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Asteroid taxonomies provide a link to surface composition and mineralogy of those
objects, although that connection is not fully unique. Currently, one of the most
commonly used asteroid taxonomies is that of Bus-DeMeo. The spectral range
covering 0.45–2.45 μm is used to assign a taxonomic class in that scheme. Such
observations are only available for a few hundreds of asteroids (out of over one
million). On the other hand, a growing amount of space and ground-based surveys
delivers multi-filter photometry, which is often used in predicting asteroid types. Those
surveys are typically dedicated to studying other astronomical objects, and thus not
optimized for asteroid taxonomic classifications. The goal of this study was to quantify the
importance and performance of different asteroid spectral features, parameterizations,
and methods in predicting the asteroid types. Furthermore, we aimed to identify the key
spectral features that can be used to optimize future surveys toward asteroid
characterization. Those broad surveys typically are restricted to a few bands; therefore,
selecting those that best link them to asteroid taxonomy is crucial in light of maximizing the
science output for solar system studies. First, we verified that with the increased number of
asteroid spectra, the Bus–DeMeo procedure to create taxonomy still produces the same
overall scheme. Second, we confirmed that machine learning methods such as naive
Bayes, support vector machine (SVM), gradient boosting, and multilayer networks can
reproduce that taxonomic classification at a high rate of over 81% balanced accuracy for
types and 93% for complexes. We found that multilayer perceptron with three layers of 32
neurons and stochastic gradient descent solver, batch size of 32, and adaptive learning
performed the best in the classification task. Furthermore, the top five features (spectral
slope and reflectance at 1.05, 0.9, 0.65, and 1.1 μm) are enough to obtain a balanced
accuracy of 93% for the prediction of complexes and six features (spectral slope and
reflectance at 1.4, 1.05, 0.9, 0.95, and 0.65 μm) to obtain 81% balanced accuracy for
taxonomic types. Thus, to optimize future surveys toward asteroid classification, we
recommend using filters that cover those features.
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1 INTRODUCTION

Up-to-date taxonomies and spectra are the most important tools
to constrain the composition and surface mineralogy of asteroids
with various methods. Those typically rely on various modeling
techniques and underlying comparison with laboratory spectral
measurements of meteorite samples and/or samples returned
from space missions (Reddy et al., 2015). So far, this allowed
for the identification of several meteorite parent bodies, for
example, the howardite–eucrite–diogenite (HED) meteorites
and asteroid (4) Vesta (or more broadly V-types) (McCord
et al., 1970), LL chondrites, the S-type asteroids (Itokawa or
Eros) (Wetherill et al., 1988; Nakamura et al., 2011) or the F-type
asteroids, and the ureilite meteorites (thanks to the observed fall
of the 2008 TC3 asteroid, which impacted the Earth in 2008
(Jenniskens et al., 2010). However, there are still multiple
challenges linking asteroids types with meteorites and
estimating their geochemical composition from remote
observations. For a full review, we refer the reader to Reddy
et al. (2015).

Asteroid taxonomic schemes are tied up to the type and
wavelength coverage of data used for their classification as
well as the number of objects studied. Early classifications
were based on color, albedo, and spectral shape (Chapman
et al., 1975). Those divided asteroids into three basic
categories: C-carbonaceous, S-siliceous, and the U-unknown
class, that is, objects that did not fit the two previous
categories. Later taxonomies included an extended number of
objects and features used in the classification. Several taxonomies
became popular over the years; those include the Tholen
taxonomy based on the Eight-Color Asteroid Survey (ECAS)
survey and albedos (Tholen, 1989), the S3OS2 classification
which used visible spectra obtained at the 1.52-m telescope at
ESO (La Silla), or the Buss taxonomy based on the Small Main-
Belt Asteroid Spectroscopic Survey (SMASS) observations in
visible wavelengths (Bus and Binzel, 2002). The current
Bus–DeMeo asteroid taxonomy has used the principal
component analysis (PCA) of 371 asteroid spectra obtained in
the visible (VIS) and near-infrared (NIR) ranges, that is, from
0.45 to 2.45 μm (DeMeo et al., 2009). The system presented 24
classes and provided an extension to an earlier taxonomy based
on VIS spectra only (Bus, 1999). An additional Xn class was later
added by Binzel et al. (2019). That system helped explain the
compositional distribution of the asteroid main-belt and the
delivery efficiency of various taxonomic types to the near-
Earth asteroid population (DeMeo and Carry, 2014; Carry
et al., 2016; Barucci et al., 2017; Binzel et al., 2019; Devogèle
et al., 2019). Laboratory work and asteroid observations later
identified space weathering processes that cause the
transformation from S though Sq to Q-types in that
taxonomic system (Strazzulla et al., 2005; Vernazza et al., 2009a).

Recently, neural networks have been used in the literature to
perform asteroid classification. The study by Penttilä et al. (2021)
presents the results of training an artificial neural network for the
needs of the Gaia mission. The data used for this task were
obtained from the spectra of 586 objects fromDeMeo et al. (2009)
and Binzel et al. (2019) in the range of 0.45 and 1.05 μm, spanned

across 11 taxonomic types (A, B, C, D, K, L, Q, S, T, V, and X).
Original types assigned by DeMeo et al. (2009) were processed,
such that a few subclasses were generalized into their main
equivalents (i.e., assigning S to types such as Sa and Sq). The
data were enhanced with additional synthetic samples formed by
using the principal component analysis. This study reports 86%
unbalanced prediction accuracy for the task of taxonomic type
prediction but cannot be directly compared to this study as it
operates on slightly different data (more objects with different
types assigned), a different feature set, and a different evaluation
procedure. Furthermore, this study assesses the performance of
the model on the selected wavelength range but does not quantify
the importance of individual features.

The Bus–DeMeo taxonomy relies on spectroscopic
measurements which are challenging to obtain for a large
number of objects in a reasonable amount of time. Therefore,
multi-filter photometry obtained in large sky surveys is often used
to assign the taxonomic type to asteroids and perform
compositional and evolutionary studies (e.g., Zellner et al.
(1985); Carvano et al. (2010); Gil-Hutton and Licandro (2010);
Sykes et al. (2000) and others).

Furthermore, surveys typically produce enormous amounts of
data but can only cover a limited number of bands. For example,
the Gaia mission was expected to provide spectra for about
100 000 objects in the spectral range from 0.325 to 1.1 μm
(Mignard et al., 2007). The Large Synoptic Survey of the Vera
Rubin Observatory is expected to provide observations in the
ugrizy bandpasses for hundredths of thousands of near-Earth
objects and millions of main-belt asteroids (Jones et al., 2015),
and the Euclid mission will provide (visible (a broad g-r-i), Y, J,
and H photometry for about 150 000 asteroids (Carry, 2018).
Sergeyev et al. (2021) extracted visible colors for about ∼ 105

asteroids. Those vast amounts of data require the use of fast and
reliable machine learning approaches to classify those objects and
link them to the current taxonomies. Furthermore, the robustness
of different classification methods may have implications to the
derived taxonomic distributions across the solar system, and thus
its formation and evolution theories. Various studies have already
performed the scientific analysis of different “big data” sets.

For example, Sykes et al. (2000) studied the distribution of
color indices of asteroids and comets observed in the course of the
Two Micron All Sky Survey (2MASS) and derived an
approximate compositional map of the asteroid belt. Later,
based on Sloan Digital Sky Survey (SDSS) data, Carvano et al.
(2010) created a taxonomic classification compatible with Bus
taxonomy and studied the distribution of different asteroid types
in the solar system. Amore detailed in-depth analysis of the SDSS
data was later performed by DeMeo and Carry (2014) who also
discussed the constraints on the formation and evolution of the
solar system arising from the derived compositional distribution
of asteroids. Popescu et al. (2016, 2018) assigned taxonomic
classifications to objects observed in the course of VISTA-VHS
survey and found multiple V- and A-type candidates, which are
crucial in the context of the missing mantle problem (i.e., lack of
basaltic mantle material as compared to iron core material
present among meteorites, e.g., Burbine et al. (1996); Scott
et al. (2010). Other studies focused on searching for specific
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taxonomic types using multi-filter data. Licandro et al. (2017)
analyzed the MOVIS-C catalog to identify the V-type asteroids
using infrared colors (Y-J) and (J-Ks). Similar studies were also
performed based on the SDSS magnitudes, such as Solontoi et al.
(2012); Roig and Gil-Hutton (2006); Oszkiewicz et al. (2014).
DeMeo et al. (2019) investigated A-type candidates extracted
from the SDSS catalog. Spectrophotometric characterization is
also often used to constrain the composition of near-Earth objects
Mommert et al. (2016); Navarro-Meza et al. (2019); Erasmus et al.
(2017); Harris and Davies (1999); Bolin et al. (2020); De León
et al. (2010). DeMeo et al. (2014) discussed the distribution of
very red D-type asteroids located in the main belt (typically found
among Jupiter trojans and in the outer main belt) and their
potential origins. Thus, classification tools are essential in
understanding asteroid composition and revealing multiple
processes and more generally the evolution of the solar system.

These studies could benefit from data and observations made
in filters that correspond to spectral features that best predict
common taxonomic types. Current large surveys are an
important source of information on asteroid composition and
thus help understand various mechanisms and the overall
formation and evolution of the solar system. However, most of
those large surveys are dedicated to other astronomical objects
and asteroids are only serendipitous objects. There has not yet
been a large survey strictly dedicated to studying asteroids.
Therefore, the optical setups of surveys are not optimized to
taxonomically characterize asteroids. Furthermore, the large
surveys are typically limited in the number of bands covered;
thus, selecting those that improve the link to asteroid taxonomy
can maximize the science output for solar system science. In this
study, we investigate which spectral features provide the most
information in the context of the Bus–DeMeo taxonomy, that is,
which features should be observed to optimize future multi-filter
surveys toward asteroid compositional studies. We also
investigated various classification methods to verify their
predictability of complexes and individual classes.

In section 2, we discuss the data, while section 3 describes
parameterization and methodology used. In section 4, we present
our results, and in section 5, we provide extended discussion.
Conclusions are in section 6.

2 DATA

The dataset of asteroids used in the study consists of 371 objects
included in Bus–DeMeo taxonomy (DeMeo et al., 2009) as well as
195 additional objects from Binzel et al. (2019). Most of the near-
infrared data were collected at the NASA IRTF with the Spex
instrument in its low-resolution (R ∼150) prism mode, and a
majority of the visible wavelength data is from the Small Main-
Belt Asteroid Spectroscopic Survey (R ∼100) Bus and Binzel
(2002). For detailed information on that data, we refer the
reader to the original studies. Each object is described by a set
of visible and near-infrared spectral measurements (in the range
of 0.45–2.45 μm), from which a set of spectral features is
calculated, which is then used as an input for classification.
Each object is also assigned to one of the 24 classes

(taxonomic types) as defined in the study by DeMeo et al.
(2009). For the purpose of this study, the dataset was limited
to only contain the taxonomic types represented by more than 10
objects, reducing the data size from 566 to 504 objects split into 12
taxonomic types (S, Sq, Sr, C, Ch, X, Xk, L, V, D, K, and Q), as
presented in Table 1. This was done in order to remove severely
underrepresented taxonomic types with very few objects, for
which machine learning methods, based on the statistical
properties of the data, are not expected to work.

There were two prediction tasks considered in the scope of this
study: the prediction of twelve taxonomic types and simplified
version of the classification, with four complexes as target
(C-complex, S-complex, X-complex, and end members). The
labels for the prediction of complexes were assigned based on
what the taxonomic type of each asteroid belonged to, as
described in DeMeo et al. (2009).

The distribution of objects in two-dimensional space
(resulting from taking the two main principal components of
the spectra) with respect to taxonomic types is presented in
Figure 1. The preparation of feature sets obtained from the
spectral data is described in detail in the following sections.

2.1 Basic Spectral Features
To obtain features based on the 0.45–2.45 μm spectral range, the
input spectral measurements were processed similarly to DeMeo
et al. (2009). For each object in the dataset, the first interp1d
function with default parameters from SciPy library (Virtanen
et al., 2020) was used to perform a linear spline fit on the spectral
measurements, which generated a spectral curve. Different
degrees of the spline function were selected as the input data
contain enough observations that the linear fit did not result in
higher inaccuracies but, at the same time, was able to extrapolate
better than the cubic spline when the spectrum was not available
in the desired range. We noted that this data fitting reduces the
risk that the noise influenced the prediction as we do not sample
the noise but the overall spectral “averaged” shape. This curve was
then sampled in the range of 0.45–2.45 μm with 0.05 intervals,
resulting in 41 data points. These points were normalized to unit
at 0.55 μm (i.e., each point was divided by the value of the point at
0.55 μm). The feature at 0.55 μm was removed after this
operation. Finally, the slope was removed from the

TABLE 1 | Number of objects for each taxonomic type used for classification per
data source.

Complex Type DeMeo et al. (2009) Binzel et al.(2019) All

S S 143 55 198
S Sq 29 27 56
S Sr 22 16 38
EM L 22 8 30
X Xk 18 4 22
C Ch 18 1 19
EM V 17 12 29
EM D 16 3 19
EM K 16 0 16
C C 13 13 26
EM Q 8 31 39
X X 4 8 12
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(normalized) data points, which was performed by fitting a linear
regression model to the data and dividing each data point by the
value returned by the model for this point. The removal of the
slope and normalization of the spectra leads to increasing
visibility of other spectral features. It is worth adding that
Marsset et al. (2020) found an overall 2.8% μm−1 uncertainty
of slope induced by the use of different solar analogs. This
resulted in the set of 40 spectral features and one additional
feature containing the slope of the linear regression fit for each
object. The example of this processing is presented in Figure 2.

2.2 Principal Components
The second feature set was generated by performing the principal
component analysis (Jolliffe (2002) on the spectral feature set
described in the previous section. PCA transforms
high-dimensional feature vectors into a lower dimensional

space of uncorrelated features while keeping as much of the
input variance as possible, therefore retaining patterns and trends
occurring in the data. Following the methodology in DeMeo et al.
(2009), we first centered the 40 spectral features by subtracting
from feature values their mean values calculated over the entire
dataset. Then the eigenvectors and eigenvalues of the covariance
matrix were calculated. The principal eigenvectors (associated
with the largest eigenvalues) were selected and were used to
transform the data into a new feature space. As in DeMeo et al.
(2009), we selected the top five eigenvectors as a new feature set.
The slope was also added as a separate feature.

3 METHODOLOGY

For all methods mentioned in this section, except for gradient
boosting, the implementations from scikit-learn (Pedregosa et al.,
2011) package were used.

3.1 Classification Methods
Multinomial logistic regression (Bishop, 2006) is a method that
models the probability of a sample belonging to each class by
constructing a linear function based on input data and applying
softmax to obtain the probabilities. Specifically, the probability of
class i given sample (feature vector) x is modeled as follows:

p i|x( ) � ex·wi

∑k
j�1e

x·wj
,

where {wj}kj�1 are weight vectors for each class. These vectors are
trained during the learning stage by minimizing the cross-
entropy between the empirical class label distribution and the
model distribution. The multinomial logistic regression is a
relatively simple yet effective method for modeling the data,
very well-studied and popular among statisticians, so it was a
natural choice of the algorithm to be included in our experiment.

FIGURE 1 | Plot represents the two main principal components of the spectra, the letters denote taxonomic types, and colors denote the complexes.

FIGURE 2 | Plot represents the spectrum before processing (blue line),
the fitted slope (orange line), spectrum after processing (green line), and final
points (blue dots) for asteroid (1929) Kollaa.
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Naive Bayes (Hastie et al., 2009) is an algorithm that uses the
Bayes theorem to calculate the conditional probability of a class
given the sample p (i|x) from the prior probabilities for each class
p (i) and the class-conditional probabilities of the feature vector p
(x|i). The latter probabilities are estimated using a strong
assumption of conditional independence between the features
given the class label. In our case, the distribution of features is
modeled by a Gaussian. Due to these strong modeling
assumptions, naive Bayes may lack the flexibility for modeling
more complex datasets but is included in the comparison as it is
the arguably most popular machine learning method and proved
to be surprisingly effective in various scenarios. Naive Bayes was
previously applied to asteroid classification by Oszkiewicz et al.
(2014) to identify V-type asteroids.

Support vector machines (SVM) (Hastie et al., 2009) perform
linear classification by dividing the feature space with
hyperplanes into regions such that each region corresponds to
a single class. The hyperplanes are obtained in the training phase
by maximizing themargin on the data, which is the distance from
the nearest sample to the hyperplane. Thus, the chosen
hyperplanes are those which represent the largest separation
between the classes, which makes the resulting classifier
robust. The main advantage of the SVM is their ability to
efficiently perform a non-linear classification by an implicit
mapping of the original feature vectors into a high-
dimensional feature space (using the so called kernel trick), in
which the data are likely to be linearly separable and thus
amenable to modeling by a linear classifier. In the study, we
employed the radial basis function (RBF) kernel, which provides
the expressive power and flexibility of the resulting classifier
sufficient for modeling even very complex datasets.

Gradient boosting (Hastie et al., 2009) is an ensemble learning
method which combines multiple weak learners (relatively simple
base classifiers) into a powerful classification method. The
learners are added one by one to the ensemble by minimizing
the gradient of the loss function (cross-entropy in this case) so
that each new learner improves the performance of the previous
model, effectively focusing on the samples which were previously
misclassified. We employed a standard choice of the weak learner
which is a decision tree with limited depth. We used the
implementation of the gradient boosting provided by XGBoost
(Chen and Guestrin, 2016) library due to its excellent
computational performance and a comprehensive set of
tunable parameters.

Multilayer perceptron (MLP) (Goodfellow et al., 2016) is a
fully connected network consisting of neurons, organized into
layers. The neurons produce a linear combination of the input
that is passed to a non-linear activation function, in our case
being the rectified linear unit. This allows us to model more
complex functions and better fit the training data. We
experimented with different network architectures between
two and three hidden layers containing 32 or 64 neurons. We
used the standard choice of the cross-entropy loss for
optimization in the training phase. The network has been
trained using either the stochastic gradient descent (Ruder,
2016) or Adam (Kingma and Ba, 2014) optimization methods.

3.2 Feature Selection
To evaluate the importance of individual spectral features for
classification of taxonomic types, we decided to verify whether
a successful classification can be achieved using only a small
subset of these features. To this end, we employed the
sequential forward feature selection method (Whitney,
1971). This procedure iteratively composes a feature subset
by analyzing the contribution of each feature to the
performance of a given machine learning model. The
procedure starts with an empty set of features. At each
iteration, every feature not yet included in the selected
subset is, one by one, tentatively added to the subset in
order to train and evaluate the model on such extended
subset of features. A feature that yields the highest increase
in the prediction performance is then permanently added to
the selected subset, and the next iteration follows. This process
is continued up to the point at which the chosen maximal size
of the feature set is reached (set to 20 in the experiment). The
training and evaluation of the machine learning model in each
trial is performed by cross-validation. The whole process is
computationally intensive as in each iteration, it requires to
train and evaluate as many models as there are candidate (not
yet selected) features.

3.3 Evaluation Metrics
As an evaluation metric to compare the models, we used the
prediction accuracy, defined as follows:

Acc � ∑
i�1

TPi

N
,

where N is the total number of samples and TPi is the number of
correctly classified objects (“true positives”) from class i.
Moreover, we are also reporting two additional evaluation
metrics, which are known to be more robust against class
imbalance (i.e., when some of the classes are much less
represented in the data set than the others): the balanced
prediction accuracy (BAcc) and the F1 measure Kelleher et al.
(2015)as follows:

BAcc � 1
K

∑K
i�1

TPi

TPi + FNi
,

F1 � 1
K

∑K
i�1

TPi

TPi + 1
2

FPi + FNi( )
,

where K is the total number of classes, while FPi and FNi are,
respectively, the number of objects incorrectly classified to class i
(“false positive”) and the number of incorrectly classified objects
from class i (“false negatives”). The balanced prediction accuracy
is thus the average recall obtained on each class, while the F1 score
is the average harmonic mean of recall and precision for
each class.

Last, the Matthews correlation coefficient is reported due to
better performance on imbalanced problems as opposed to other
balanced metrics:
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MCC � c × s − ∑K
k pk × tk����������������������

s2 −∑K
k p

2
k( ) × s2 − ∑K

k t
2
k( )√ ,

where tk � ∑K
i Cik, the number of times class k truly occurred;

pk � ∑K
i Cki, the number of times class k was predicted;

c � ∑K
k Ckk, the total number of samples correctly predicted;

and s � ∑K
i Cij, the total number of samples and K is the total

number of classes.

3.4 Experimental Setup
For both feature sets (basic spectral features and PCA features),
each machine learning method, two tasks (prediction of
complexes and prediction of types) and a 5-fold cross-
validation procedure were performed in order to train and
evaluate the model. An implementation of k-fold cross-
validation from scikit-learn library (Pedregosa et al., 2011) was
used. This procedure was repeated 10 times (for each
combination of feature set and learning method) and
averaged, to decrease the variability of the result due to a
random component in the train/test split, and thus improving
the reliability of the outcomes. This also allowed us to report the
standard deviations of the results together with their averages.

Each of the methods used in the study has external parameters
(called “hyperparameters” in machine learning), which are not
optimized during the training phase but which might potentially
significantly affect the prediction performance. These parameters
are often tuned by an internal train-and-validate process; the
training fold from cross-validation is further split into the
training and evaluation parts, and a classifier is repeatedly
trained and evaluated for each considered combination of
parameters. The combination that leads to the best prediction
performance is then selected to retrain the final classifier on the
entire training fold, and its performance is then evaluated on the
test fold. Balanced accuracy was selected as a measure of
validating the prediction performance. The selection of
aforementioned balanced metric was made based on its
straightforward interpretability and ease of score
understanding, while effectively compensating for the
imbalance in data.

Note that for each combination of parameters, one needs to
train and validate a givenmodel 50 times, once for each fold in the
fivefold cross-validation repeated 10 times, and this must be done
for every learning method, and every set of features. Thus, the
entire procedure is computationally very demanding; hence, the
parameter tuning was limited to up to 10 tested parameter
combinations per learning method.

Different parameter combinations were considered for each
model. Multinomial logistic regression parameters consisted of
inverse regularization strengths in the range between 5 and 60, as
well as the choice of the L1 or L2 norm for the regularization term.
Naive Bayes was examined with different variance smoothing
parameters in the range (1e—10‥1e − 6), which control the
portion of the largest variance of all features that is added to
variances for calculation stability. Support vector machines were
tested for the regularization parameter between 5 and 24 and with
two choices of the kernel function: linear and RBF (with the RBF

kernel parameter set to either “automatic” or “scaled”). For the
gradient boosting method, the number of estimators ranged from
50 to 500, with the maximum tree depth of 3–15, learning rate
between 0.01 and 0.1, and subsampling parameter being 0.75 or 1.
Last, multilayer perceptron architectures consisted of 2–3 hidden
layers with 32 or 64 neurons each, with the batch size of 32 or 64,
the selection of stochastic gradient descent or Adam solver, and
initial learning rate in the range or 0.001 to 0.1.

Sequential feature selection was performed with an
implementation from the scikit-learn library (Pedregosa et al.,
2011) on the task of predicting taxonomic types. As this process is
already computationally extensive on its own, only a single
machine learning method with the highest prediction accuracy
was selected: the multilayer perceptron, with the parameters set to
the combination which was most commonly selected during the
internal train/validate splits in the cross-validation. Two separate
experiments for two selection metrics were performed, namely,
accuracy and balanced accuracy. For each metric, this feature
selection procedure was repeated five times, and the results were
averaged.

4 RESULTS

Recreating DeMeo et al. (2009) Taxonomy
Our first goal was to address how well the taxonomy proposed by
DeMeo et al. (2009) can be recreated automatically with the use of
machine learning methods. To perform the experiment, we have
used the extended dataset of 504 objects (as described in Section
2), processed similarly as in the original study to obtain the
principal components (presented in Figure 1), as well as the
slope. The results are presented in Table 2, and the simplified
version with four complexes (rather than twelve types) as the
target is presented in Table 3. For each evaluation metric, we
always reported the average result as well as its standard deviation
(the same applies to the experiments described in further
paragraphs). It follows that the machine learning algorithms
are capable of quite accurately reproducing the original
taxonomy in an automatic fashion, with multilayer perceptron
(MLP) correctly predicting the taxonomic types for 83% of the
objects, averaged across types (balanced accuracy), which
improves to 93% for predicting the complexes. The support
vector machine (SVM) is performing similarly well, obtaining
71% for types and 91% for complexes. The balanced measures
(balanced accuracy, F1, and MCC) as compared to accuracy,
reflect the difficulty of predicting the smaller classes, for which
less data are available. Especially for the experiment with 12
taxonomic types, the difference in results for accuracy and
balanced metrics is the most prominent the best model
achieves 82.9% unbalanced accuracy and 76.8% balanced
accuracy, which indicates that the model predicts
underrepresented classes at a lower rate than the majority
classes. All metrics of the best-performing models in these
experiments are close to each other, with the MLP slightly
outperforming SVM on all metrics. On the other hand,
models such as naive Bayes and gradient boosting perform
slightly worse on the taxonomic types, both obtaining about

Frontiers in Astronomy and Space Sciences | www.frontiersin.org December 2021 | Volume 8 | Article 7678856

Klimczak et al. Predicting Asteroid Types

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


74% balanced accuracy, which improves for gradient boosting in
the task of predicting complexes, where it outperforms naive
Bayes and achieves the score of 87% balanced accuracy, as
compared to 82% for naive Bayes. Surprisingly, the logistic
regression performs very well on taxonomic types, with the
score equal to the MLP on BAcc, but slightly worse on other
balanced metrics: F1 (0.75 for regression and 0.76 for MLP) and
MCC (0.77 for regression and 0.78 for MCC). This behavior
however does not translate to the prediction of complexes, where
the logistic regression falls significantly behind the other
methods.

In Figure 1, the distribution of objects in feature space for the
extended dataset is presented. Although most of the objects fall
within clear clusters of taxonomic groups, some of them are
located much further from their main clusters, such as some
objects of Q type and S type. This, on the one hand, poses a threat
to the classification performance and, on the other hand, indicates
that the spectra of those objects are much different than others in
their group.

The promising results obtained in this experiment prove that it
might be possible in the future to automatically assign taxonomic
types of newly observed objects, where the spectral data are
available. Furthermore, it serves as baseline for future research
on different parameter combinations and their usability in
predicting taxonomic types.

Classification With the Whole Spectra
Next, we verify whether the performance of the machine
learning methods can be improved if the entire set of basic
spectral features were used, rather than just the five first
principal components. In this case, more information is
being preserved, which could improve the accuracy, but it
could also result in more variance due to a large number of
possibly irrelevant features. Tables 4 and 5, respectively, show
the results of this experiment for classification into the types
and the complexes. It turns out that the prediction accuracy,

measured by each evaluation metric, has consistently
improved for the best performing methods (support vector
machine, gradient boosting, and multilayer perceptron) for the
case of predicting types. Two top-performing models, the
multilayer perceptron (MLP) and support vector machine
(SVM) obtained the balanced accuracy of 78% for types and
88% for complexes, where the MLP slightly outperforms the
SVM on taxonomic types (78.8–78.2% BAcc, 0.781–0.761 F1,
and 0.805–0.787 MCC) and underperforms on complexes
(88.4–88.9% BAcc, 0.886–0.889 F1, and 0.873–0.876 MCC)
for all metrics, while the difference is the most prominent
on balanced metrics. Furthermore, the slight improvement in
performance only occurs for MLP and SVM, while the other
models perform worse than on the PCA set for both tasks. This
is expected behavior for simpler models such as logistic
regression and naive Bayes, which benefit highly from the
reduced dimensionality of the input. The result of these
experiments leads us to conclude that restricting to the top
five principal components and the slope misses some part of
the information about the classes available in the spectra when
taxonomic types are being predicted. In the task of predicting
complexes, the values of balanced accuracy for SVM are very
similar between the PCA feature set and basic spectral feature
set (around 89%) and slightly more different for MLP (90% for
PCA to 88% for basic spectral features). In general, the results
for complexes on PCA feature set are very similar, or even
better than using the basic spectral features, which indicates
that the top five principal components reflect the important
information for differentiating complexes from the whole
spectral range while reducing noise, which could negatively
affect the classification.

We complement the aforementioned results with the
presentation of the confusion matrix for the classification of
taxonomic types with the multilayer perceptron model using
the basic spectral features (Figure 3). A confusion matrix in the
k-class classification is a k-by-k matrix for which the entry in the

TABLE 2 | Results for the classification of taxonomic types on principal components. For each metric, the first column is the average over the results 10 runs of the cross-
validation, while the second column is the standard deviation of these results.

Model Accuracy BAcc F1 MCC

Logistic regression 0.82 ± 0.01 0.769 ± 0.016 0.758 ± 0.015 0.775 ± 0.012
Naive Bayes 0.78 ± 0.007 0.742 ± 0.02 0.705 ± 0.011 0.725 ± 0.008
SVM 0.816 ± 0.014 0.762 ± 0.016 0.753 ± 0.015 0.771 ± 0.018
Gradient boosting 0.799 ± 0.009 0.743 ± 0.017 0.727 ± 0.016 0.748 ± 0.011
MLP 0.829 ± 0.012 0.768 ± 0.016 0.762 ± 0.018 0.787 ± 0.015

TABLE 3 |Results for the classification of complexes on principal components. For eachmetric, the first column is the average over the results 10 runs of the cross-validation,
while the second column is the standard deviation of these results.

Model Accuracy BAcc F1 MCC

Logistic regression 0.785 ± 0.007 0.800 ± 0.014 0.758 ± 0.014 0.631 ± 0.012
Naive Bayes 0.848 ± 0.003 0.828 ± 0.008 0.819 ± 0.008 0.736 ± 0.006
SVM 0.917 ± 0.015 0.890 ± 0.018 0.884 ± 0.019 0.857 ± 0.027
Gradient boosting 0.908 ± 0.009 0.870 ± 0.015 0.87 ± 0.014 0.843 ± 0.016
MLP 0.932 ± 0.007 0.900 ± 0.01 0.897 ± 0.012 0.882 ± 0.012
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ith row and the jth column (i, j � 1, . . . , k) gives the number of
objects from class i classified to class j, thereby enabling to check
which classes are most frequently confused by the model.
Consistent with the results described before, the overall
performance is very good, but the classifier produced errors
across similar taxonomic types, that is, C and Ch, or S, Sq,
and Sr, or X and Xk. It follows from this observation that the
preprocessed spectra for those types are very similar and therefore
hard to distinguish for the models. Spectral information might
not be enough to separate those types. Further investigation into
the spectra of types most commonly mistaken might be required

as it might indicate the need of updating the taxonomic types of
those objects.

FEATURE SELECTION

Selection With Accuracy
Finally, the individual features are assessed through the sequential
feature selection to quantify the importance of the features and
track the improvement of performance with the increase in the
feature set. The results of this experiment on complexes,

TABLE 4 | Results for the classification of taxonomic types on basic spectral features. For each metric, the first column is the average over the results 10 runs of the cross-
validation, while the second column is the standard deviation of these results.

Model Acc BAcc F1 MCC

Logistic regression 0.785 ± 0.004 0.745 ± 0.013 0.735 ± 0.013 0.733 ± 0.004
Naive Bayes 0.688 ± 0.008 0.629 ± 0.009 0.641 ± 0.007 0.629 ± 0.009
SVM 0.83 ± 0.012 0.782 ± 0.018 0.761 ± 0.018 0.787 ± 0.015
Gradient boosting 0.791 ± 0.01 0.736 ± 0.022 0.705 ± 0.018 0.739 ± 0.012
MLP 0.843 ± 0.012 0.788 ± 0.019 0.781 ± 0.017 0.805 ± 0.015

TABLE 5 | Results for the classification of complexes on basic spectral features. For each metric, the first column is the average over the results 10 runs of the cross-
validation, while the second column is the standard deviation of these results.

Model Acc BAcc F1 MCC

Logistic regression 0.792 ± 0.008 0.765 ± 0.011 0.77 ± 0.009 0.641 ± 0.014
Naive Bayes 0.807 ± 0.004 0.751 ± 0.006 0.763 ± 0.006 0.673 ± 0.006
SVM 0.928 ± 0.005 0.889 ± 0.009 0.889 ± 0.009 0.876 ± 0.009
Gradient boosting 0.901 ± 0.008 0.853 ± 0.013 0.855 ± 0.013 0.831 ± 0.013
MLP 0.926 ± 0.013 0.884 ± 0.023 0.886 ± 0.023 0.873 ± 0.022

FIGURE 3 | Confusion matrix for type prediction on basic spectral features with multilayer perceptron.
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presented in Tables 6 and 8, indicate that no more than five
features are sufficient for the prediction accuracy of 94%. Slope
was ranked as the most important feature for predicting
complexes. In the second and third places, features 0.95 and
1.0 μm from a very close wavelength were ranked, and in fourth
and fifth places, −1.15 and 1.25 μm. This not only indicates the
importance of this region for classification but also shows that
some of the similar features from this feature set are often
exchanged with each other, and therefore excessive.

In the case of taxonomic type prediction, Tables 7 and 8
present that six features are enough for the prediction accuracy of
85%. The top features often selected in the early stages of feature
selection were 0.9 μm, slope, and 0.95 μm. A group of similar
points is ranked as the next best features: 1.35, 1.4, 1.1, and
1.05 μm.

Selection With Balanced Accuracy
A balanced metric was also used during the feature selection
process, in order to assess the difference in selected features and
reduce the negative impact of imbalanced class sizes. The

TABLE 6 | Average rank per feature for the classification of complexes with
accuracy during sequential feature selection on spectral features.

Feature Average position

Slope 2.4
0.95 μm 3.8
1.0 μm 6.6
1.15 μm 7.8
1.25 μm 8.0
0.65 μm 10.8
1.1 μm 10.8
0.9 μm 12.8
1.2 μm 13.0
0.45 μm 13.6
1.05 μm 13.8
0.85 μm 14.4
0.5 μm 14.8
0.7 μm 14.8
1.4 μm 16.2
0.6 μm 16.4
0.8 μm 16.8
0.75 μm 18.0
1.3 μm 18.2
1.45 μm 18.6
1.35 μm 19.8

TABLE 7 | Average rank per feature for the classification of taxonomic types with
accuracy during sequential feature selection on spectral features.

Feature Average position

0.9 μm 1.6
Slope 3.4
0.95 μm 5.6
1.35 μm 5.8
1.4 μm 6.4
1.1 μm 7.0
1.05 μm 7.6
0.85 μm 11.6
0.7 μm 12.4
0.75 μm 12.8
0.45 μm 13.6
1.45 μm 13.8
1.2 μm 14.0
0.65 μm 15.0
1.15 μm 15.0
1.25 μm 15.0
0.8 μm 16.8
1.3 μm 18.4
0.6 μm 18.8
1.0 μm 18.8
0.5 μm 20.0

TABLE 8 | Accuracy for the classification of complexes and types per step of
sequential feature selection on spectral features.

Step Acc_complexes Acc_types

1 0.759 ± 0.001 0.602 ± 0.002
2 0.885 ± 0.001 0.758 ± 0.003
3 0.912 ± 0.004 0.809 ± 0.005
4 0.932 ± 0.005 0.823 ± 0.004
5 0.941 ± 0.003 0.838 ± 0.010
6 0.946 ± 0.005 0.852 ± 0.011
7 0.952 ± 0.009 0.857 ± 0.008
8 0.956 ± 0.003 0.858 ± 0.011
9 0.960 ± 0.004 0.862 ± 0.008
10 0.961 ± 0.004 0.863 ± 0.007
11 0.961 ± 0.005 0.863 ± 0.007
12 0.965 ± 0.004 0.864 ± 0.007
13 0.964 ± 0.006 0.865 ± 0.009
14 0.965 ± 0.003 0.869 ± 0.011
15 0.965 ± 0.004 0.867 ± 0.010
16 0.963 ± 0.002 0.869 ± 0.009
17 0.961 ± 0.002 0.870 ± 0.007
18 0.960 ± 0.005 0.869 ± 0.010
19 0.960 ± 0.004 0.870 ± 0.011
20 0.959 ± 0.004 0.871 ± 0.011

TABLE 9 | Average rank per feature for the classification of complexes during
sequential feature selection with balanced accuracy on spectral features.

Step BAcc_complexes BAcc_types

1 0.581 ± 0.001 0.352 ± 0.002
2 0.825 ± 0.004 0.638 ± 0.003
3 0.871 ± 0.005 0.717 ± 0.009
4 0.907 ± 0.003 0.764 ± 0.006
5 0.932 ± 0.010 0.796 ± 0.005
6 0.935 ± 0.008 0.812 ± 0.009
7 0.941 ± 0.010 0.816 ± 0.011
8 0.943 ± 0.003 0.823 ± 0.013
9 0.945 ± 0.004 0.828 ± 0.011
10 0.945 ± 0.001 0.828 ± 0.007
11 0.947 ± 0.004 0.825 ± 0.009
12 0.949 ± 0.003 0.833 ± 0.006
13 0.951 ± 0.003 0.830 ± 0.009
14 0.949 ± 0.002 0.829 ± 0.004
15 0.953 ± 0.004 0.832 ± 0.010
16 0.951 ± 0.002 0.830 ± 0.007
17 0.951 ± 0.003 0.836 ± 0.009
18 0.951 ± 0.003 0.831 ± 0.005
19 0.951 ± 0.003 0.834 ± 0.006
20 0.949 ± 0.004 0.831 ± 0.008
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balanced accuracy values of each step in sequential feature
selection are presented in Table 9. For the prediction of
complexes, the value of this metric was significantly lower in
the first step (58% as opposed to 76% for accuracy) but leveled out
in the next few steps, falling behind 1 percentage point upon
reaching the fifth iteration, with the overall course of the
experiment similar to the one with accuracy. Table 10
presents the ranking of features for the experiment on
complexes. Among the top five features, the slope is again
rated very high. Apart from that, similar wavelengths are
selected, namely, 1.05, 0.9, and 1.1 μm, indicating the
importance of this region for classification. Among the top
five features, 0.65 μm was selected for the fourth place, while it
was selected for sixth in the experiment with accuracy.

In the task of predicting taxonomic types, we can see the
significant influence of selecting the balanced metric on the
overall performance. The values of the balanced metric were
lower than the accuracy, while the course of the experiment
remained the same, achieving 80% in the fifth step. Among the six
best features, there were some similarities as compared to the
experiment with accuracy. Slope was again rated really high, as
well as 0.9, 1.4 μm 0.95, and 1.05 μmwere also selected early in the
process, which is a very similar range of wavelengths as for the
experiment with accuracy. As opposed to the experiment with
accuracy, here the 0.65 μm wavelength was selected in the sixth
place when it did not appear within the top 10 features for
taxonomic type prediction when accuracy was used as a selection
metric. The top features for predicting taxonomic types and
complexes are presented in Figure 4.

It is worth noting that the feature selection process contains a
random component, so when repeated, it is likely to lead to a
slightly different set of features not only across different
evaluation metrics but also within different runs with the same

metric. Therefore, the differences in subsets between accuracy
and balanced accuracy might naturally occur and might not be
explainable other than due to the randomness of the process.

5 DISCUSSION

The top features that we found (Tables 6, 7, 9, 11; Figure 4)
correspond to the most prominent spectral characteristics. For
classification of complexes, spectral slope and reflectance
covering the 1-μm absorption band contributed to the
majority of the classification with reflectances at other
wavelengths providing much less information. This is not
surprising, given that the slope is the most prominent
feature of spectra and the 1-μm band is the main feature
separating the complexes containing the 1-μm olivine/
pyroxene absorption (S-complex and some types in the end-
member population) from the featureless ones (C- and
X-complexes). In the balanced accuracy experiment, the
0.65 μm hydration feature also ranked high. That hydrated
minerals feature is present in many C-complex objects and the
analog meteorites (Rivkin et al., 2002) and is uncommon in the
more thermally transformed types (e.g., V-types from the end
members group), which aids the separation of the end
members. Furthermore, that parameter splits the C- and
Ch-types and C from S/X complex objects, which are redder
and typically have higher reflectance values at those
wavelengths. Reflectances in the near-infrared part of the
spectra did not appear among the top features for complex
prediction. This is consistent with the fact that Bus–DeMeo
retained the complex classification from the earlier Bus
taxonomy, which was based on the visible part of the
spectra only.

For the type classification based on spectra, the top features
contributing to the classifications were slope and reflectances
relating to 1-μm absorption band and interestingly spectra in the
region 1.35–1.4 μm. That spectral region characterizes multiple
types. For example, the Q- and Sq-types show a shallow feature
around 1.3 μm; C- and Ch-types have a small positive slope that
starts around 1.3 μm; D-types show a gentle kick around 1.35 μm;
and the V-types show maximum reflectance in that range. That
region does not have a clear mineralogical interpretation.
Surprisingly, the 2-μm region ranked below the top 20
important features. In the DeMeo et al. (2009) taxonomy, the
2-μm pyroxene band was the most prominent feature clearly
separating the space in the PCA component space. In the
classification task, this feature seems redundant as other
parameters cover spectral features of multiple other classes
simultaneously and already provide a plenitude of
information. The 2 μm feature may have also ranked higher if
more types containing the feature (e.g., R, O, and Sv) were taken
under the analysis, thus creating the need for characterizing the
distinction in the reflectance values. Those types were skipped
due to low number statistics.

Altogether the low number of features needed to classify
objects is not surprising, and analogous to PCA in DeMeo
et al. (2009), where the first 4–5 dimensions provide the most

TABLE 10 | Average rank per feature for the classification of taxonomic types
during sequential feature selection with balanced accuracy on spectral
features.

Feature Average position

1.05 μm 1.0
Slope 2.0
0.9 μm 5.2
0.65 μm 5.8
1.1 μm 8.8
0.95 μm 9.6
0.85 μm 10.4
1.25 μm 10.8
1.15 μm 11.4
0.7 μm 11.4
1.3 μm 13.4
1.45 μm 14.0
0.75 μm 16.2
1.0 μm 16.6
1.2 μm 16.8
1.4 μm 17.0
0.5 μm 18.0
1.35 μm 18.2
0.8 μm 19.4
0.6 μm 20.0
0.45 μm 20.0
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information and then the variance in the subsequent dimensions
drops to essentially zero. Generally, the top features separating
the types and complexes found by the machine learning

algorithms appear to focus on reasonable traits of the spectra
relating to physical characteristics of asteroids and analogous
meteorites.

The 1-μm olivine/pyroxene absorption band appears in both
the classification of types and complexes. It is one of two the most
striking absorption bands in asteroid spectra tied to olivine and
pyroxene content (Gaffey et al., 1993; Sanchez et al., 2014). For
the classification of complexes, it is a clear distinction between
olivine-containing asteroids (S-complex, V-types, and Q-types)
and the rest. For the classification of types, it additionally helps
assessing the depth of the absorption band.

It is worth noting that the S-complex asteroids were found
broadly compatible with ordinary chondrites (OC) based on the
1-μm absorption band (Chapman and Salisbury, 1973) and after
understanding that the space weathering processes affect the
spectral slopes, causing the asteroid spectra to appear redder
than that of meteorites (Sasaki et al., 2001; Chapman, 2004;
Strazzulla et al., 2005). Furthermore, the Hayabusa sample
return space missions provided mineralogical argument
connecting the OC meteorites with S-complex asteroids
(Nakamura et al., 2011; Yurimoto et al., 2011). However, as
indicated by Vernazza et al. (2016) and others, the S-complex
asteroids are a diverse group, and other meteorite groups may
originate from this complex as well.

On the other hand, the hydrated Ch/Cgh-type asteroids (that
do not contain the 1-μm band) are partly linked with CM

TABLE 11 | Balanced accuracy for the classification of complexes and types per
step of sequential feature selection on spectral features.

Feature Average position

1.4 μm 0.0
1.05 μm 2.2
0.9 μm 2.6
Slope 2.8
0.95 μm 7.0
0.65 μm 8.2
1.35 μm 8.8
0.85 μm 10.4
1.0 μm 11.2
0.45 μm 12.8
0.5 μm 15.2
1.1 μm 15.4
1.45 μm 15.8
0.7 μm 16.2
1.2 μm 16.8
1.25 μm 16.8
1.15 μm 17.8
1.3 μm 17.8
0.8 μm 19.8
0.75 μm 20.0
0.6 μm 20.0

FIGURE 4 | Most important spectral features in the task of taxonomic types (top) and complexes (bottom) prediction against mean reflectance values of
taxonomic types used in classification, as measured with balanced accuracy.
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chondrites (Rivkin, 2012; Bland and Travis, 2017; Vernazza et al.,
2017; Carry et al., 2019). Hiroi et al. (1993) also suggested a link
with the CI/CM meteorites. Some C-types that do not show
hydration have also been linked to IDPs Vernazza et al. (2015);
Carry et al. (2021). Part of the C-complex is not sampled by the
meteorite collection Vernazza et al. (2015), which highlights some
of the challenges in linking asteroid spectral types with their
meteorite analogs.

The featureless types are mostly distinguished by their spectral
slopes. For the X-complex, we only included the X and Xk types,
which tend to have a higher spectral slope than that of the
C-complex objects (C, Ch) considered in this study. The Xk
types are considered parent bodies of mesosiderates (Vernazza
et al., 2009b). The X-type in the Bus–DeMeo taxonomy does not
distinguish the E, M, and P Tholen types (known as X-complex
degeneracy) and thus may correspond to multiple meteorite
groups.

During our analysis, we excluded several spectra types for
which there were not enough data (Sa, Sv, B, Cb, Cg, Cgh, Xc, Xe,
Xn, T, A, O, and R). These rare types are not classified in our
analysis. Since we are performing fivefold stratified cross-
validation, we require at least five spectra in each type.
Moreover including objects with low number statistics may
lead to a bias-variance tradeoff phenomenon, that is,
overfitting. It is most evident for complex models like
multilayer perceptrons.

The exclusion means that some classes and their features are
not represented in our data set. Therefore, the top features that we
found do not optimize those classes. Penttilä et al. (2021) merged
those subclasses with their main equivalent (Sa with S). Although
this process increases sample size, it may negatively influence the
inference for the merged types. Furthermore, merging several
subtypes into a single class may lead the machine learning
algorithms toward the conclusion that the features that
discriminate between them are irrelevant. Therefore, we
decided to omit those types altogether.

The spectral data were not corrected for multiple factors such
as phase reddening, temperature, grain size, space weathering
effects, or impact darkening. Many of those mechanisms are
poorly constrained for the different taxonomic types and
sometimes even object-dependent.

The spectra of S-complex asteroids show redder spectral slopes
with increasing phase angle (the effect is known as phase
reddening), and the depth of the one- and two-micron bands
increases up to 70 and 55 of phase angle, respectively, and then
decreases (Sanchez et al., 2012). However, most main-belt
asteroids are observed in the phase angle range 0–30°, where
the effect is minuscule. The effect plays a more important role for
near-Earth asteroids (NEAs) that can be observed at higher phase
angles. Binzel et al. (2019) demonstrated the phase reddening
effect for 433) Eros and explored the slope correction values for a
few other asteroids. Based on that Binzel et al. (2019) suggested
that the effect may be object-dependent and thus not easily
accounted for.

Particle size affects the depth and slope of absorption features
and overall reflectance. Large particle sizes typically result in
deeper absorption bands, bluer spectral slope, and lower

reflectance Reddy et al. (2015); Mustard and Hays (1997).
Generally, larger asteroids tend to have smaller grain sizes as
revealed by thermal inertia studies (Delbo et al., 2015). However,
the grain size distribution for most individual asteroids (except
those visited by space missions) is unknown thus correcting for
particle size is impossible.

Temperature causes changes in the band centers and depths as
well as broadens or narrows down the bands (thus also affects the
bar area ratios) (Singer and Roush (1985); Hinrichs and Lucey
(2002); Burbine et al. (2009)). The variation in temperature is
more significant for objects on eccentric orbits like NEAs and less
for main-belt objects.

Shock impact darkening can suppress the absorption bands
and reduce the overall reflectance, which can lead to
misclassification of objects (Kohout et al., 2020, 2014) as it
tends to “move” objects even between complexes. Overall,
phase reddening corrections play an important role in
constraining the space reddening as they mostly affect spectral
slope (Reddy et al., 2015). Temperature variations and shock
impact darkening have a larger impact on mineralogical
characterization (Reddy et al., 2015).

All the listed mechanisms affect our understanding of the
asteroid–meteorite connection. However, applying corrections
for the aforementioned factors is not viable with the current
state of knowledge for all the asteroids of different taxonomic
types in our sample.

Furthermore, the Bus–DeMeo taxonomy is simply based on
observed spectral features and was not controlled for those
factors. By training to recreate the Bus–DeMeo types, we
trained to classify objects based on biased data into the
Bus–DeMeo biased classes. Thus, those mechanisms do not
affect our results.

However, these mechanisms can significantly affect asteroid
spectra and have to be considered when new taxonomies, possibly
based on much larger data, are derived (e.g., that based on the
Gaia space mission data (Cellino et al., 2020)). Last, as shown by
the OSIRIS-REx mission, rubble-pile asteroids may contain a
mixture of various materials, like the basaltic exogenic material
found on a primitive asteroid (101,955) Benu (DellaGiustina
et al., 2021). Another example of such mixed exogenous
composition is asteroid 2008 TC3 that impacted the Earth on
October 7, 2008, and the recovered fragments contained many
different ureilitic and chondritic lithologies (Bischoff et al., 2010).
How common those objects are and how should they be handled
in future taxonomies have to be carefully considered.

Our analysis did not take into account albedo information. In
contrast to the Tholen taxonomy, the Bus–DeMeo taxonomy did
not take into account geometric albedo, thus introducing that the
additional parameter could confuse the classification of types in
the X-complex (otherwise split into E, M, and P types in the
Tholen taxonomy) or at the very least be a spurious parameter
that does not contribute to the classification of classes that are not
defined by albedo. Furthermore, as shown by the confusion
matrix, there are more misclassifications within the complexes,
which have similar albedos (except for the X-complex). Since we
focus on the Bus–DeMeo taxonomy, we do not include geometric
albedo in our analysis as well.
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6 CONCLUSION

In this study, we addressed the automatic classification of
taxonomic types and complexes according to the DeMeo et al.
(2009) taxonomy. We assessed machine learning methods’
capability of recreating the classification with the data used in
DeMeo et al. (2009) to create the taxonomy. We showed that
machine learning methods can be used to recreate the
Bus–DeMeo taxonomy. Moreover, this taxonomic scheme is
robust in the sense that most of the types and complexes
remain in place, despite the increased sample size, which is
not always the case for taxonomies based on PCA analysis
when more data are available.

Furthermore, the experiments were carried out to record the
difference in performance on the spectra, rather than five
principal components. We found that the prediction accuracy
improved across both tasks and all methods, which proves that
the original feature set misses some important information
required to distinguish different types and complexes. In our
experiments, a multilayer perceptron with three layers of 32
neurons, a stochastic gradient descent solver, batch size of 32,
and adaptive learning rate with the initial value of 0.1 performed
best for both tasks, closely followed by the support vector
machine with the RBF kernel.

Sequential feature selection was performed on the task of
taxonomic type prediction to quantify the importance of
individual features. In the experiments, the feature set was
reduced to highlight the areas of interest that mostly
contribute to making the prediction. For complex
prediction, the top five features were sufficient for obtaining
93% prediction balanced accuracy, whereas six features
resulted in 81% balanced accuracy in the case of taxonomic
type prediction. This shows that the whole spectrum contains
redundant features which are not informative for predicting
the output. On the one hand, this may lead to degradation of
classification, due to overfitting to noise. On the other hand, it
shows spectra contain more information than necessary for
taxonomic-type prediction and that validates the reduction to
a few narrowband filters.

For future space and ground-based surveys that aim for
taxonomic characterization of asteroids in the Bus–DeMeo
scheme, we would recommend the use of six narrowband

filters that cover the reflectances at 0.65, 1.0, and 1.4 μm and
additional couple filters that allow for estimation of the spectral
slope in the 0.45–2.5 μm. According to this study, those would be
sufficient to obtain prediction balanced accuracy on the level of 93
and 81% for prediction complexes and types, respectively.
Narrowband filters were already utilized in the J-PLUS survey
(Morate et al., 2021); however, those could be further optimized
to more efficiently link the observed asteroids to the Bus–DeMeo
taxonomy.
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