more to the point, Forbes et al. (2014)
found that signatures of thermosphere tides are detectable in
exosphere temperatures. This implies that day-to-day variability
in thermosphere tides, which is known to be present for some
tidal components, might be a cause of similar variability in
exosphere H densities. If present, day-to-day variability in
exosphere H densities could contribute to the observed scatter
in refilling rates (Krall et al., 2018). Finally, we note that the
exosphere could have structure (Hodges, 1994; Cucho-Padin and
Waldrop, 2018) not present in these simulations, especially
during a storm (Kuwabara et al., 2017; Qin et al., 2017;
Zoennchen et al., 2017; Cucho-Padin and Waldrop, 2019).

Simulations suggest that variability in thermosphere winds
also affects global E × B drifts in the inner magnetosphere so as to
affect the shape of the plasmasphere. Specifically, the Krall et al.
(2014) study of Figure 2, showed that, when one wind model was
exchanged for another, the shape of the model plasmasphere
changed. Recent simulations showing model-data agreement for
ionosphere/thermosphere interactions on a global scale (Huba
and Liu, 2020) suggest that such modeling might soon reproduce
ducts, crenelations, and other elements of observed plasmasphere
structure (Horwitz et al., 1990). Numerical modeling that self-
consistently couples the ionosphere and exosphere (Joshi and
Waldrop, 2019) could also bring significant progress. Note that, at
the cost of a small time step (about 1 s), SAMI3 does not suffer from
the limitations of the diffusive equilibrium approximation (Huba
and Joyce, 2014; Ozhogin et al., 2014), and has obtained reasonable
model-data agreement (Krall et al., 2014; Krall et al., 2016b) for
refilling events. Kinetic treatments (Wang et al., 2015) might prove
valuable in validating these results. In addition, a current global
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kinetic model, such as Pierrard and Stegen (2008), if coupled to a
thermosphere model, might validate the finding (Krall et al., 2014)
that the wind-driven dynamo affects the shape of the plasmasphere.

Finally, we should acknowledge that any forecast depends on
accurate model inputs. Both satellite (Emmert, 2015) and Arecibo
radar data (Joshi et al., 2018) show significant long-term deviations
from the MSIS model. New observations of thermosphere winds on a
global scale are presently coming from the NASA Ionospheric
Connection Explorer (ICON) (Immel et al., 2018). ICON is
equipped with a Michelson interferometer, built by the NRL, that
measures winds and temperatures in the altitude range 90–300 km
(Harding et al., 2021; Makela et al., 2021). We are hopeful that newly
accurate thermosphere now-casting data products might be developed.

We close with a list of interesting open questions. What is the
magnitude of day-to-day variability, if any, in the thermosphere
O density? Does day-to-day variability of thermosphere densities,
if any, imply similar variability in the exosphere? Do
thermosphere winds truly shape the plasmasphere? How do
high-latitude storm-driven winds affect the global wind-driven
dynamo and refilling outflows?
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