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Large numbers of theory and observation studies have been conducted on
electromagnetic ion cyclotron (EMIC) waves occurring in Earth’s magnetosphere.
Numerous studies have shown that accurately specifying the ions of ionospheric origin
and their composition can greatly improve understanding of magnetospheric EMIC waves,
specifically their generation, their properties, and their effects on the magnetospheric
plasma populations. With the launch and operations of multiple recent missions carrying
plasma instrumentation capable of acquiring direct measurements of multiple ion species,
we use this opportunity to review recent magnetospheric EMIC wave efforts utilizing these
new assets, with particular focus on the role of ions of ionospheric origin in wave
generation, propagation, and interaction with particles. The review of progress leads
us to a discussion of the unresolved questions to be investigated using future modeling
capabilities or when new missions or instrumentation capabilities are developed.
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INTRODUCTION

Electromagnetic ion cyclotron (EMIC) waves play a large role in magnetospheric dynamics, from
heating of thermal plasma to scattering of radiation belt electrons into Earth’s atmosphere (see
Thorne et al., 2006, and references therein). Figure 1A illustrates some of the main processes
involving EMIC waves in Earth’s magnetosphere and Figure 1B provides an example of complex
linear wave dispersion properties introduced when multiple ion species are present in the ambient
plasma. Key to determining both wave properties themselves as well as wave impacts on various
magnetospheric particle populations is a knowledge of the detailed plasma environment, including
the cold ion populations that are often impossible to measure. In particular, ion density, temperature,
and ion composition all play important roles in EMIC wave generation, propagation, and subsequent
interaction with particles (Anderson et al., 1996; Anderson and Fuselier, 1994; Fuselier and
Anderson, 1996; Kozyra et al., 1984, Gomberoff and Neira, 1983; Gomberoff et al., 1996; Gary
et al., 2012; Chen et al., 2011; Silin et al., 2011, Lee et al., 2021, and references therein).

In the following sections, we outline recent progress towards understanding the influence of ions
of ionospheric origin on EMIC waves both through theoretical, modeling and observational studies.
Recent space missions, with improved data quality and data processing tools, have allowed for
significant progress characterizing the occurrence and distribution of magnetospheric EMIC waves
and the hot proton free energy source that is expected to drive wave generation. However, puzzles
remain for developing a more complete understanding of EMIC wave generation and the effects of
waves on magnetospheric particles, many centered around measurement challenges and a lack of
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routine observations of the cold ion properties including the ion
mass composition. These measurements are needed to
characterize the variability of abundances of cold and hot
ionospheric-originating ions in different magnetospheric
regions so that improved understanding can be developed on
how they impact wave generation and subsequent wave-particle
interactions. Progress as well as remaining questions and
challenges on these topics are presented in Recent Progress and
Challenges Section, and future needs or opportunities discussed in
Discussion and Future Opportunities Section.

RECENT PROGRESS AND CHALLENGES

Wave Generation and Properties
The large number of satellite missions flying magnetometers are
supporting continued studies of EMIC wave properties
throughout Earth’s magnetosphere. The analysis methods
utilized have become somewhat standardized across studies
and capable computing systems allow for efficient processing
of large spacecraft datasets. Following coordinate transformation
routines, most EMIC wave studies rely on Fourier analysis to
derive wave power and polarization spectra in the frequency-time
domain for interpretation of the wave emissions properties
needed to identify the occurrence and properties of EMIC
waves. Low wave normal angle coupled with polarization
spectra that rotate left-handed with respect to the dominant

geomagnetic field component are typically used to identify the
presence and generation region of EMIC waves. This is because of
linear dispersion theory and solutions that indicate the growth
rate of EMIC waves typically maximizes for the left-handed
circularly polarized (parallel propagating) mode (Gary et al.,
2012 and references therein). When electric field
measurements are also available, calculations of the Poynting
vector properties in time or frequency domains are applicable to
identifying possible wave generation regions and the properties of
wave energy (e.g. Vines et al., 2019 and references therein).

Although magnetometer and electric field instrumentation
continue to improve in capability, the role of the superposition
of multiple wave packets that results in constructive/destructive
interference to the detriment of wave analysis methods will
continue to complicate analysis of wave properties and
applications of the derived properties to investigating theories
on wave generation (and propagation, discussed in a later
section). For example, recent statistical and case studies
showed that experimentally measured EMIC waves do not
always have left-hand circular polarization and are often more
linear or right-hand polarized, particularly on the morning side of
the magnetosphere (Min et al., 2012; Allen et al., 2015; Allen et al.,
2016; Saikin et al., 2015; Lee et al., 2019). Although EMIC wave
polarization properties can evolve from left-handed to linear and
then to right-handed during propagation through a region where
wave frequency matches crossover frequencies (as noted by ωcr1

and ωcr2 in Figure 1B), wave superposition can be another reason

FIGURE 1 | (A)Conceptual overview of processes related to EMIC waves generated in Earth’s magnetosphere including wave mode conversion enabled by heavy
ion presence, the wave impacts on various particle populations, and manifestation of the wave impacts sometimes observed at low altitudes. (B) The dispersion relation
(normalized frequency versus wave number) of cold plasma waves below the proton gyrofrequency in a uniform and magnetized plasma with ion composition 70% H+,
20% He+, 10% O+. Background magnetic field is 248 nT (corresponding to the equatorial magnetic field strength at L � 5) and background electron density of
50 cm−3 is used. Three values of wave normal angles, 0°, 45°, and 90° are represented by blue, green and red lines respectively. Characteristic frequencies (crossover,
cutoff and bi-ion resonant frequencies) are denoted, with subscripts 1 and 2 representing frequencies between H+ and He+ gyrofrequencies and between O+ and He+

gyro frequencies, respectively. Calculation of those characteristic frequencies can be found elsewhere (e.g., Chen et al., 2014).
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for the observed linear polarized wave spectra (Denton et al.,
1996; Anderson et al., 1996; Lee and Angelopoulos, 2014a). But
EMIC waves may also be generated with linear polarization under
specific plasma conditions (Denton et al., 1992), the presence of
cold heavy ions can favor the conversion of left-handed waves to
linear (Hu et al., 2010), and cold proton presence may enable self-
consistent generation of oblique EMIC waves with linear
polarization (Toledo-Redondo et al., 2021). Verifying the
occurrence of superposed wave packets is needed to futher
clarify the conditions when linear EMIC waves can grow
preferentially. The importance of this extends to multi-satellite
wave analysis methods (e.g. Balikhin et al., 2003; Bellan, 2016;
Vines et al., 2021), in which recent studies showed superposed
waves limit the effectiveness of multi-satellite wave vector
determination (Lee et al., 2019, Lee et al., 2021). The
application of wave properties not accounting for
superposition can lead to misrepresentation of true wave
properties, and this can be propagated when deriving particle
pitch angle diffusion coefficients, for example, leading to
inaccurate predictions of the effectiveness of EMIC waves in
diffusing particles from high to low pitch angles. Future studies
should identify and treat time intervals when superposed waves
are likely with caution to ensure accurate characterization of
EMIC waves.

Improvements to plasma instruments with ion mass
discrimination have allowed for a small number of studies to
consider and apply multiple ion species measurements to
improve understanding of EMIC wave generation. Overall,
there continue to be differing methods of utilization of
available particle data for investigating EMIC wave generation.
Adequate energy range of plasma instrumentation is needed to
cover the ions and electrons relevant for EMIC wave studies. As
summarized in Table 1, this is a broad energy range because
EMIC waves can interact with cold and hot ions as well as cold/
thermal and relativistic electrons. For hot, energetic (>keV) ions,
a sufficiently broad instrument energy range supports accurate
specification of the hot ion free energy for wave generation or the
hot heavy ions that may damp the waves. Recent studies
combining ion measurements from multiple instruments
onboard a Van Allen Probes spacecraft have been able to
calculate full ion moments (from ∼1 eV to 600 keV), for
comparison to quasilinear theory for EMIC wave growth (Yue
et al., 2019; Noh et al., 2018, Noh et al., 2021). While these studies
investigated the relationship of EMIC wave occurrence relative to
the hot proton anisotropy, they focused on the role of protons and
temperature anisotropy for providing free energy needed for wave
instability. This is despite theory showing the importance of
heavier ion species in defining the band structure as well as
wave growth in each band generally organized by the heavy ion
species (e.g. Kozyra et al., 1984; Denton et al., 2014). Provided the
cyclotron resonance condition is met, it is possible that heavy ion
species with temperature anisotropy could also contribute to
wave growth below the corresponding ion gyrofrequency.
These contributions of heavy ions to EMIC wave occurrence
are pending additional investigation. Investigations of ion
composition data with improved availability have shown how
the relative flux of inner magnetosphere heavy ions changes with

geomagnetic activity (Kistler et al., 2006; Kistler et al., 2016).
Similar trends were seen in the outer magnetosphere (Lee et al.,
2021). Future efforts will continue to improve understanding how
evolution of cold and energetic heavy ions with solar/
geomagnetic activity affects EMIC wave growth. The cold ion
species, however, are often problematic to characterize.

Measurements of the cold ion species supports the derivation
of accurate cold (0–10 s eV) ion moments of solar wind and
ionospheric ion species for testing theory of linear wave growth.
Routine cold ion measurements are necessary for accurately
determining the times or magnetospheric regions where warm
plasma effects influence wave growth and subsequent wave-
particle interactions, as explored in modeling studies (Chen
et al., 2011; Silin et al., 2011). But because of spacecraft
positive charging effects, cold ion measurements are often
challenging to make and are not available routinely. Active
spacecraft potential control (ASPOC) is one method that helps
mitigate the positive charging effect (Torkar et al., 2016),
decreasing the amount of positive charging but not completely
neutralizing it. Few eV ions remain unmeasured most of the time
except when plasma bulk flows and ULF waves assist with
accelerating these ions above the remnant spacecraft potential
energy (André and Cully, 2012; Engwall et al., 2009; Lee et al.,
2012, Lee et al., 2019, Lee et al., 2021). Continued efforts
(Zurbuchen and Gershman, 2016; Toledo-Redondo et al.,
2019; Barrie et al., 2019) to overcome this charging problem
can improve understanding of the contribution of cold ions and
their mass composition to the generation of EMIC waves and
their properties. In the absence of wave measurements
themselves, a linear theory proxy based on a proton-electron
plasma and the bulk plasma parameters that can be extracted
from spacecraft datasets has helped identify when EMIC wave
growth is likely (Allen et al., 2016; Blum et al., 2009, Blum et al.,
2012); though this proxy method does not always yield
agreement, predicting wave growth when no waves were
observed (Lin et al., 2014; Zhang et al., 2014). It may be
possible that future improvements to this proxy through
inclusion of additional measurable ion population parameters
can be helpful for interpreting EMIC wave generation.

In addition to EMIC waves characterized in terms of linear
theory, triggered (or rising tone) nonlinear EMIC wave
emissions are known to evolve out of the linear instability
and associated cut-off wave frequencies determined by the ion
composition (Omura et al., 2010). The subsequent nonlinear
growth of the triggered emissions at their source region is
determined by the frequency sweep rate that is proportional
to the wave group velocity, which is again influenced by the ion
composition. A few studies on observations or simulations of
triggered emissions have used estimated or assumed ion
composition to investigate the magnetospheric conditions
supporting these nonlinear emissions (Pickett et al., 2010;
Shoji and Omura, 2013; Grison et al., 2013; Nakamura et al.,
2015; Grison et al., 2016, Nakamura et al., 2016). It remains
unknown the role of ion composition in nonlinear wave
evolution. More frequent and accurate measurements of
comprehensive ion composition will support additional
studies of nonlinear growth of EMIC waves.
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Finally, recent studies have utilized multipoint measurements
and simultaneous wave, hot, and cold plasma measurements to
explore the spatio-temporal structure of EMIC wave active
regions and their relation to plasma structures (Engebretson
et al., 2018; Blum et al., 2017). Coordinated EMIC wave
measurements at multiple local times, radial distances, as well
as on the ground have revealed that these waves are often radially
narrow but extended in time and azimuth (e.g. Mann et al., 2014;
Paulson et al., 2014; Blum et al., 2020). Direct associations
between EMIC waves and hot ion structures, such as particle
injections, have been found across the dusk-side magnetosphere
(Remya et al., 2018; Jun et al., 2019; Chen et al., 2020; Blum et al.,
2015; Remya et al., 2020), whereas other studies observe EMIC
waves well-confined to cold plasma density enhancements and
gradients (Usanova et al., 2014; Tetrick et al., 2017; Blum et al.,
2020; Yuan et al., 2019). Coordinated multipoint measurements
and improved orbital configurations aid in mapping out the
spatio-temporal properties of EMIC waves, needed for
quantifying their impact on energetic particle populations as
discussed more in Wave Effects Section , while comprehensive
wave and plasma measurements can help reveal the drivers of the
wave spatial and temporal properties.

Wave Propagation
EMIC waves of magnetospheric origin have been measured by
ground magnetometers and fall into the Pc1-2 (continuous
pulsation) frequency range. Magnetically conjugate
observations have confirmed that equatorially-generated EMIC
waves can propagate all the way to the ground (e.g. Usanova et al.,
2008, and references therein). But this is not always the case,
particularly during the main phase of geomagnetic storms when a
distinct lack of Pc1-2 waves is observed at ground magnetometers
compared to in situ observations (Engebretson et al., 2008; Posch
et al., 2010). Ray tracing of EMIC waves suggests as waves
propagate from the equator, the waves should become oblique
and eventually reflect at middle magnetic latitude when the wave
frequency falls just below the bi-ion hybrid resonant frequency
(Rauch and Roux, 1982; Horne and Thorne 1990; Rönnmark and
André, 1991; Chen et al., 2014). This bi-ion hybrid resonant

frequency (e.g.,ωbi1 andωbi2 depicted in Figure 1B) is also known
as the Buchsbaum resonance (Buchsbaum, 1960) and defines a
forbidden region of wave propagation. But several potential
mechanisms can explain the access of EMIC waves to low
altitudes. First, full wave simulations (e.g. Kim and Johnson,
2016) suggest waves can tunnel through the evanescent region via
mode conversion at locations where the wave frequency matches
the local crossover frequency (e.g. ωcr1 and ωcr2 depicted in
Figure 1B). Second, left-handed O+ band EMIC waves can
propagate along the field line toward higher magnetic field
regions without being subject to bi-ion hybrid resonance
(since O+ ions are the presumed heaviest ions in the
magnetosphere). Third, density irregularities and gradients,
such as at the plasmapause (e.g. Chen et al., 2009; de Soria-
Santacruz et al., 2013) can keep the EMIC wave normal more or
less aligned with the magnetic field, and therefore avoid
encountering of the bi-ion hybrid resonance which occurs at
perpendicular propagation. Further investigations of the plasma
conditions resulting in EMIC wave propagation to the ground,
and their dependence on location and geomagnetic activity, will
enable us to improve understanding of these phenomena.

Based on known and theorized properties of propagating
EMIC waves, satellite wave observations have also been used
to infer information about the local plasma environment. The
propagation of EMIC waves to and across local crossover
frequencies in a multi-ion plasma can allow waves to achieve
linear or right-handed polarization. Thus, under certain
assumptions on wave generation, wave properties from Fourier
spectra and the possibility of crossover frequencies enabling
mode-conversion during propagation have been used to infer
the ion composition or presence of minor ion species in Earth’s
magnetosphere (Min et al., 2015; Miyoshi et al., 2019;
Engebretson et al., 2018; Bashir and Ilie, 2021). Wave
modeling and mode conversion at the bi-ion hybrid resonance
has also been presented as a method to derive magnetospheric ion
composition (E. H. Kim et al., 2015). While event studies have
suggested the presence of He++ (Engebretson et al., 2018; Lee
et al., 2019), N+ (Bashir and Ilie, 2021), as well as the more
typically assumed O+ and He+ species, direct observations of

TABLE 1 | Summary of relevant desired particle and field observations for future EMIC wave studies, including instrument challenges for making these measurements.

Observation Dynamic Range Measurement details Measurement challenges Potentially relevant past
instruments

Low-energy/cold
ions

0–100 s eV • Mass discrimination Remedies for positive spacecraft charging,
sufficient sensor geometry factor and collection
time

DE 1 IMS, e-POP IRM, Cluster CODIF,
RBSP HOPE, MMS HPCA, Arase LEPi• Charge state

• Pitch angle distributions
Hot ions 100 s eV—100 keV • Mass discrimination Cross-calibration of ion instruments covering

broad energy range
RBSP HOPE + RBSPICE, MMS HPCA +
EIS, Arase LEPi + MEPi• Charge state

• Pitch angle distributions
Low-energy/cold
electrons

0–100 s eV • Differential energies Remedies for spacecraft-emitted photoelectrons
and secondary electrons

RBSP HOPE, MMS FPI, Arase LEPe,
e-POP SEI• Pitch angle distributions

Hot/relativistic
electrons

100 s
keV—several MeV

• Differential energies Loss cone resolution RBSP MagEIS/REPT, MMS FEEPS,
Arase XEP• Pitch angle distributions

Magnetic and
electric fields

DC—200 Hz
sampling frequency

• Vector E and B
measurement

3rd (axial) component of E field RBSP EFW, MMS FIELDS, SWARM
ASM, THEMIS FGM/EFI

• Simultaneous field
measurement capability
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these ions are often lacking, posing challenges for verification of
these techniques to infer ion composition from the properties of
propagated EMIC waves. Very few examples exist showing that
the ion composition derived using wave spectra in the vicinity of
the crossover frequency is consistent with the measured ion
composition due to the cold ion populations being partially
hidden from detectors because of spacecraft positive charging
(Fuselier and Anderson, 1996; Lee and Angelopoulos, 2014b; Lee
et al., 2019). Because of various complexities in wave analysis, it
would be helpful to future EMIC wave studies to consider particle
measurements to support interpretation of wave propagation and
mode conversion.

Wave Effects
EMIC waves can interact with a broad range of particle
populations in the inner magnetosphere, through cyclotron or
Landau resonance as well as non-resonant or nonlinear
interactions. Through these interactions, the waves can impact
electrons or ions spanning orders of magnitude in energy. We
focus on the wave effects on energetic particles in this review and
refer the reader to a companion paper dedicated to interactions of
EMIC waves with thermal plasmas (M. E. Usanova, submitted to
this issue, Energy exchange between EMIC waves and thermal
plasma: from theory to observations).

It is known that the anomalous resonance condition
betweenleft-handed EMIC waves and electrons requires
electrons (usually in the relativistic energy range) to overtake
the EMIC waves so that in the frame of moving electron
gyrocenter the wave polarization is seen as right-handed and
the Doppler-shifted wave frequency matches the electron
gyrofrequency (conceptualized in Figure 1A). For such a
condition to be satisfied, EMIC waves with sufficiently large
wavenumber (kz � Ωce/vz) are required. In the cold plasma
limit with sufficient He+ ions, He+ band waves just below the
He+ gyrofrequency attain large wave numbers, and therefore have
been proposed as a potential candidate for resonating with
relativistic electrons and producing scattering loss (Lyons and
Thorne, 1972; Summers and Throne, 2003; Ukhorskiy et al., 2010;
Thorne and Kennel, 1971; Shprits et al., 2016). Observational
evidence of relativistic electron precipitation in association with
EMIC waves has been reported by an increasing number of recent
studies (e.g. Rodger et al., 2008; Li et al., 2014; Blum et al., 2015;
Blum et al., 2019; Lessard et al., 2019; Qin et al., 2019; Sigsbee
et al., 2020; Kim et al., 2021). However, the cold plasma
approximation may fail near the He+ gyrofrequency, and the
warm plasma effect of He+ ions on wave growth should be
considered. Spacecraft observations suggest warm plasma
effects may be relevant in the inner magnetosphere (Lee et al.,
2012) and the inclusion of warm plasma effects in modeling
(Chen et al., 2011; Silin et al., 2011; Ni et al., 2018) shows that the
excitation of He+ band waves near the He+ gyrofrequency tends
to require reduced He+ ion density, and once generated, the warm
plasma EMIC waves possess much smaller wavenumber than
expected from cold plasma theory. Both points limit the
capability of EMIC waves resonating with electrons ≤1 MeV.
At the same time, sub-MeV electron precipitation associated with
EMIC waves has been reported with statistical lower cut off

energy down to 300 keV (e.g. Hendry et al., 2020; Capannolo
et al., 2019). Many of the low Earth orbit (LEO) satellite
observations used to infer the electron precipitation caused by
EMIC waves have not been energy-resolved and future direct
measurements will continue to help characterize the spectrum of
energetic electrons impacted by EMIC waves (cf. Hendry et al.,
2016). Nonetheless, the unexpectedly low (∼100 s keV) energy of
electrons precipitated by EMIC wave interactions may be
explained by a non-resonant scattering mechanism (Chen
et al., 2016), when the electrons below the cyclotron resonant
energy are also subject to effective scattering due to spatial
structure of the EMIC wave packet. Another potential
mechanism proposed by Denton et al., 2019 is the resonant
interaction of electrons with low amplitude short-wavelength
EMIC waves in the H+ band (with frequency above the He+

gyrofrequency), though it is unclear how often magnetospheric
conditions allow for the generation of such waves. Observations
of two components of electric field and three components of
magnetic field have been applied to estimate wavenumber of
EMIC waves and statistical analysis showed that H+ band waves
carry shorter wavenumber than He+ band waves, suggesting that
H+ band waves are more likely to resonantly interact with MeV
electrons and below (Chen et al., 2019a). Recent magnetospheric
studies have observed evidence of EMIC wave scattering within
the trapped MeV electron population near the magnetic equator,
showing bite-outs at low pitch angles as well as local minima in
phase space density profiles concurrent with EMIC wave activity
(e.g. Bingley et al., 2019; Usanova et al., 2014; Shprits et al., 2017;
Blum et al., 2020). Furthermore, nonlinear electron scattering due
to EMIC waves manifested in fine-scale pitch angle distribution
variation in association with EMIC waves (Zhu et al., 2020). The
electron pitch angle distribution showed a reverse slope with a
secondary flux peak near the loss cone at times when intense
EMIC waves were present, which may be explained by
competition of nonlinear phase bunching that transports
electrons from low pitch angle to moderate pitch angle (Albert
and Bortnik, 2009), nonlinear loss cone reflection (Su et al., 2012;
Chen et al., 2016) that prevent electron scattering into the center
of loss cone (e.g., zero pitch angle), and diffusive transport. These
collective studies show that the frequency distribution of EMIC
waves, as well as cold and warm ion populations, play major roles
in determining the effectiveness of these waves in scattering and
precipitation loss of energetic electrons to the atmosphere, and
pitch-angle and energy-resolved measurements of energetic
electrons both near the equator as well as at LEO can help
confirm theoretical EMIC wave impacts on radiation belt
populations. The future measurements important for
characterizing the magnetospheric plasma, EMIC waves, and
distribution of trapped electrons impacted by the waves are
summarized in Table 1.

Although many studies discuss the interactions of EMIC waves
with radiation belt electrons, the waves are also believed to havemajor
effects on energetic protons in the ring current or plasma sheet,
leading to their precipitation to the ionosphere where the precipitated
protons may cause significant impacts to ionospheric
electrodynamics. Frey et al., 2004 investigated subauroral morning
proton spots (SAMPS) that were thought to be evidence of localized
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but intense interactions of EMIC waves with ring current protons in
association with plasmaspheric refilling after geomagnetic storms.
Fuselier et al., 2004 and Spasojevic and Fuselier (2009) also explored
sub-auroral proton precipitation through use of IMAGE FUV images
and their association with plasmaspheric plumes in the afternoon
sector. Yahnin et al., 2007 showed conjugate ground-based
observations with low altitude proton measurements to confirm
the role of EMIC waves as the mechanism leading to these
subauroral proton spots. Such precipitation images can help map
out spatial and temporal evolution of EMIC wave active regions. In
addition to localized interactions, modeling studies investigated
cyclotron resonant interactions of EMIC waves with central
plasma sheet protons (Cao et al., 2016) to indicate protons in this
magnetosphere region can be efficiently scattered by EMIC waves.
Model-data investigations of proton field-line curvature (FLC)
scattering were unable to reproduce measurements of enhanced
proton precipitating flux at low altitude and suggested that proton
scattering by EMIC waves should be considered (Chen et al., 2019b).
Additional modeling work investigating the combined effects of FLC
and EMIC wave scattering showed that protons scattered by EMIC
waves significantly impact ionospheric electrodynamics at afternoon
to dusk MLTs comparable to the electron precipitation dominant
between pre-midnight to morningMLTs (Zhu et al., 2021). The LEO
satellites that provided the measurements of proton precipitating flux
for the above studies could be improved by expanding the energy
range and spectral resolution of instrumentation. In addition, orbital
coverage and networking with existing missions could enable
continued studies of the asymmetric input of energetic particle
flux into the ionosphere that requires resolving temporospatial
processes. These future efforts will enable us to understand the
quantitative effects of magnetospheric EMIC waves on the
coupled magnetosphere-ionosphere system and how those effects
change as functions of solar or geomagnetic activity and
magnetosphere-ionosphere regions.

DISCUSSION AND FUTURE
OPPORTUNITIES

A variety of recent missions have provided opportunities to
launch scientific instrumentation and apply them to
investigations of EMIC waves throughout Earth’s
magnetosphere. An ideal measurement suite for investigating
EMIC waves has been summarized in Table 1, along with
challenges for future instrumentation. In addition to
developments to necessary instrumentation, future space

science missions could investigate various questions remaining
related to the generation and effects of EMIC waves on
magnetospheric plasma populations and potential subsequent
effects on the ionosphere. To make significant progress on this
topic, constellation-class missions are required. The waves should
ideally be observed in their source regions in the magnetosphere
and distributed members of the satellite constellation could then
be able to observe how the generated waves:

1. Propagate from magnetospheric source regions to higher
latitudes and often to the ground.

2. Impact trapped particle populations so that an improved
quantitative understanding of EMIC wave effectiveness on
particle scattering (and heating) can be developed.

3. May result in time-dependent impacts on the ionosphere and
its electrodynamics.
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