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Structures in the solar wind result from two basic mechanisms: structures injected or
imposed directly by the Sun, and structures formed through processing en route as the
solar wind advects outward and fills the heliosphere. On the largest scales, solar structures
directly impose heliospheric structures, such as coronal holes imposing high speed
streams of solar wind. Transient solar processes can inject large-scale structure
directly into the heliosphere as well, such as coronal mass ejections. At the smallest,
kinetic scales, the solar wind plasma continually evolves, converting energy into heat, and
all structure at these scales is formed en route. “Mesoscale” structures, with scales at 1 AU
in the approximate spatial range of 5–10,000Mm and temporal range of 10 s–7 h, lie in the
orders of magnitude gap between the two size-scale extremes. Structures of this size
regime are created through both mechanisms. Competition between the imposed and
injected structures with turbulent and other evolution leads to complex structuring and
dynamics. The goal is to understand this interplay and to determine which type of
mesoscale structures dominate the solar wind under which conditions. However, the
mesoscale regime is also the region of observation space that is grossly under-sampled.
The sparse in situ measurements that currently exist are only able to measure individual
instances of discrete structures, and are not capable of following their evolution or spatial
extent. Remote imaging has captured global and large scale features and their evolution,
but does not yet have the sensitivity to measure most mesoscale structures and their
evolution. Similarly, simulations cannot model the global system while simultaneously
resolving kinetic effects. It is important to understand the source and evolution of solar wind
mesoscale structures because they contain information on how the Sun forms the solar
wind, and constrains the physics of turbulent processes. Mesoscale structures also
comprise the ground state of space weather, continually buffeting planetary
magnetospheres. In this paper we describe the current understanding of the formation
and evolution mechanisms of mesoscale structures in the solar wind, their characteristics,
implications, and future steps for research progress on this topic.
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1 INTRODUCTION

The solar corona is comprised of a hot, ≥1 MK plasma that expands outward into the solar system,
carrying magnetic field with it, and reaching flow speeds greater than the Alfvén speed. This flow is
the solar wind, and defines the heliosphere. The solar wind is not laminar, but is dynamic and filled
with structures on many spatial and temporal scales, from the large down through kinetic dissipation
scales. The largest scales are directly imposed onto or injected into the solar wind, and include the
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timescale of solar rotation, the spatial scales associated with the
global coronal magnetic field, and phenomena such as coronal
mass ejections (CMEs). At the other end of the size spectrum are
the smallest scales, those where electron- and ion-scale kinetic
physics and dissipation occur, which are all formed through
evolution en route. There is a many-orders-of magnitude
spread in scale sizes between the large-scale structure and the
kinetic dissipation scales of the solar wind (Verscharen et al.,
2019). Neither observations nor simulations are currently capable
of spanning the mesoscales. We define mesoscales to include this

multiple-decade size range that is larger than the dissipation
scale and similar plasma scales, and smaller than the largest-
scale structures. Unlike the large scale structures, which are
always imposed/injected, and the small scale structures, which
evolve en route, mesoscale structures can be created through
either mechanism. At 1 AU, mesoscales occur between
approximately 5–10,000 Mm, or 10 s to 7 h under the
assumption that the structures are strictly advecting. For in
situ measurements, which measure the solar wind at a single
point, the spatial scale is related to the measured temporal scale

FIGURE 1 | The spatial scales of solar wind phenomena span from the kinetic (<the ion inertial length) to a large fraction of the Heliosphere. The three spatial
regimes, kinetic, mesoscale, and large-scale roughly parallel the three turbulence regimes, dissipation, inertial, and energy containing. Structure at the large-scale is
clearly injected and imposed by the Sun; structure at the smallest scales has evolved en route. Mesoscale structures are created through evolution and injected/
imposed, and which mechanism dominates is ambiguous due to insufficient observations (both in situ and remote) and the inability of current numerical simulations
to span from kinetic through mesoscales to large-scale.
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by L � Vsw p duration, while in images both spatial and temporal
scales can be directly measured.

In Figure 1 we show a conceptual view of the full range of
scales in the solar wind, and highlight representative examples of
solar wind phenomena observed at the different scales. The y-axis
shows the range of scale sizes from large-scale to kinetic. From left
to right, we provide representative cartoon examples of each scale,
example spectral slopes of the measured plasma variations, the
corresponding turbulence regime, whether the scales’ creation is
dominated by injected/imposed versus evolution, the ability of
current observations to measure them, and the ability of current
simulations to model them.

At the smallest scale lies the kinetic scale, where plasma
dynamics and structure are dictated by the motion of
individual particles. The transition between the kinetic and the
mesoscale is generally considered to be related to the ion inertial
length, di, or the ion gyroradius. At 1 AU, the observed break in
the spectra of magnetic field fluctuations from the inertial range
to the dissipation scales typically is observed to occur at advected
time scales of several seconds (Leamon et al., 1999), or
equivalently on spatial scales on the order of hundreds of km
through a fewMm via the Taylor hypothesis (that spatial crossing
time dominates temporal behavior of the solar wind as measured
in situ). This scale is close to the proton cyclotron frequency
(Verscharen et al., 2019) though multiple mechanisms have been
suggested to explain this spectral break (Leamon et al., 1999).
Note also that the Taylor hypothesis has limitations in the context
of turbulence (Treumann et al., 2019; Bourouaine and Perez,
2020; Perez et al., 2021). At these small scales, all of the structure
and dynamics are created as a result of processing and evolution
en route to 1 AU. Any injected or imposed structure from the
corona begins to evolve on timescales as rapid as the wave-
particle interaction time scale (Bruno and Carbone, 2013);
structural evolution on small scales has been observed both in-
situ (Elliott et al., 2016) and (on larger scales) remotely (DeForest
et al., 2015).

The largest scale solar wind structures are all imposed/injected
from the Sun. For example, the traditional solar wind separation
by speed into “fast” and “slow” wind (Neugebauer and Snyder,
1962; Neugebauer and Snyder, 1966; McComas et al., 1998), are
empirically associated with and imposed by the large scale solar
structures coronal holes and coronal streamers, respectively. Co-
rotating interaction regions (CIR) and stream interaction regions
(SIR) form due to adjacent faster and slower wind regions in
combination with solar rotation, producing compression regions
where the fast wind catches up with the slow, and rarefaction
regions behind (Gosling and Pizzo, 1999). This is an example of
directly imposed structures that have been observed in white light
and tracked to 1 AU using combined STEREO SECCHI
Heliospheric imager data and L1 in situ observations
(Rouillard et al., 2009; Rouillard et al., 2010a; Rouillard et al.,
2010b), and evidence of them survives out to 10 AU (Richardson,
2018).

The transition from the large scale to the mesoscale range is
more ambiguous than the transition from small scale to
mesoscales. For the purposes of this paper, we define the
mesoscales to be the scales at 1 AU at which structures can be

both imposed/injected from the Sun as well as generated en route.
The upper end is roughly 10,000 Mm (or 7 h), based on
observational and theoretical evidence for mesoscale structures
that were created in both ways. These sources of mesoscale
structure are not mutually exclusive, as structures from the
solar atmosphere will also evolve as they advect. Thus, the
complexity in this mesoscale regime is a result of the presence
of both imposed/injected and evolved structures, and the
interplay between them. Determining the fractional amount of
mesoscale structures formed through imposed/injected versus
evolved is important for understanding both solar wind
formation and turbulent evolution, and the answer is likely
dependent on solar wind type and radial distance (evolution
time) from the Sun.

Mesoscale solar wind structures are important to study for at
least three reasons. First, like the solar wind, the Sun is also
dynamic and filled with structures of many scales. Many of the
spatial structures are imposed directly onto the heliosphere, and
many of the transient dynamics are injected directly into the solar
wind as it is formed. Thus, the solar wind and its structures
contain imprints of the physical processes that heat the corona
and that release and accelerate the solar wind (Viall and
Borovsky, 2020). In particular, the traditional bimodal solar
wind classification by speed overly simplifies the inherent
nature and mesoscale structure of the solar wind.
Furthermore, the bimodal classification does not account for
solar wind observed to be of other “types” with distinct
properties (Roberts et al., 2020a), e.g., slow wind that is highly
Alfvénic (Roberts et al., 1987; D’Amicis and Bruno, 2015). Rather
than only two types of solar wind, solar wind formation can occur
via many different pathways, or combinations of physical
mechanisms and source locations (Viall and Borovsky, 2020),
each of which injects and imposes different structures with
unique properties into the solar wind. Some pathways to solar
wind formation result in solar wind plasma with properties and
mesoscale structures that cannot be interpreted with the simple
bimodal classification.

A key aspect of the new framework that allows for many
pathways to solar wind formation is that it considers the time
history of the solar plasma as it becomes the solar wind. This oft-
ignored time history of solar wind formation imparts unique,
observable imprints of the physical regime and processes that
dominate each step; mesoscale structures can be one of the
results. Observations of collisionality (Kasper et al., 2008;
Kasper et al., 2017) and composition (Zurbuchen et al., 2002)
are also examples where the solar wind exhibits a continuum of
states rather than bimodality, and are examples where the time
history of the plasma likely influences the resulting solar wind
characteristics. The three steps of solar wind formation time
history are source, release, and acceleration. The first step is the
source of the plasma–i.e., whether it originates from a coronal
hole (CH), which are tenuous and cooler, an active region (AR),
which are dense and hot, or from the quiet sun (QS), which are of
medium temperatures and densities. Separating the solar wind
source into these three types of locations in the corona, which
themselves are associated with different solar magnetic field
configurations and plasma conditions, is essentially an
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empirical proxy for coronal heating (Viall et al., 2021). The
second step is the release of plasma–whether the plasma is on
open magnetic field lines, with one footpoint rooted in the Sun
and the other already open to the heliosphere, or whether the
plasma is on closed magnetic field lines, with both magnetic
footpoints rooted in the Sun, requiring reconnection for the
plasma to be released into solar wind. The third step is plasma
acceleration, a process that continues through the high corona.
All three steps can occur through a single physical process, such
as turbulence; in such cases, the coronal heating mechanism, solar
wind release, and solar wind acceleration all result from the same
process (Cranmer et al., 2017). However, whenever the second
step is reconnection, then steps one and three are necessarily
separate processes because they occur in different physical
regimes, thus leaving distinct plasma observables and
structures in that parcel of solar wind. This time history of
solar wind formation provides the seeding for eventual
turbulence, and can also lead to the direct creation of
mesoscale structures.

The second reason for studying mesoscales is that as the solar
wind advects outward, these structures evolve, decay, and
generate new mesoscale structures through turbulence, and
thus represent a “laboratory” for studying this fundamental
process (Bruno and Carbone, 2013).

The third reason for studying mesoscales is that dynamic solar
wind and embedded mesoscale structures continually buffet all of
the planets in our solar system, and are the medium through
which larger structures and energetic particles propagate.
Mesoscale structures and dynamics provide a fundamental
transfer of energy from the Sun to Geospace, and constitute
the ground-state of space weather–the every-day driving of
Geospace that happens even during ambient conditions.

In the next three sections we delve into further detail on
structures in the solar wind, represented in Figure 1, and
elaborate on the three above-mentioned reasons that
understanding mesoscale structures in the solar wind is critical
for advancing our understanding of solar wind formation and
evolution. In Section 2, we describe evidence of imposed and
injected structures that leave imprints of coronal heating, and of
the solar wind release and acceleration mechanisms. In Section 3
we describe evidence of turbulent evolution destroying and
creating structures. In Section 4 we describe how these
different types of mesoscale structures drive dynamics in the
magnetosphere. Finally, in Section 5 we discuss the interplay and
ambiguity between evolution vs. injection/imposing of these
structures, when and under what conditions each mechanism
may dominate, and outline potential paths forward for scientific
understanding of this complex interconnection.

2 IMPOSED AND INJECTED STRUCTURE
IN THE SOLAR WIND

Much of the mesoscale structure and variability in the solar wind,
especially observed within 1 AU, is imposed and injected from the
Sun. For decades, researchers have speculated that many in-situ
detected solar wind structures have a solar origin (Crooker et al.,

1993; Crooker et al., 1996b), predating observations that were
capable of conclusively and routinely differentiating between
possible sources. Some fraction of the injected or imposed
structures provide the energy for the turbulent cascade, or
otherwise evolve as they advect, which we will describe in
Section 3. In this section we focus on identifiable structures
that are unambiguously of solar origin.

There exist two main observational methods for
unambiguously identifying structures that were injected/
imposed from the Sun. The first and most direct method is
through remote imaging. This is typically done in white light,
which is sensitive to electron density and location relative to the
Thomson Surface (Vourlidas and Howard, 2006; Howard and
DeForest, 2012), or extreme ultraviolet (EUV) emission, which is
sensitive to electron density squared and is a function of
temperature. When remote images exist with sufficient
cadence and coverage, structures can be tracked in time from
the solar corona as they accelerate outward into the solar wind
(Sheeley et al., 1999; Viall et al., 2010; Viall and Vourlidas, 2015-
07; DeForest et al., 2016; Alzate and Morgan, 2017; Rouillard
et al., 2020; Alzate et al., 2021).

The second method is to use in situ observations of ionic and
charge state composition. These quantities are frozen into the
plasma at heights in the corona at which the collisional ionization
and recombination rates are small. Therefore, above these heights
these properties do not evolve, thus compositional changes
observed in situ indicate that the structure was formed in the
chromosphere and/or corona. The ionic charge states are
generally frozen in by 1.5–3 solar radii, but some elements are
not frozen in until as high as four or five solar radii (Landi et al.,
2012). The relative abundance of elements with low first
ionization potential (FIP) are set lower down in the
chromosphere and a relative enhancement of the abundance
of low FIP elements is an indicator of plasma release from the
closed field corona (Peter, 1998; Laming, 2015). Recent
theoretical work argues that the relative abundance of the
element sulfur may be a unique indicator of the release of
plasma from previously closed-magnetic field lines (Laming
et al., 2019). The relative amount of ions as a function of mass
can also change in the corona through gravitational effects
(Raymond et al., 1997; Weberg et al., 2012-11). This could be
the result of closed magnetic field lines with flows that are small
enough such that gravitational settling occurs (Feldman et al.,
1998). The relative amount of He 2++, or alpha/proton (AHe)
ratio is also set in the solar atmosphere, but it is currently
unknown which physical mechanism(s) determines the final
ratio observed in the solar wind. AHe could be the result of
mass dependent processes, particularly when closed field lines
open to the solar wind, and lighter protons escape faster than
alpha particles (Endeve et al., 2005-05). Currently, observations
indicate that AHe is largely the result of FIP fractionation through
the chromosphere (Rakowski and Laming, 2012), with an AHe
“shutoff” (a rapid depletion in AHe) occurring prior to solar cycle
onset that is likely the result of a mechanism near or below the
photosphere (Alterman et al., 2021). In summary, the nature of
the compositional change are linked to the physical processes
involved in creating the solar wind and mesoscale structures that
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are injected/imposed from the Sun. Thus, such mesoscale
structures contain imprints of the physical mechanisms that
heat the solar corona and release and accelerate the solar wind.

Related, although specific entropy (T/nc) is not a conserved
quantity, as it evolves with distance from the Sun, it is
anticorrelated with the conserved quantity of charge state and
therefore it can also be used as a proxy indicator of imposed or
injected structures (Pagel et al., 2004). Likewise, temperature
changes, which are not conserved, can be used when observed
close to the Sun as a tracer of solar-created structures by the
release of hotter plasma from closed-magnetic field lines on the
sun through reconnection (Stansby and Horbury, 2018; DiMatteo
et al., 2019). For example, in recent work on mesoscale-sized
patches of switchbacks using data from Parker Solar Probe,
(Woodham et al., 2020) argued that, based on enhanced T‖ in
the patches relative to their surroundings, the patches themselves
could be structure injected from reconnection in the solar corona.

In a few isolated cases, which we describe in the examples
below, it has been possible to directly link remote observations
with in situ measurements of injected and imposed mesoscale
structures and follow them from their creation at the Sun out into
the Heliosphere. However, in most cases it is unknown how far
out into the heliosphere the remotely observed structures survive.
Likewise, even when compositional changes observed in situ
indicate a solar creation mechanism, it is usually not known
precisely which solar structures created the in situ-determined
structures. When mesoscale structures are observed without
compositional variations, their source is ambiguous, and could
have been due to evolution en route, or imposed/injected
structure. Thus, most connections between specific in situ
phenomena and remote phenomena are qualitative.

The largest structure that the Sun imposes on the Heliosphere
is that of its magnetic field, in which the global magnetic polarity
inversion line in the corona results in the structure of the
Heliospheric Current Sheet (HCS). As the solar cycle
progresses, the Sun’s magnetic field becomes more complex,
and can even form multiple HCSs. The HCS as a structure
imposed from the Sun was confirmed through predictions
using the magnetic field extrapolated from the photospheric
measurements (Hoeksema et al., 1983) as well as with the
AHe changes associated with the HCS (Gosling et al., 1981).
There is evidence that the Sun also imposes spatial structures on
mesoscales that survive at least through the inner heliosphere,
and possibly out as far as Ulysses measurements (1–5 AU). The
complexity of the photospheric magnetic field produces a web of
separatrices, the S-web, (Antiochos et al., 2011; Linker et al., 2011;
Titov et al., 2011; Pontin andWyper, 2015) in the solar corona on
mesoscales. Separatrices in the corona are regions where
reconnection-released solar wind is most likely to occur. Thus,
the imprint of the spatial structure of the S-web is predicted to
impose boundaries between reconnection-released wind and
open-field wind in the heliosphere on mesoscales (Crooker
et al., 2004; Crooker and McPherron, 2012; Aslanyan et al.,
2021). Recent simulations of interchange reconnection, which
is induced at the lanes between cells of magnetic footpoint
driving, predict that remnants of the scale size and pattern of
photospheric driving by supergranular flows should be imposed

along S-web corridors and into the solar wind (Aslanyan et al.,
2021).

Another example of imposed mesoscale structure may be a
type of pressure balance structure (PBS) observed by Ulysses,
in which the changes in plasma pressure are approximately
balanced by the changes in magnetic pressure and have a
timescale of less than a day (McComas et al., 1995). There
is evidence that polar plumes observed in polar coronal holes
may be imposing these heliospheric counterparts as imprints
in the polar solar wind (Poletto, 2015). Even in the ecliptic, fast
speed streams observed by Helios also showed evidence of
PBSs that were correlated with those expected from a
superradial expansion of plumes into the heliosphere
(Thieme et al., 1989; Thieme et al., 1990). Though PBSs can
also be created through mechanisms en route such as slow
mode waves (Yao et al., 2013a; Yao et al., 2013b), the high beta
portion of the type of PBSs observed by Ulysses were highly
correlated with AHe, and therefore likely of solar origin
(Reisenfeld et al., 1999). Given the association of the
observations with high latitudes during solar minimum
(and therefore likely polar coronal holes), and the
association with the high beta portion of the structures,
(Reisenfeld et al., 1999) suggested that the structures were
polar plume extensions. However, the structures’ observed
frequency did not follow the expected frequency vs. latitude
distribution for co-rotating features, and PBS signatures may
also be susceptible to instability and mixing (Parhi et al., 1999).

Towards the middle range of the mesoscales, (Borovsky, 2008)
studied the scale size of flux tubes observed at 1 AU and found a
median scale size of ∼440 Mm, and suggested that they were
fossilized structures imposed by structures from the Sun.
(Borovsky, 2016) examined what they classified as
“unperturbed coronal hole plasma” between 0.3 and 2.3 AU
and found the plasma to be structured in many of its
components, including in AHe and proton specific entropy
variations, confirming a solar source to much of the coronal
hole wind variability. They argued the radial size scales measured
at the spacecraft correspond to longitudinal scales at the Sun as a
result of solar rotation. Assuming this geometry, they concluded
that the longitudinal scales of the corresponding structures at the
Sun would be a significant fraction of a supergranule (which are
30–35 Mm diameter in the photosphere). Thus, they could be due
to open magnetic field funnels imposing structure on the solar
wind. Examining the boundaries between these mesoscale
structures, (Borovsky, 2020b) showed that discontinuous
changes in AHe are correlated with discontinuities in the
magnetic field direction, i.e., current sheets. They showed that
this correlation applies to all types of solar wind, and that the
discontinuities are weaker away from the changes in AHe. Lastly,
they showed that sharp changes in electron strahl intensity also
corresponded to larger discontinuities in the magnetic field
direction. Together, these observations support the
interpretation that much of the mesoscale structure in the
solar wind is likely imposed flux-tube structure from the solar
corona.

There are also time-dynamic processes in the solar atmosphere
that inject structure into the solar wind and heliosphere. The
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largest injected transient structures are CMEs. These are
explosive events that can have speeds of up to thousands of
km/s. They involve the buildup and release of magnetic energy at
a magnetic polarity inversion line. Though large CMEs are
generally considered to be created by different phenomena
than the ambient solar wind, the same mechanism of
magnetic energy build up at a polarity inversion line and
subsequent release that creates CMEs is likely also responsible
for a spectrum of mesoscale structures in the solar corona from
pseudostreamer jets (Kumar et al., 2021) down to small X-ray and
EUV jets (Sterling et al., 2015; Wyper et al., 2017). It is predicted
that such jets in polar coronal holes could inject mesoscale
structures into the solar wind that could be observed in the
near-Sun environment with Parker Solar Probe (Roberts et al.,
2018). However, based on empirically-determined jet rates and
filling factors (Savcheva et al., 2007; Sako et al., 2013), (Roberts
et al., 2018) estimated that Parker Solar Probe would only
encounter an average coronal hole jet about once in
50–100 days of observations. While it is currently unknown
how far out into the heliosphere distinguishable jet signatures
survive, it has long been thought that microstreams observed in
Ulysses could be remnants of x-ray or EUV jets. Microstreams
have velocities ± 35 km/s relative to background, last 6 h or
longer, and occur in conjunction with large angle magnetic
discontinuities. They have higher kinetic temperatures, proton
flux, and a slight enhancement of low FIP elements compared to
the average fast solar wind. The compositional changes associated
with microstreams indicate a solar origin (Neugebauer et al.,
1995; Neugebauer et al., 1997). (Neugebauer, 2012) argued
specifically for coronal x-ray jets as the solar source, but polar
plumes are also a possibility due to their association with x-ray
jets (Neugebauer et al., 1997; Poletto, 2015). Using simulations of
jets, (Karpen et al., 2016) demonstrated that the associated Alfvén
wave and density and velocity enhancements produced by jets are
sustained through the outer corona, and are consistent with in
situ observations of microstreams. Similarly, (Velli et al., 2011)
simulated polar plumes and demonstrated that the observed
velocity increase in microstreams could be explained by
different heat deposition in plumes. Evidence suggests that
plumes are driven by jetting activity at their base (Raouafi
et al., 2016), thus for progress it is likely necessary to treat
x-ray jets and plumes as different observable manifestations of
a common process.

At the large scales, but at slower speeds, are slow helmet
streamer blowout CMEs, a subset of which are the so-called
“stealth” CMEs, that do not have an obvious signature in the
low corona (Howard and Tappin, 2008; Robbrecht et al.,
2009). Stealth CMEs originate higher up in the corona, are
slow (about 300 km/s) (Ma et al., 2010; Howard and Harrison,
2013), and, though “stealthy,” their connection through the
global-scale coronal magnetic field to the low corona can be
identified through advanced image processing (Alzate and
Morgan, 2017). (Lynch et al., 2016) modeled a stealth CME
by imposing a large scale global shear meant to represent the
effects of differential rotation on the global coronal magnetic
field. They showed that the footpoint energization in such
driving takes place across the polarity inversion line associated

with the HCS and helmet streamers, as opposed to a polarity
inversion line in an active region.

As with explosive CMEs, streamer blowout CMEs likely also
represent the large end of a continuumof structures created through
a common physical mechanism. There is an abundance of
mesoscale structures that are also associated with the HCS.
(Crooker et al., 1993; Crooker et al., 1996a) identified mesoscale
structures within the HCS in situ at L1, which they demonstrated
could not be due to a wavyHCS traversed by the spacecraft. Instead,
they suggested a solar source to the structures because the observed
structures were consistent with tangled flux ropes, and flux ropes are
generally considered a signature of reconnection. (Suess et al., 2009)
expanded on prior in situ studies of the AHe depletions occurring at
the HCS, and showed that the AHe changes are not centered on the
HCS. The offset AHe changes are consistent with solar
reconnection-injected structure near the HCS, rather than a
static HCS. Thus, the imposed large scale structure of the HCS
is also comprised of injected structures at mesoscales; this picture is
most recently confirmed by Parker Solar Probe in situ observations
close to the Sun (Lavraud et al., 2020). Also consistent with this
picture, mesoscale plasma blobs are observed in remote white light
imaging to be released from the tips of helmet streamers on scales of
many hours (Sheeley et al., 1997; Wang et al., 1998; Wang et al.,
2000; Harrison et al., 2009; Rouillard et al., 2009; Sheeley and
Rouillard, 2010). Their continued acceleration is observed out to 30
solar radii, where they reach typical speeds of around 300 km/s. In
some cases, streamer blobs have been tracked from their helmet
streamer release out to their observation in situ at 1 AU (Rouillard
et al., 2010a; Rouillard et al., 2010b), and Parker Solar Probe in situ
data taken around 30 solar radii (Rouillard et al., 2020).
Reconnection at the helmet streamer seems to be fundamental
to the release of blobs. Observations in white light of raining inflows
(Sheeley et al., 1997; Wang et al., 2000) and the dipolarizations
associated with blobs (Sanchez-Diaz et al., 2017), suggests that the
reconnection often occurs around four to five solar radii. MHD
models (Higginson and Lynch, 2018; Lynch, 2020) and 2D thermal
models (Allred and MacNeice, 2015; Endeve et al., 2005-05) also
show that helmet streamer tips are dynamic and prone to
reconnection. This general picture of streamer reconnection led
(Lynch et al., 2016) to argue that stealth CMEs represents the
middle of the continuum between fast CMEs and mesoscale helmet
streamer blobs, wherein the same universal process of shear across a
polarity inversion line leads to reconnection-released plasma into
the heliosphere.

On mesoscales of tens of minutes to a couple of hours are puffs
and periodic density structures. Some of these have been observed in
white light images to originate at the Sun as low as 2.5 solar radii, and
can be followed out to about 50 solar radii (Sheeley et al., 1997; Viall
et al., 2010; Viall and Vourlidas, 2015-07; DeForest et al., 2016;
DeForest et al., 2018). As with helmet streamer blobs, periodic
density structures occur preferentially near the HCS (Viall and
Vourlidas, 2015-07). They occur at several characteristic scales,
including 90min (Viall and Vourlidas, 2015-07) and shorter
(DeForest et al., 2018). In a simulation of reconnection at the
helmet streamer, (Réville et al., 2020) demonstrated that periodic
density structures at the HCS could be the result of the tearingmode.
On the other hand, (Allred and MacNeice, 2015) and (Schlenker
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et al., 2021) argued that the periodicity was determined by the
interplay between heating and expansion of the last closed field lines,
and the retraction of field lines after reconnection. (Pylaev et al.,
2017) argued for a thirdmechanism, wherein a standing shock at the
90 min acoustic cutoff frequency of the corona drives reconnection.
Regardless of the precise mechanism, the timescale of the resulting
density structures is a constraint on how magnetic reconnection
occurs at the helmet streamers. With limitations of current remote
white light instruments in terms of sensitivity, and temporal and
spatial resolution, periodic density structures are too small and faint
to see in more tenuous wind outside of streamers, or beyond about
50 Rsun where the density and associated signal is too weak.
However, (DiMatteo et al., 2019) identified several instances of
90 min periodic density structures at the HCS close to the Sun in
Helios data. They were associated with temperature changes, and
thus determined to be of solar origin. At 1 AU, (Kepko et al., 2016)
showed an example of 90 min periodic density structures associated
with compositional changes, and (Viall et al., 2009b) showed an
example of 30min periodic density structures associated with AHe
changes. Thus, at least some periodic density structures survive
through the inner heliosphere. Both (Kepko et al., 2016) and
(DiMatteo et al., 2019) showed evidence that at least one of the
structures in the periodic density train was a flux rope, and so
consistent with reconnection as their formation mechanism.

More generally, mesoscale structures in the heliosphere away
from the HCS are expected as a result of interchange
reconnection at the boundaries between open and closed fields
or S-web arcs (Higginson et al., 2017a; Higginson et al., 2017b).
Indeed, (Mason et al., 2019) observed evidence of interchange
reconnection at a null-point topology (i.e., a distinct closed
magnetic field structure from the helmet streamer) in the
corona. With current sensitivity limitations in EUV data, it
was not possible to see the solar wind outflows associated with
the reconnection. In one event of periodic density structures
observed close to the Sun by Helios, the solar coronal source was
confirmed via concurrent temperature changes, and the location
was determined to be far from the HCS, an important test of the
S-web theory of reconnection-released solar wind (DiMatteo
et al., 2019). Analyzing 25 years of Wind solar wind density
data, (Kepko et al., 2020) identified periodic density structures in
all types of solar wind, including fast, ecliptic wind. They occurred
at particular timescales, or equivalent radial length scales, that
were associated with the solar cycle, and the terminator
(McIntosh et al., 2019). Since the 25 years Wind study used all
periodic density structures that were identified, without testing
for associated compositional changes, it is possible that not all of
those were created at the Sun. Even for those that are, further
investigation is required to determine if their properties are a
function of different types of solar wind sources, e.g. reconnection
at the HCS versus other S-web arcs.

3 TURBULENT STRUCTURING IN THE
SOLAR WIND

Structuring and/or destruction of mesoscale solar wind structures
can also occur through turbulence. As Figure 1 shows, the scales

of observed solar wind mesoscales also correspond to the energy
containing and inertial range scales expected from turbulence.
Both fluid and MHD turbulence are driven by nonlinearities
represented by the underlying equations of motion. These
nonlinearities lead to cross-scale cascades of energy first
described by Kolmogorov (1941) and Kraichnan (1967) and
treated by many authors (Frisch, 1995; Bruno and Carbone,
2013). The turbulent cascade carries energy and structure from
the large energy-containing scale through a very broad inertial
range of scales (roughly encompassing the mesoscales defined
above) that are dominated by the turbulent cascade, to a
dissipation scale where the energy becomes a source of heat
(Leamon et al., 1998). In the case of the solar wind, the energy
containing scales are determined by dynamics and structure of
the corona itself (Tu and Marsch, 1995; Chae et al., 1998;
Cranmer et al., 1999). A large variety of mechanisms including
hydrodynamics, MHD modes, and magnetic reconnection, can
give rise to turbulent cascades; once the system develops a cross-
scale energy cascade and characteristic spectral power-law
signature, it is considered “turbulent” regardless of the specific
mechanism. The importance of a cross-scale cascade is that it
gives rise to perturbations in all major measurable parameters of
the flow, including density, velocity and magnetic fields, and
other structural identifiers. The specific relationship between
different types of perturbation depends on the mechanism itself.

There are many lines of evidence indicating that the solar wind
is processed by turbulence as it moves through the solar system,
e.g., see review by (Matthaeus and Velli, 2011). To measure the
turbulence properties using in situ data requires the inclusion of
the Taylor approximation that the dominant source of variability
is spatial structures sweeping over the spacecraft. Therefore, time
spectra yield equivalent spatial spectra of perturbations in all
major wind parameters (Matthaeus and Velli, 2011); the validity
of the Taylor approximation is also corroborated by multi-
spacecraft measurements of at least some coherence
parameters (e.g., Matthaeus et al. (2005)). That corroboration
is important, because the Taylor approximation is known to be
limited in the context of turbulence (Klein et al., 2014;
Bandyopadhyay et al., 2020).

The presence of a turbulent cascade at 1 AU has long been
inferred from time spectra of in situ measurements (Coleman,
1966; Horbury et al., 2005). Comparisons of the magnetic field
spectra measurements show that the break point between the
energy containing scales and the inertial range evolves with
distance from the Sun. In the fast wind, this break point
occurs near 10 mHz at 0.3 AU and steadily evolves to lower
frequencies at larger distances of less than 0.1 mHz at 4.8 AU
(Bruno et al., 2009; Bruno and Carbone, 2013). Those results also
showed that the slow wind is not observed to have a
corresponding break between the inertial and energy
containing scales, but more recent results with Parker Solar
Probe show that the slow wind has a break to energy
containing scales, but at a lower frequency than the fast wind
(Chen et al., 2021).

The correlation length is often used to define the large end of
the inertial range of scale, under the assumption that it represents
the largest scale of turbulent eddies. Multi-spacecraft
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measurements have yielded 1,000–2000 Mm as the correlation
scale at 1 AU (Matthaeus et al., 2005), corresponding to 1–2 h
crossing time, although the measurement itself is sensitive to
analysis technique (Isaacs et al., 2015) and may be longer. While
in-situ measurements are limited to statistical analyses of the
overall character of the solar wind, imaging measurements afford
direct detection of individual features. The coherence length
result is corroborated by test particle analysis using features in
comet Encke’s tail (DeForest et al., 2015), which also identified an
eddy size scale of approximately 1,000–2000 Mm (i.e., with
roughly 90 min crossing time) at 1AU. However, the comet
tail result may be affected by a turbulent “vortex street” from
interaction between the solar wind and the comet (Nisticò et al.,
2018), and therefore may differ from the turbulent field of the
bulk solar wind itself. This uncertainty associated with the
characteristic coherence length is reflective of the difficulty of
measuring the “native” solar wind flow. While ample spectral
signatures indicate the presence of a turbulent cascade,
definitively measuring the spectral limits of the cascade - and
therefore the dominant processes affecting solar wind variability
at different scales - remains an open problem, in part because
different solar wind parameters yield different spectral
characteristics (Bruno and Carbone, 2013).

In addition to direct spectral measurements and correlation
lengths, several other key results demonstrate that the statistical
characteristics of the solar wind evolve with propagation,
approaching a state consistent with turbulent processing.
Tracing of the cross-helicity evolution with distance from the
Sun provided one of the first clear lines of evidence that nonlinear
dynamical evolution occurs in the solar wind (Roberts et al.,
1987). More recently (Telloni et al., 2021) measured a stream of
solar wind at 0.1 and 1.0 AU and showed that the magnetic
spectral density, flatness, and higher order moment scaling laws
were consistent with Alfvénic fluctuations near the Sun evolving
into fully developed turbulence. Similarly, (Chen et al., 2020)
showed that turbulence evolves between 0.17 and 1 AU: at
0.17 AU the data showed increased energy spectral density, a
slope of −3/2, lower magnetic compressibility, and increased
relative amount of outward propagating Alfvénic fluctuations
compared to inward. Close to the Sun, both themagnetic field and
velocity spectra have a slope of −3/2, but only the magnetic
spectra is observed to steepen with distance, and the outward
dominance of the Alfvénic fluctuations is observed to decrease
with distance (Chen et al., 2021; Shi et al., 2021). The evolution of
the outward wave dominance as well as the evolution of the
spectral break point with distance is supported by MHD
simulations of turbulence (Roberts et al., 1991). As physics-
based models of turbulence become more complex, they are
able to reproduce many of the observed characteristics of the
solar wind (Roberts and Ofman, 2019; Adhikari et al., 2021).

The dissipation scale, which defines the small-scale end of the
turbulent inertial range of scales, varies with plasma condition
and with distance from the Sun; a useful benchmark at 1 AU is 2 s
(Leamon et al., 1998), or approximately 600 km. At scales much
smaller than this, the spectrum steepens as kinetic phenomena
convert the perturbations to fully randomized heat. More recent
work has demonstrated that the relationship between

temperature and velocity evolves with distance in a way that is
consistent with turbulent processing (Elliott et al., 2012; Lionello
et al., 2014). Entropy also increases and has less variability with
distance, indicating heating and turbulent processing (Roberts
et al., 2005). The so-called switchbacks observed by Parker Solar
Probe exhibit different break scales between inertial and
dissipation scales and increased level of intermittency than the
surrounding wind, perhaps contributing to the turbulent heating
in the inner heliosphere (Martinović et al., 2021).

Importantly for the purposes of this paper, active turbulence
would process any injected or imposed mesoscale structures from
the Sun. A general trend of processing and statistical modification
is observed to continue to over 30 AU as solar wind features are
“worn down” by dynamic interaction with other parcels of wind
(Elliott et al., 2016). The solar wind at 0.33 AU was observed with
the Helios spacecraft to contain more and sharper spikes in
velocity (Horbury et al., 2018) than further away from the
Sun, and the trend continues inward to the corona itself in the
form of switchbacks observed by Parker Solar Probe (Bale et al.,
2019; Kasper et al., 2019). Indeed, the microstreams observed by
Ulysses - likely related to the larger of the switchbacks that do
survive - are themselves observed to evolve in distance from the
Sun (Reisenfeld et al., 1999). This corroborates the picture of a
solar wind whose structure evolves from the “young” state with
spatial and temporal structure injected by coronal processes, to a
more processed state that reflects the observed turbulent
spectrum further from the Sun.

There is also evidence that turbulence generates new structures
in the solar wind onmesoscales. As one example, there is an active
debate as to whether the switchbacks observed by Parker Solar
Probe (and described above) are created through turbulence or
not, with many arguing that their observed characteristics are
consistent with turbulent formation (Squire et al., 2020; Tenerani
et al., 2020; Shoda et al., 2021). In another example, work by
(DeForest et al., 2016) showed that at least some compact bright
features in the images form in the solar wind as it propagates.
They identified “flocculae” that are observed to “fade in” to the
overall flow between 20 and 80 solar radii from the Sun (see
Figure 1). Typical flocculae are oblong: about the same size as
streamer puffs (∼1 solar radius at 30 solar radii altitude) but
3x–10x wider. These have been interpreted as signs of the
isotropization of shear-driven turbulence (Chhiber et al.,
2019), which may arise locally or be excited as anisotropic
magnetically-guided turbulence carried from the outer corona
itself (Cranmer, 2012; Cranmer and Woolsey, 2015; Oughton
et al., 2015). Similarly, analysis of Helios data showed that the
heliospheric current sheet becomes more complex with distance,
as indicated by more current-sheet crossings (Roberts et al.,
2005). In contrast, a statistical analysis of Helios, IMP8, Wind,
ACE and Ulysses data also showed that the occurrence rate of flux
ropes in the HCS decreases in frequency and and flux ropes are
larger in size with distance from the Sun (Cartwright and
Moldwin, 2008; Cartwright and Moldwin, 2010), indicating
that they likely merge.

Taken as a whole, these results indicate that solar wind is
turbulent. Structure at or below 1,000 Mm observed at 1 AU are
well within the turbulent cascade, in a sequence that begins with
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both spatial and temporal driving in the corona and processes the
imprinted structure through turbulent evolution of shear flows
and eddies. Large-scale turbulent eddies appear to form and be
isotropized at or shortly above the transition from the low-β
corona to moderate-β solar wind, likely about 0.3 AU from the
Sun (DeForest et al., 2016), and the cascade appears to fully
develop between this distance and 1 AU although the turbulence
may remain anisotropic toward the smaller-scale end of the
inertial range (Bruno and Carbone, 2013). However, many
injected and imposed structures observed on scales of tens of
minutes and scales of hundreds to several thousand Mm have
been observed to survive to at least 1 AU. We return to the
inherent ambiguity of these results and its interpretation in the
context of mesoscale structures in Section 5.

4 MAGNETOSPHERIC IMPACT OF
STRUCTURES

The structured solar wind impacts the magnetosphere in several
ways. The solar wind dynamic pressure, pdyn � nimivi2, is the
primary driver of the magnetopause standoff distance and the size
of the magnetosphere. Any mesoscale solar wind structures that
are comprised of changes in density and/or velocity will alter the
magnetic field magnitude inside the magnetosphere. The
interaction between the solar wind dynamic pressure and
magnetosphere can be considered quasi-stationary in the
response to any solar wind structures that have scales larger
than the dayside magnetosphere. As shown in Figure 1 even the
small end of the mesoscales (down to about 100 Mm) in the solar
wind are as large as Earth’s magnetosphere and, therefore, can
drive dynamics in a quasi-stationary way. At ∼100 Mm,
equivalent to a 4 min duration structure advecting at 400 km/s,
the scale size of the structure is approximately similar to the size
of the dayside magnetosphere. The temporal scale of the
interaction is also near the timescale that information
propagates across the magnetosphere, the so-called Alfvénic
travel time. Therefore, the quasi-static assumption breaks
down for solar wind structures on scales smaller than 100 Mm
and/or shorter than 4 min, and propagation effects through the
magnetosphere need to be considered. Regardless of the exact
timescale of the interaction, solar wind dynamic pressure
variability injects compressional energy into the Earth’s
magnetosphere, where it can affect particle energization,
diffusion, and transport.

Large scale solar wind structures, such as CIRs or SIRs that
form when a faster wind overtakes a slower wind, are important
drivers of magnetospheric activity (Gosling and Pizzo, 1999;
Tsurutani et al., 2006; Kilpua et al., 2017). In particular, for
Earth’s radiation belts it has been recognized for decades that
there is a strong correlation between solar wind speed and the flux
of relativistic electrons, particularly in the outer zone and for Vsw

> 500 km/s (Paulikas and Blake, 1979; Miyoshi and Kataoka,
2005; Borovsky and Denton, 2006; Bortnik et al., 2006; Yuan and
Zong, 2012). While CMEs are often considered to be large drivers
of space weather, SIR-driven geomagnetic storms often exhibit
higher fluxes of radiation belt electrons compared to CME-driven

storms (Borovsky and Denton, 2006; Kataoka and Miyoshi, 2006;
Kilpua et al., 2015; Turner et al., 2019), especially at larger radial
distances (>4.5 RE) and during the declining phase of the solar
cycle. The general process of radiation belt enhancements is
energization via local chorus waves combined with radial
diffusion (see review by Li and Hudson (2019)). While the
comparatively long overall SIR scale is important for radiation
belt flux enhancements, the mesoscale structures embedded
within that large scale structure appear to be an important
contributor as well. The compression region between the fast
and slow wind is filled with dynamic pressure fluctuations that
provide a source of broadband compressional power that drives
magnetospheric ultra low frequency (ULF) waves (Kilpua et al.,
2013; Kepko and Viall, 2019). ULF waves are known to be an
important magnetospheric process that can lead to enhanced
radial diffusion, energization, or even loss to atmospheric
precipitation. When combined with high solar wind dynamic
pressure, this externally driven ULF wave activity can scatter
electrons to large radial distances where they can fill a broad
region of the radiation belts, or can be lost due to magnetopause
shadowing (Turner et al., 2012; Hietala et al., 2014). The entire
SIR driving of the magnetosphere can take several days, with the
loss of outer zone electrons apparently more dominant during the
early part of the SIR, and a net increase in the flux of energetic
electrons over the course of the entire SIR event. This highlights
the importance of understanding all of the mesoscale aspects of
solar wind driving within large scale events.

The subset of mesoscale structure that manifest as periodic
density structures are of particular interest for magnetospheric
dynamics, because they can drive magnetospheric ULF pulsations
at discrete periodicities for extended intervals. There is now a
substantial body of research demonstrating magnetospheric
pulsations that are directly-driven by solar wind periodic
density structures (Kepko et al., 2002; Stephenson and Walker,
2002; Kepko and Spence, 2003; Viall et al., 2009a; Villante et al.,
2013; DiMatteo and Villante, 2017). This includes observations of
solar wind-driven pulsations in ground magnetometer data
(Villante and Tiberi, 2016), high latitude ionospheric radar
observations (Fenrich and Waters, 2008), polar UV imaging
data (Liou et al., 2008), and even the equatorial ionosphere
(Dyrud et al., 2008). MHD simulations have confirmed that
cyclic solar wind dynamic pressure structures directly drive
magnetospheric oscillations, and locations of field line
resonance will even amplify the waves (Claudepierre et al.,
2010; Hartinger et al., 2014). The apparent frequencies of
periodic density structures in the frame of the magnetosphere
is often between 0.5 and 4 mHz (Viall et al., 2009a; Kepko et al.,
2020), which is similar to the drift period of radiation belt
particles. Kepko and Viall (2019) showed an event where
radiation belt particles were precipitating to the atmosphere
with a periodicity determined by the solar wind periodic
density driver. Recent work utilizing Balloon Array for
Radiation-belt Relativistic Electron Losses (BARREL)
measurements of particle precipitation suggests an association
between solar wind periodic density structures and
electromagnetic ion cyclotron (EMIC) wave power
enhancements, which scatters energetic electrons into the loss
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cone where they are then lost to Earth’s atmosphere (Breneman
et al., 2020).

An additional mesoscale solar wind structure-magnetosphere
interaction that needs to be considered are intervals of large
interplanetary magnetic field (IMF) that could lead to enhanced
reconnection at the dayside magnetopause. Earth’s magnetic field
points northward at the magnetopause, and therefore when the
IMF has a large southward component (Bsouth), magnetic
reconnection is likely to occur. Dayside magnetic reconnection
is the primary mechanism by which solar wind energy enters the
magnetosphere, and is the ultimate source of much of the
dynamics that occur, including geomagnetic storms and
substorms. High speed solar wind (>750 km/s) is known to be
dominated by large amplitude Alfvén waves (Tsurutani et al.,
1994). Within SIRs, these Alfvén waves are compressed and
increase in amplitude as the high speed flow impinges upon
the slower flow ahead, leading to a pile-up of large amplitude
fluctuations in solar wind IMF Bsouth. The combination of high
solar wind speed, density, and Bsouth often leads to intense
geomagnetic activity. The auroral activity driven by this solar
wind interaction has been termed High Intensity Long Duration
Continuous AE Activity (HILDCAA) (Tsurutani and Gonzalez,
1987). The relationship between these large amplitude Alfvén
waves and the mesocale density structures that are also inherent
to SIRs is an area ripe for study.

In some ways, the magnetospheric impact of solar wind
structures is independent of whether the solar wind structures
are injected/imposed versus formed en route through turbulence.
On the other hand, while turbulence and coronal processes can
both produce mesoscale structures in the geoeffective size scale
range of 100 Mm and greater, coronal processes may produce
mesoscale structures with different properties. For example, it
seems that unique processes in the corona make them periodic
(Kepko et al., 2016; Viall et al., 2009b; Viall and Vourlidas, 2015-
07). In another example, (Kepko and Viall, 2019) demonstrated
that SIRs compress and amplify existing periodic density
structures in the slow wind, thereby increasing their impact on
Earth’s magnetosphere. This is a clear example of where both the
injection mechanisms and evolution impacted Earth’s response.
In summary, for full predictability of space weather at Earth and
the nature of the magnetospheric driving, it is important to
understand how much and which types of mesoscale
structures are formed through turbulence, or injected/imposed
from the solar corona.

5 DISCUSSION

Figure 1 describes the phenomenological structure in the solar
wind, from kinetic through mesoscale to large-scale. The
turbulence regimes discussed in Section 3, and the injected
and imposed structures from the Sun discussed in Section 2,
both produce solar wind structures at mesoscales. There is a clear
interplay between imposed and injected structure, the evolution
of such structure en route to 1 AU, and turbulence creating new
structures, all of which comprise the zoo of mesoscale structures
at 1 AU. The goal is to understand this interplay and to determine

which type of structures dominate the solar wind under which
conditions.

5.1 Differentiating Injected/Imposed vs.
Turbulent Structure
There exist many solar wind phenomena onmesoscales for which
we cannot determine with certainty whether the associated
structures are injected/imposed or are generated en route. As
Figure 1 shows, this is due to lack of both in situ and remote
observations as well as a lack of applicable models with
simultaneous coverage and resolution. Many observations are
non-unique to either formation process. When structures are
observed in situ without compositional changes or a direct link to
tracked structures in images, their source is ambiguous, and could
have been created via either mechanism (Owens et al., 2011).

Correlation lengths and power law spectra are commonly
interpreted in terms of turbulence. However, many physical
processes, e.g., any autoregressive process, can result in power
law spectra and correlation lengths. Time series of discontinuities
can produce a power law with a slope of −5/3 (Borovsky, 2010).
There is strong evidence (Borovsky and Burkholder, 2020) that
the high frequency end of the magnetic power spectra
corresponds to the break point associated with the thickness
of the current sheets at strong tangential discontinuities, and the
amplitude is associated with the time between current sheets.
Likewise, turbulence or other nonlinear processes are likely
involved in heating the solar corona (Rappazzo et al., 2008;
Cranmer et al., 2017; Klimchuk and Antiochos, 2021). If such
mechanisms also affect the creation of the structures in the solar
wind, then the spectra and correlation lengths could reflect the
remnants of that process, rather than actively evolving turbulence
(Viall and Borovsky, 2020). Related, the spectra of velocity,
magnetic field, and density each have different spectral slopes,
which flatten differently, and different break points (Roberts,
2010; Šafránková et al., 2015). Caution should be taken when
inferring the properties of variability in one plasma parameter
from the properties of variability in the others. These
considerations, together with the evidence of continued wind
processing with distance (Elliott et al., 2016), yield an ambiguous
picture: there is no clear indicator that either turbulence or solar
structuring is the primary driver of solar wind mesoscale
structure far from the Sun itself.

There do exist indications that both solar and turbulent
processes are important to shaping the solar wind. For
example, as described in Section 2, there is a population of in-
situ detected magnetic flux ropes that have been observed
simultaneously in white light that are unambiguously formed
at the helmet streamer tip through reconnection and advect along
the HCS. But the population of all flux ropes in the solar wind,
including those at the HCS, could also be due to turbulence
(Cartwright and Moldwin, 2008; Cartwright and Moldwin, 2010;
Zheng and Hu, 2018; Zhou et al., 2021), and there is evidence that
both populations of flux ropes exist in the inner heliosphere
(Murphy et al., 2020). Active reconnection is observed to be
taking place far out into the solar wind (Gosling and Szabo, 2008),
and reconnection across the HCS is very prevalent close to the
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Sun (Phan et al., 2021), as well as at the boundaries of switchbacks
(Froment et al., 2021). This determination is itself subject to
discussion: flux rope identification in situ is a difficult problem,
and different criteria can result in very different event lists (Feng
et al., 2007). Torsional Alfvén waves injected from the Sun, for
example, can share properties with flux ropes (Higginson and
Lynch, 2018), and flux ropes, plasmoids and magnetic islands can
exhibit similar features in the data (Khabarova et al., 2021).
Furthermore, turbulent processing is nearly certain to shred
and/or merge existing flux tubes or flux ropes in a process
analogous to the “magnetochemistry” observed in the
photospheric magnetic field (Schrijver et al., 1997), further
emphasizing the need for cross-scale measurements to identify
those processes.

Switchbacks are another example of mesoscale structures that
could be remnants of reconnection at the Sun, or shear flows from
structure at the Sun, or turbulence. (Martinović et al., 2021)
presented evidence of their formation via turbulence, while
(Larosa et al., 2021) argue for the firehose instability to play a
role, since only 73% of switchbacks are Alfvénic. (Drake et al.,
2021) argue that switchbacks are the result of flux ropes created
through interchange reconnection in the corona, and (Tenerani
et al., 2020) modeled switchbacks and showed that they persist for
up to hundreds of Alfvén crossing times, and thus could be
formed in the corona. To date, no single model has been able to
explain all the observed features of switchbacks, and the struggle
has been to identify unique distinguishing observations that could
differentiate the generation mechanisms. It is possible that
multiple mechanisms are acting. Whatever their creation,
switchbacks are an important mesoscale feature of the solar
wind, with many of their signatures persisting further out into
the solar wind (where the larger ones were often called
microstreams), in observations made by Helios (Horbury
et al., 2018), ACE (Gosling et al., 2009) and Ulysses
(Neugebauer et al., 1995).

5.2 Injected and Imposed Structures and the
Turbulent Cascade
A natural question is how mesoscale structures injected and
imposed into the solar wind survive to 1 AU, rather than
being wiped out by the turbulent cascade, since they populate
the same range of spatial scales. In an analysis of Helios, ACE,
Wind and Ulysses observations of AHe and flux tube boundaries,
(Borovsky, 2012) showed that there is no evidence of mixing
across flux tube boundaries or of stretching and folding of
boundaries. As described in Section 2, PBSs measured by
Ulysses showed a correlation with AHe, suggesting that those
PBSs survived through the inner heliosphere (Reisenfeld et al.,
1999). This correlation decreased with distance from the Sun,
consistent with the eventual evolution and mixing of the polar
plume plasma with other plasma (Parhi et al., 1999). This
indicates that turbulence is acting, but suggests that 1 AU is
still early in the processing of mesoscale structures. The turbulent
processing of mesoscale structures may even be a function of
latitude, because the effects of solar rotation increases dynamical
interactions between streams in the ecliptic. In fact, microstreams

and pressure balance structures are easier to detect in Ulysses
high-latitude data than ecliptic data (Suess, 2001), and this is
thought to be because enhanced dynamic interactions in the
ecliptic make it more difficult to detect them.

One possibility is that in the inner heliosphere, some imposed
and injected mesoscale structures persist, and turbulence grows
within and is bounded by those structures. For example, (Roberts
and Goldstein, 1987) showed the magnetic field spectra have a
slope of −2 due to sharp jumps in the data, but the spectra follow
−5/3 after removal of the jumps. (Borovsky, 2008) argues for
fossil, or imposed, flux tubes wherein the turbulence evolves
within the flux tubes. Different solar wind streams have different
turbulence characteristics (Roberts et al., 2005), and speed is not
as important as solar wind source in determining those properties
(Shi et al., 2021), indicating that the initial conditions of
turbulence on individual flux tubes plays a role. As a final
example, if the injected and imposed structures result in large
shear flows as implied by the flows measure in (DeForest et al.,
2018), turbulence could occur and grow preferentially at such
boundaries.

5.3 Importance of Mesoscale Structures as
Propagation Medium
CIRs, SIRs and CMEs were mentioned in Section 1 and shown in
Figure 1 as examples of injected and imposed large-scale
structures that persist far into the Heliosphere. Their nature is
affected by the solar wind into which they propagate, and there is
evidence that these large-scale phenomena may have sub
structures that evolve en route. Recent work showed several
examples of injected density structures that are compressed
and swept up by a higher speed stream behind (Kepko and
Viall, 2019). These structures existed in the solar wind,
injected at the time of solar wind formation, and were simply
swept up with little evolution other than compression. Along
these same lines, (Borovsky and Denton, 2010; Borovsky, 2020a)
provided evidence that CIRs and interplanetary shocks are not
regions of enhanced turbulence. Rather, turbulence measures
changed steadily across CIRs, in correlation with source region
changes from fast coronal hole wind to slower streamer belt wind.
Similarly, the planar magnetic structures upstream of CMEs are
thought to be the result of the alignment and compression of
preexisting mesoscale structures in the solar wind (Neugebauer
et al., 1993) and this resulting structuring is important for
geomagnetic impact (Palmerio et al., 2016).

Energetic particle propagation is also highly dependent on the
solar wind structure, as the magnetic field can funnel particles,
while fluctuations of the magnetic field and density (Reid and
Kontar, 2010; Klein and Dalla, 2017) can scatter particles. Many
observations of energetic particles have been shown to be
consistent with the random walk of field lines from turbulence
(Jokipii, 1966; Chhiber et al., 2020). Dropouts in energetic
particles and electron strahl also indicate changes in the
magnetic topology such as HCS crossings or local kinks in the
magnetic field (Crooker et al., 1982; Borovsky, 2008). Strahl
intensity and width is correlated with magnetic discontinuities
(Borovsky, 2021); more generally, energetic particle changes
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during ambient solar wind conditions are correlated with changes
in magnetic field and plasma at tangential discontinuities
(Neugebauer and Giacalone, 2015; Tessein et al., 2015).
(Rosenvinge et al., 2009) showed that STEREO energetic
particle data exhibit intensity variations that suggested a
linkage to flux tubes with diameters ∼ 6,000 Mm, with
additional variations suggesting flux tube-funneling on scales
down to 500 Mm. On smaller scales are dropouts, where the
intensity (particle counts per energy bin) in energetic particles
decreased, which was also attributed to trapping along flux tubes
(Mazur et al., 2000; Chollet and Giacalone, 2008). The dropouts
were attributed to flux tubes on the scales of 10–100 Mm
(Giacalone et al., 2000; Chollet and Giacalone, 2011).
Interestingly, strahl particles respond to switchback structure
observed in Parker Solar Probe, but higher energy particles
energies do not, possibly because their larger gyroradius may
not be able to respond to steep rotational discontinuities
(Bandyopadhyay et al., 2021).

6 Future Progress
As shown in the right part of Figure 1, sparse observations have
been a limiting factor in understanding the nature and evolution
of mesoscale structure in the solar wind. Capturing the imposed
and injected structure from the Sun, as well as the subsequent
evolution and creation of new structures, requires continuous
imaging from the low, through the middle, to the high corona,
e.g., from the photosphere through at least five solar radii. This
is where the closed magnetic field lines, and non-radial corona
transitions to a radial, flow-dominated wind. Higher still, the
wind undergoes additional physical transitions up through, for
example, near 30 Rsun, where the solar wind exceeds the Alfvén
speed and many mesoscale structures are “frozen” into the solar
wind flow. The highly structured nature of the solar wind
implies that there is not likely a single radius that this
transition occurs at, but rather a zone over which the
Alfvénic transition occurs (DeForest et al., 2018). This
requires observations that are continuously sampled in time
and have spatial coverage such that structures in the solar wind
can be followed from their source in the solar atmosphere to the
solar wind. Simultaneously, the observations must have the
spatial and temporal resolution and sensitivity to capture the
size scales of interest. Remote observations such as from SDO,
STEREO, SOHO, shown in Figure 1, currently covers a large
fraction of this transition. However, coverage is still not global,
as it is limited in latitude, and has gaps in coverage in distance
from the Sun. Furthermore, the sensitivity and resolution
achieved is just able to sample the largest of the mesoscale
range. WISPR has the potential to make measurements at the
small mesoscale range, and could help fill this gap. In the future,
the Polarimeter to UNify the Corona and Heliosphere
(PUNCH) mission will have the combined global spatial
coverage with temporal and spatial resolution and sensitivity
to address the source of mesoscale structures, their propagation
through the inner heliosphere, and interplay between injected
and imposed structures with turbulence. The COronal
Diagnostic EXperiment (CODEX) mission will measure
temperature and velocity simultaneously with density and

will be able to image changes in temperature and flow
injected and imposed from the Sun. Finally, all images of the
solar corona and solar wind have been taken from the ecliptic,
limiting the ability to measure the azimuthal extent of
structures. The solar polar viewpoint is uniquely able to
sample the effects of rotation on the solar wind. Solar
Orbiter (Müller et al., 2020) will reach an orbital inclination
of approximately 30° during the extended phase of the mission,
which will provide azimuthal measurements of mesoscale
structures and some constraints on rotational effects. A
solar-polar mission that images with a sustained view from
above 70° could determine the role of co-rotation with the
corona on the creation of mesoscale structures, and the
azimuthal structuring and scale sizes of such structures.

At the other end of the spectrum, in situmeasurements of the
small scale kinetics have been well studied with magnetospheric
missions like MMS (Burch et al., 2016; Bandyopadhyay et al.,
2018; Roberts et al., 2020b; Chasapis et al., 2020) and Cluster
(Escoubet et al., 1997; Osman and Horbury, 2006; Sahraoui
et al., 2009; Roberts et al., 2013) when they are in the solar wind,
and the radial dimension of mesoscale structures are captured
well with the 1AU assetsWind, ACE, SOHO, STEREO.With the
limited in situ sampling currently available, these measurements
are sparse, so require long averages to build statistics and a
global picture. The connection between the global scales and
mesoscales can not be done without constellations of in situ
measurements. Even with ideal separation of the STEREO
spacecraft with each other and L1, connecting mesoscales to
global scales, and disentangling time dynamics from spatial
structure is not possible (Jian et al., 2009; Simunac et al., 2009)
using these data alone.

Current computational ability is also limited. Computations
that span the global scales down to kinetic scales of the solar wind
are not currently possible. As with observations, it is at the
mesoscales that simulations are incapable of placing
constraints on theories. The highest resolution MHD models
of the heliosphere can only resolve scales of >150 Mm (Merkin
et al., 2016; Gombosi et al., 2018), capturing the global-mesoscale
transition, but not the full cascade through the mesoscales. On the
other hand, it is too computationally expensive to expand kinetic
simulations up beyond dissipation scales to capture the
mesoscales. Hybrid simulations, even if they resolve the same
spatial range as MHD, still need to resolve a finer temporal range
(gyromotion) and more degrees of freedom (velocity space), with
a resultant sacrifice in the simulation size. As we enter the age of
exascale supercomputing (1018 computations per second), better
resolved hybrid simulations will become possible, including 6-
days Vlasov codes, as well as new approaches for mesocale
simulations, such as spectral and implicit kinetic solvers,
which would enable simulation of the full mesoscale range.

7 CONCLUSION

The solar wind contains structures that are injected and
imposed directly by the Sun and structures that are
generated and evolve en route due to turbulence. At the
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extremes of the spatial scales, it is simple to differentiate these
creation mechanisms. Yet there exists a several orders of
magnitude gap between these two scales, the mesoscale. In
this regime, with a size scale at 1 AU of ∼5–10,000 Mm and
time scales of 10 s–7 h, both injected/imposed and structures
generated en route co-exist, and it is often difficult to
disentangle the two. Competition between the imposed and
injected structures with turbulent and other evolution leads to
complex structuring and dynamics. Injected mesoscales carry
imprints of the processes that release solar plasma and heats
and accelerates the solar wind, and therefore studying them
can provide insight into the generation of the solar wind. The
mesoscale regime is also the region of observation space that is
grossly under-sampled. Sparse in situ measurements are
limited to radial profiles of the solar wind as the wind
advects past the spacecraft, and remote imaging currently
cannot resolve many mesoscales. There is very limited
azimuthal coverage, and even less out of the ecliptic
coverage. Understanding mesoscale structures is important
as they are drivers of Earth’s magnetosphere, and important
upstream conditions for the structuring of CMEs, CIRs, and
the propagation of energetic particles.
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