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Owing to the current and upcoming extensive surveys studying the stellar variability,
accurate and quicker methods are required for the astronomers to automate the
classification of variable stars. The traditional approach of classification requires the
calculation of the period of the observed light curve and assigning different variability
patterns of phase folded light curves to different classes. However, applying these
methods becomes difficult if the light curves are sparse or contain temporal gaps.
Also, period finding algorithms start slowing down and become redundant in such
scenarios. In this work, we present a new automated method, 1D CNN-LSTM, for
classifying variable stars using a hybrid neural network of one-dimensional CNN and
LSTM network which employs the raw time-series data from the variable stars. We apply
the network to classify the time-series data obtained from the OGLE and the CRTS survey.
We report the best average accuracy of 85% and F1 score of 0.71 for classifying five
classes from the OGLE survey. We simultaneously apply other existing classification
methods to our dataset and compare the results.

Keywords: deep learning, convolutional neural networks, long short term memory, variable star classification, big
data and analytics

1 INTRODUCTION

Variable stars have served a pivotal role in expanding our knowledge about various aspects of the
universe. These systems have been extensively used for a vast range of studies with their implications
on stellar and galactic astrophysics, cosmology, and planetary formation research. A few notable
studies are estimating distances to galaxies within and beyond the Local Group and measuring the
Hubble constant (Feast, 1999; Freedman et al., 2001; Clementini et al., 2003; Vilardell et al., 2007;
Harris et al., 2010; Bhardwaj et al., 2016; Riess et al., 2016; Ripepi et al., 2017), studying chemical
composition of different galactic regions (Smith, 1995; Luck et al., 2006; Pedicelli et al., 2009;
Genovali et al., 2014), probing stellar structure and evolution (Catelan and Smith, 2015; Christensen-
Dalsgaard, 2016; Das et al., 2020, and references therein), studying planetary formation through pre-
main-sequence stars (Bell et al., 2013; Ribas et al., 2015), etc.

Recent advancements in astronomical instrumentation has resulted in an avalanche of time-series
data from dedicated time-domain surveys such as Optical Gravitational Lensing Experiment (OGLE;
Udalski et al., 1993; Soszyński., 2015, Soszyński., 2016, Soszyński., 2018), All-Sky Automated Survey
(ASAS; Pojmanski, 2002), Catalina Real-Time Transient Survey (CRTS; Drake et al., 2009;
Djorgovski et al., 2011), Zwicky Transient Facility (ZTF; Bellm et al., 2019), and upcoming Vera
C. Rubin Observatory (previously Large Synoptic Survey Telescope; LSST Science Collaboration
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et al., 2009), etc. These databases consist of multiple photometric
observations with corresponding time-stamps (light curves) for
different variable sources. Classifying these sources based on their
light curves helps us in understanding the responsible
mechanisms behind the variability and provides insight into
their interior structure and formation. The abundance of data
from the modern surveys and relevance of variable stars to
various domains of astrophysics has heightened the need for
automated methods for quick and accurate classification of
variable star light curves.

Development of automated methods for classifying variable
star’s light curves has seen an upward trend in recent years and
has formed the core of many latest studies. A common approach
for the automated classification is to extract the periodic and non-
periodic features from the light curves and feed them to the
machine-learning (ML) classifiers. Periodic features primarily
consist of period and Fourier decomposition parameters
whereas non-periodic features are mostly statistical parameters
(Ferreira Lopes and Cross, 2017). An automated method
developed by Debosscher et al. (2007) uses a set of 28 features
which are derived from the Fourier analysis of the time-series.
These features are mainly the amplitudes, phases, and frequencies
obtained from the Fourier fit which are supplied to Gaussian
Mixture and ML classifiers for the supervised training. Dubath
et al. (2011) present an automatic classification process using
statistical parameters such as mean, skewness, standard deviation,
and kurtosis as classification attributes. They used Random Forest
(RF) for the classification and also estimate the importance of
each attribute. Richards et al. (2011) combine the periodic
features with the non-periodic features proposed by Butler and
Bloom (2011). They demonstrate the application of various ML
based classifiers to automatically classify large number of
variability classes. They also attempt hierarchical classification
using hierarchical single-label classification (HSC) and
hierarchical multi-label classification (HMC) using RFs. Nun
et al. (2015) offer a Python library called FATS (Feature
Analysis for Time Series) intended to standardize the feature
extraction process from a given time-series. Kim and Bailer-Jones
(2016) develop a package, called UPSILoN, which uses 16
extracted features from the light curves and classifies light
curves using Random Forest (RF) technique. Pashchenko et al.
(2018) attempt the problem of variability detection using
machine learning methods: Support Vector Machines (SVM),
Neural Nets (NN), Random Forests (RF), etc. These methods are
applied to 18 features which represent the scatter and/or
correlation between points in a given light curve.

Feature based classification methods have shown to produce
results with good accuracy but these methods make an inherent
assumption about the availability of reasonable number of time-
stamps for a given light curve. For example, UPSILoN
recommends having more than 80 data points in a light curve
for obtaining satisfactory precision and recall values. It is known
that many light curves from these surveys are noisy and contain
temporal gaps due to various reasons related to observational
constraints and survey design. Also, the difference in
cadence choices among different surveys can potentially make
the feature-extraction (and classification) process heterogeneous

and survey-dependent. For this reason the recent works have
emphasized the need for classification models based on 1) the raw
light curve data, or 2) the features not requiring any pre-processing
such as light curve folding, Fourier decomposition, etc. The feature
extraction can be achieved either in a supervised or unsupervised
fashion. These necessities are primarily driven by the fact that the
time-series data might be sparse (and therefore not good enough to
estimate the period) and can contain gaps in the observations.

Rather than providing the hand-crafted features for
classification, recent studies focus on employing the raw time-
series data and take advantages from the improved deep-learning
(DL) frameworks. Mahabal et al. (2017) process the raw-light
curves to generate dm-dt maps. These mappings reflect the
difference between the magnitudes (dm) and the
corresponding time-stamps (dt) for each pair in the light
curve. These differences are binned in fixed dm and dt ranges
to obtain the attributes having a uniform dimension for each light
curve. These attributes are mapped in 2-dimensions as an image
and corresponding class labels are provided to the Convolutional
Neural Network (CNN) for training the model. Naul et al. (2018)
demonstrate the use of recurrent neural network (RNN) based
autoencoder for unsupervised and effective feature extraction.
They use the latent space features at the end of encoding layers as
representative of the light curves but with reduced
dimensionality. This step addresses the issue of light curves
with varying length which is a limitation with most ML/DL
classifiers. However, they show that encoding-decoding process
is more accurate with the period-folded light curves and therefore
they use the latent space features obtained from the folded light
curves for further classification using Random Forest. Aguirre
et al. (2019) consider taking the difference between consecutive
time and magnitude values in a light curve to generate two
vectors, one each for time and magnitude. These difference
vectors form a matrix with two rows and as many columns as
the number of difference values. This matrix is passed to a 1D
convolutional neural network for training the classificationmodel
where time and magnitude difference vectors are treated as two
separate channels (similar to different color channels in an
image). Carrasco-Davis et al. (2019) show the application of
recurrent convolutional neural network (RCNN) to the
sequence of images and obtain a recall value of 94% on the
data from the High cadence Transient Survey (HiTS). Becker
et al. (2020) also make use of RNN and achieve the classification
accuracy of 95% in the main variability classes. To address the
problem of static classification models, which require re-training
as the new data arrives, Zorich et al. (2020) present a probabilistic
classification model for the light curves with a continuous stream
of data. They demonstrate the application of this approach on the
data from CoRot, OGLE and MACHO catalogs.

In the present work, we use a deep-learning framework called
Long Short-TermMemory (LSTM; Hochreiter and Schmidhuber,
1997) networks which are specifically designed for handling time-
series data and propagate learning from the data to the deeper
layers. These models are capable of learning long as well as short-
term temporal features and can accommodate the input light
curves of varying length. We propose a hybrid network of 1D
CNN and LSTM model to classify light curves into different
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variability classes. Our approach is similar to the image
captioning neural model introduced in Vinyals et al. (2014)
which combined 2D CNN on images with the LSTM model.
In the hybrid model, CNN layers learn to generate the features
efficiently and the LSTM part carries out the task of finding the
correlations among different observations at varying timescales of
an input light curve. These are fed to a fully connected
classification layer to predict the variability class. For training
the classification model, we use the raw light curve data as an
input to the network without any feature-extraction process. This
aspect gives this implementation an edge over the previous works.
We also implement the 2D CNN method (Mahabal et al., 2017)
on our dataset where we consider a modified strategy for
generating the dm-dt images. We finally compare the results
from the two approaches: 1D CNN-LSTM and 2D CNN.

This paper is organized as follows. In Section 2, we describe
the data used in this work for training/testing the classification
models and the pre-processing steps required for 2D CNN and
1D CNN-LSTM implementations. Following this, in Section 3
and Section 4, we briefly overview of the two deep learning
techniques used for the classification. Section 5 presents the
results obtained using the two approaches. Discussion on the
results and conclusions are presented in Section 6 with an outline
of the road-map for the future work.

2 DATA AND PRE-PROCESSING

We obtain the archival time-series data from two surveys, OGLE
and CRTS, for variability classification. Both datasets contain a
large number of light curves and the respective variability classes
(labels). We select only a few of these classes which have enough
number of distinct light curves (∼ 500 or more) for a stable
training of the classification model. We include five variable star
classes from OGLE in our dataset, namely classical Cepheids, δ
Scuti, Eclipsing Binaries, Long Period Variables, and RR Lyrae.

We consider only those light curves that have at least 100 data
points to ensure that the network gets a sufficient number of data
points to discover the correlations between them and extract
useful features for classifying the type of variability. The OGLE
database contains 165,105 light curves for Eclipsing Binaries but
we select only 50,000 of them to avoid their dominance in the
training and keep the computation feasible (though their number
is still larger than the other four classes). The total number of
OGLE light curves belonging to all the classes are 104,006 in our
dataset. From the CRTS survey, we consider the light curves for
seven variable star classes. These include Contact Binaries (EW),
Detached Binaries (EA), three types of RR Lyrae (RRab, RRc,
RRd), Rotating Variables (RSCVn) and Long Period Variables
(LPV). The total number of CRTS light curves in our sample are
68,867. The summary of light curves selected in each variability
class from the OGLE and CRTS surveys is provided in Table 1.

We notice that some variability classes are over represented in
terms of the number of light curves in both datasets. However, we
find that decreasing or increasing their number in the training
sample just affects the training time and does not influence the
classification accuracy in any significant manner. We use the two
datasets separately for training and testing the 2D CNN and 1D
CNN-LSTM models.

2.1 Bi-Dimensional Histograms
2D CNNmodel proposed in Mahabal et al. (2017) was applied to
the light curves from the CRTS-North survey (CRTS-N; Mahabal
et al., 2012). We apply the same method to a different dataset
from the CRTS and OGLE surveys. As the name suggests, the 2D
CNN model works on the two-dimensional datasets, like images,
whereas light curves are uni-dimensional in nature depicting the
variation in brightness as a function of time (left panel in
Figure 2). Therefore we pre-process the light curves to
generate bi-dimensional histograms (also called dm-dt
mappings) and make them suitable for applying a 2D CNN
model. To generate bi-dimensional histograms, we follow the
same recipe as proposed in the source paper with a few
modifications in the binning criteria as discussed below.

We compute the difference in magnitude and time for each
pair of data points in the light curve. To find an appropriate
number of bins, rather than using fixed bin ranges, we used
Freedman-Diaconis rule (Freedman and Diaconis, 1981).
Freedman Diaconis estimator computes bin width using the
number of data points in a sequence and interquartile range.
The estimator was applied to both variations, magnitude and
time, individually. We adopt the Freedman-Diaconis rule as
opposed to the original binning ranges as it takes into
consideration that each light curve might have observations at
different times. It automatically adjusts the bin range for a given
density of points. We plot these bin sizes as histograms for
checking the variations in magnitude and time. We finally
consider the median of the histogram range as the number of
bins for both time and magnitude variations. This provides the
most frequent number of bins for a given survey. This way, we
find that the number of bins for the CRTS survey for time and
magnitude variations turns out to be 53 and 90 respectively which
results in an image of pixel size 90 × 53 with three color channels

TABLE 1 | Summary of light curves belonging to different variability classes
obtained from the OGLE and CRTS surveys. The number of samples
belonging to different classes in the last column have been adopted from the
respective surveys.

Class Representation Number

OGLE dataset

Classical Cepheids CEPH 2698
δ Scuti DSCT 464
Eclipsing Binaries ECLP 50,000
Long Period Variables LPV 22,371
RR Lyrae RRL 28,473

CRTS dataset

Contact Binaries EW 30,745
Long Period Variables LPV 511
Detached Binaries EA 4683
RR Lyrae type 1 RRab 2431
RR Lyrae type 2 RRc 28,473
RR Lyrae type 3 RRd 502
Rotating Variables RSCVn 1522
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(R, G, and B). We use the same number of time and magnitude
bins for the OGLE survey. A few examples of bi-dimensional
histograms generated from the OGLE light curves are shown in
Figure 1.

2.2 Padded Time-Series Light Curves
The primary motivation to consider a 1D CNN model (with
LSTM) comes from the fact that the raw light curves are one-
dimensional sequences. Any rearrangement of these sequences
can potentially cause information loss. However, if the variability
is periodic in nature and the accurate period is known, the phase-
folded light curve can be more informative than the raw light
curve. Figure 2 shows one example of a classical Cepheid light
curve from OGLE. It is clear that the raw light curve shown in the
left panel has no discernible pattern whereas the lower panel
clearly shows a smooth sinusoidal-like variation with periodicity.
Traditional methods of light curve classification use phase-folded
light curves and other criteria based on Fourier parameters,
period-luminosity relations, period-color relations, etc. which
require the value of period to be known. But the process of
period determination becomes challenging as well as
computationally expensive in various circumstances such as
lack of points in the light curves, insufficient coverage over
different phases, etc. Therefore a classification model should

be able to use the raw light curves without phase-folding or
rearranging them.

We propose a 1D CNN model that accepts the light curves
without any pre-processing. The light curve data contains
variable-length sequences but the computation of the
classification model requires all input sequences of the same
length. To make all light curves of the same length, we use zero
padding at the end of the light curves. This step ensures that the
shape of all input light curves remains consistent.

3 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN or ConvNets; Hinton,
2006; Bengio, 2009; Lecun et al., 2015) have been widely accepted
as an excellent tool to identify patterns in astronomical data from
diverse sub-domains (Dieleman et al., 2015; Fabbro et al., 2018;
Metcalf et al., 2019). These have been utilized in astronomy for
numerous classification and regression problems. Many studies
have shown that a so-called deep-learning framework like CNN
performs better than conventional machine learning algorithms
(Kim and Brunner, 2017; Sharma et al., 2020).

A CNN is a kind of deep neural network commonly used for
identifying features and patterns in imagery data. It consists of an

FIGURE 1 | Representative bi-dimensional histograms generated from the OGLE light curves for five variability classes (from left to right): Cepheids, δ-Scuti
variables, Eclipsing Binaries, Long-period Variables, and RR Lyrae. The x- and y-axis in each of the five panels are the number of pixels (53 along x-axis and 90 along
y-axis). The blue and yellow color represent the pixels with the least and the most number of points respectively.

FIGURE 2 | Light curve for a classical Cepheid from the OGLE survey. (A) shows the original light curve whereas (B) shows the phase-folded light curve with an
estimated period of 3.8497 days. The light curve id is mentioned as the title of the plot.
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input layer, an output layer, and multiple hidden layers. The
hidden layers include convolutional layers, activation layers,
pooling layers, fully connected layers, and normalization
layers. Convolutional layers convolve the input image array
with the filters and pass the outputs to the succeeding layer.
Each convolution layer outputs a new set of activations. Pooling
layers are used to decrease the size of the parameters by
downsampling the features. Maxpooling is a type of pooling
where the maximum value of a section of input is used in the
next layer. This helps in generalizing the features and the
reduction in features help CNN train quicker. Average
pooling is another pooling technique where the average of
the pooling window is used in the succeeding layer. Fully
connected layers learn the features created from previous
layers. Neurons in fully connected layers are connected to all
activations of the previous layers. Normalization layers
normalize the activations of the previous layers which
helps in reducing overfitting. In this work, we use the
same CNN architecture as prescribed in Mahabal et al.
(2017). The schematic diagram of the architecture is
shown in Figure 3.

4 1D CNN - LSTM

Inspired from the visual cortex system of animals (Hubel and
Wiesel, 1968; Fukushima, 1980), CNNs are mainly used for
learning local spatial features and the correlations among the
neighbouring points in 2D signals like images. However, in recent
years, the applications of CNNs have also been extended to other
domains using one-dimensional data, e.g., spectral and time-
series analysis, natural language processing, protein sequences,
etc. Kiranyaz et al. (2019) provide a careful and detailed overview
of 1D CNNs and discuss their applications to several problems.
1D CNNs have shown excellent capabilities to learn patterns
and generating features from fixed length 1D data like time-series.
We combine 1D CNN with the LSTM networks for classifying
light curves.

Long Short Term Memory networks are a type of RNNs
having the ability to remember sequences for a long period of
time. LSTM networks are used for learning from the sequential
data like time-series, speech, and video (Graves and
Schmidhuber, 2005; Wang and Jiang, 2015; Karim et al., 2018;
Brunel et al., 2019). LSTM networks possess the property of
selectively remembering past sections of the data. LSTMnetworks
use three types of gates, namely update gate, forget gate, and
output gate. The update gate is used in the current state. The
forget gate is used to filter past outputs and the output gate is used
to compute the final output. LSTM networks overcome the
vanishing gradient problem by using the forget gate which
helps in using previous outputs. This property helps LSTM
networks to have an edge over conventional feed-forward
neural network and RNNs. One example of LSTM networks
applied to an astronomical problem is provided in Zhang and Zou
(2018). The authors implement the LSTM models for time-series
prediction from the light curves. Evaluation of the results based
on the mean squared error showed promising prediction for the
future points in the time-series. A similar model has been shown
to preform well in Czech et al. (2018) for classifying transient
radio frequency interference.

In this work, a hybrid network of 1D CNN and LSTM is used
to classify the variable star light curves. LSTMs with 1D CNNs
help the classification model to learn long and short term
patterns, correlations, and dependencies in the input light
curve. The convolutional layers in the network create features
from the input sequences. They learn to create these features in a
way to reduce the error in the prediction. These features are then
used by the LSTM to produce its output activations. The output of
the final LSTM layer is flattened. The flattened sequence of
features is passed to fully connected layers that learn these
features. The final softmax layer predicts the variable star
classes with respective probabilities. The proposed networks
consists of total 10 layers with 4 convolutional layers, 2
Maxpooling layers, 2 LSTM layers, and 2 fully connected
layers. We use a kernel size of 3 × 1 for first 2 convolutional
layers and 5 × 1 for last 2 convolutional layers. The filter size of

FIGURE 3 | Schematic diagram showing the architecture of Convolutional Neural Network for the OGLE dataset. Different layers in the network are shown as
different block and the layer names are indicated at the top of each block. The input images are of shape 90 × 53 × 3. First conv layer uses a kernel size of 3 × 3 but the
subsequent layers uses a bigger kernel size of 5 × 5 to find bigger patterns. The same architecture is used for the CRTS dataset except the final classification layer which
instead contains seven nodes corresponding to seven variablity classes present in the CRTS. To update the network parameters while training, we use Adam
optimizer (Kingma and Ba, 2014) function with the learning rate fixed to 0.0002.
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convolutional and LSTM layers are in increasing fashion. It
is followed by two fully connected layers containing 1024
and 512 neurons respectively. The final “softmax”
classification layer has five units for each of the five
variability classes from OGLE. Full architecture of the
model is presented in Figure 4.

5 RESULTS

For training the classification models described in Section 3 and
Section 4, we use a single NVIDIA GeForce GTX 1060 6GB
graphics processing unit. We use CUDA enabled Tensorflow
(Abadi et al., 2015) environment for training the models in
Python. Since the number of light curves in different classes
are highly imbalanced, therefore we give extra weights to the less
presented class while training. The weights are assigned in
accordance with the numbers of the light curves. To check the
overall performance of the classification models, we use the
standard metrics: precision, recall, accuracy, and F1 Score.

As described in Section 2, we need to generate the bi-
dimensional histograms for providing as inputs to 2D CNNs.
We use histogram2d function from Python library NumPy to
prepapre the bi-dimensional histograms. We use 60, 20, and 20%
of the ligthcurves for training, validation, and testing the
classification models respectively. While dividing the dataset
into training, testing, and validation samples, we ensure that
the ratio of the variable classes remains the same across all the
three data portions.

Application of 1D CNN-LSTM model does not require any
pre-processing except the padding of the light curves. 1D CNN-
LSTM has the advantage of using a smaller number of free
parameters to perform classification. This could be a
favourable approach in situations where the data is big and
computing resources are limited. We use the same splitting
criteria of 60%–20%–20% for the two datasets.

5.1 2D CNN on OGLE and CRTS
We train and validate the 2D CNN model on 80% data from the
OGLE and CRTS for multi-class classification problem where the
number of classes are five and seven, respectively. The model is
trained for 100 epochs and each training epoch takes about 165 s.
Testing the CNN model on the remaining 20% data from OGLE
gives an overall accuracy of 97.5%. For the CRTS dataset, we
obtain an accuracy of 74.5%. As the number of light curves
belonging to δ Scuti are on a lower side, we experiment with the
classification using only the other four classes and get an overall
accuracy of 99%. We note the similar increase in the accuracy for
the CRTS dataset after removing classes with lesser number of
light curves: LPV and RRd. The classification metrics using CNN
for OGLE and CRTS are shown in Table 2. The normalized
confusion matrix for OGLE is presented in Figure 5).

5.2 1D CNN-LSTM on OGLE and CRTS
For applying 1D CNN-LSTMmodel, we examine the distribution
of the number of observations in light curves in our dataset. We
find that the distribution peaks at 359 for the OGLE and 546 for
the CRTS. This means that most light curves in OGLE have 359
data points. To make all the light curves of equal length, the
ones with lesser number of observation are padded with zeros
at the end of the sequence. The light curves having more
number of observations are clipped at 359th observation
assuming that these observations will have sufficient
information to classify the type of variability. We adopt the
same strategy for the CRTS dataset.

FIGURE 4 | Schematic diagram showing the architecture of 1D CNN-LSTMmodel for the OGLE dataset. The input sequences are padded with zeroes to maintain
the constant length of 359 in the OGLE survey and 546 in the CRTS survey for all light curves. Each block represent different type of layers as indicated by the header. The
same architecture is used for the CRTS dataset except the final classification layer which instead contains seven nodes corresponding to seven variability classes present
in the CRTS.

TABLE 2 | Results of classification using 2D CNN on bi-dimensional histograms
prepared from the OGLE and the CRTS survey light curves.

Dataset Accuracy (%) Precision Recall F1 score

OGLE 97.5 0.81 0.91 0.85
CRTS 74.5 0.56 0.52 0.54
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We use the CuDNNLSTM layer, which is a faster LSTM
implementation and runs only on GPU. The batch size of 32
was used for training 1D CNN-LSTM. The average time for one
training epoch is around 75 s. Each classes is given weights
according to the number of members in that class. We obtain
average accuracy of 85 and 67% for the OGLE and the CRTS
lightcurves, respectively. The results of 1D CNN-LSTM on both
the datasets are presented in Table 3. The confusion matrix for
the OGLE dataset is presented in Figure 5.

6 CONCLUSIONS AND DISCUSSION

We present two approaches for classifying variable stars using
Deep Learning techniques. While the 2D CNN model requires

generating dm-dt mappings or bi-dimensional histograms, 1D
CNN-LSTM does not require any pre-processing (except padding
the light curves to maintain the uniform length for all the light
curves) and is a step forward towards classifying light curves
without providing engineered features or pre-processing. To
classify bi-dimensional histogram images, we use the standard
and well-established classification tool, the ConvNets, which
perform very well on the OGLE dataset. We find that the
classification performance on the CRTS dataset is suboptimal.
In the second approach, we use a combined network of 1D CNN
and LSTM to classify light curves. This approach does not require
any pre-processing which saves a lot of time to generate bi-
dimensional histograms. Also, the total training time using 1D
CNN-LSTM is reduced by a factor of half as compared to the 2D
CNN model. Despite gaining on the overall computation time
front, we realize that the performance of 1DCNN-LSTMmodel is
not at par with the 2D CNN approach. Lower accuracy hints that
there could be potential shortcomings in the 1D CNN model
which bars its performance as the feature extractor. It is also
possible that the LSTM layers are unable to correlate the
observations at varying time lengths. This aspect of
disentangling the problem with the two types of layers needs
further investigation.

The degraded performance on the CRTS dataset as compared
to the OGLE dataset is a common difficulty faced by both the
models. We note that ∼86% of the light curves in the CRTS
dataset come only from the two classes: the contact binaries
(EWs) and RR Lyrae Type 2 (RRc). Since these two classes have
very similar sinusoidal light curves with similar periodicity, most
classification algorithms fail to distinguish between these two
classes. It should also be noted that the CRTS dataset contains
three RR Lyrae sub-classes: RRab, RRc, and RRd. RRab and RRc
stars pulsate in the fundamental and first-overtone mode,
respectively, whereas RRd stars pulsate in mixed mode
between the fundamental and first overtone. The light curves
for these classes also look very similar which makes the
classification among these classes more difficult.

FIGURE 5 | Classification results on the test set from OGLE using the 2D CNN (A) and 1D CNN-LSTM (B) models in the form of a normalized confusion matrix.
Numbers in each cell represent the fraction of light curves belonging to a true and predicted class. Cells are color-coded according to the numbers in the cell.

TABLE 3 | Results of classification using 1D CNN-LSTM on the OGLE and the
CRTS survey light curves.

Dataset Accuracy (%) Precision Recall F1 score

OGLE 85.0 0.64 0.81 0.71
CRTS 66.6 0.46 0.53 0.49

TABLE 4 |Comparison of classification results for three variability classes from the
CRTS dataset using 2D CNN and 1D CNN-LSTM models. The two rows for
each true class represent the correct classification (to the actual class) and mis-
classification (to the other class indicated in the second row) percentages,
respectively.

True class Predicted class Classification models

2D CNN 1D CNN-LSTM

RRab RRab 29% 55%
EW 51% 22%

RRc RRc 42% 45%
EW 50% 41%

LPV LPV 69% 80%
RRab 13% 6%
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Despite giving a lesser accuracy, we are able to show that the
proposed 1D CNN-LSTMmodel has the potential to perform the
task of classifying variable star light curves without any pre-
processing (e.g., converting original time-series to different
forms). Moreover, we see that 1D CNN-LSTM gives better
results than the 2D CNN approach for certain classes in the
CRTS dataset. For example, 1D CNN-LSTM performs better in
separating out the light curves from EWs and RRc classes. For
these two groups, 2D CNN is able to classify 42% RRc light curves
correctly and labels wrongly 50% of the RRc light curves as
contact binaries. On the other hand, 1D CNN-LSTM model
shows marginally better accuracy of 45% for the RRc light
curves and classifies incorrectly 41% light curves as contact
binaries. About ∼8% of the RRc light curves are classified as
RRab. We make the same observation for the light curves from
the RRab and EW classes. Only 29% of the RRab light curves are
correctly classified by 2D CNN and 51% light curves are wrongly
classified to EW class, whereas 1D CNN-LSTM classifies 55% of
the light curves correctly and assigns wrongly only 22% of the
light curves as EW. Similarly, while only 69% of the LPVs are
correctly classified by the 2D CNN model, the 1D CNN-LSTM
model achieves an accuracy of 80% in classifying them. These
results, summarized in Table 4, highlight the superiority of the
1D LSTM-CNN model over 2D CNN in distinguishing very
similar looking light curves.

As a future scope of this work, we will investigate the other
binning strategies along with the ones proposed in Mahabal
et al. (2017) and perform detailed comparisons with the bi-
dimensional histogram, 1D LSTM-CNN approaches and
other prevailing classification techniques. With the
demonstrated success of the 1D LSTM-CNN model, we
would experiment more with the architecture by
optimizing the model hyperparameters, which requires
more computational resources. We would also like to
explore the capability of the hyperparameter optimized
model in classifying light curves from different surveys and

examining their performance in case of the sparse light curves.
These tests would confirm the robustness of the model against
various differences among surveys, e.g., cadence,
instrumentation, etc. A more sophisticated approach to
classify light curves could use a combination of two parallel
CNNs, a 1D CNN for the light curves and another 2D CNN for
the science (or difference) images. The features generated using
these two networks can be merged and transferred to the final
classification layer. The 2D CNN in this alternative approach
could provide the required assistance to the 1D CNN-LSTM
model to surpass the achieved accuracy by a stand-alone 1D
CNN-LSTM model.
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