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In August 2015, the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL)
observed precipitation of energetic (< 200 keV) electrons magnetically conjugate to a
region of dense cold plasma as measured by the twin Van Allen Probes spacecraft. The
two spacecraft passed through the high density region during multiple orbits, showing that
the structure was spatial and relatively stable over many hours. The region, identified as a
plasmaspheric plume, was filled with intense hiss-like plasma waves. We use a quasi-linear
diffusion model to investigate plume whistler-mode hiss waves as the cause of
precipitation observed by BARREL. The model input parameters are based on the
observed wave, plasma and energetic particle properties obtained from Van Allen
Probes. Diffusion coefficients are found to be largest in the same energy range as the
precipitation observed by BARREL, indicating that the plume hiss waves were responsible
for the precipitation. The event-driven pitch angle diffusion simulation is also used to
investigate the evolution of the electron phase space density (PSD) for different energies
and assumed initial pitch angle distributions. The results show a complex temporal
evolution of the phase space density, with periods of both growth and loss. The
earliest dynamics, within the ∼5 first minutes, can be controlled by a growth of the
PSD near the loss cone (by a factor up to ∼2, depending on the conditions, pitch angle, and
energy), favored by the absence of a gradient at the loss cone and by the gradients of the
initial pitch angle distribution. Global loss by 1-3 orders of magnitude (depending on the
energy) occurs within the first ∼100min of wave-particle interaction. The prevalence of
plasmaspheric plumes and detached plasma regions suggests whistler-mode hiss waves
could be an important driver of electron loss even at high L-value (L ∼6), outside of the main
plasmasphere.
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1 INTRODUCTION

On August 10, 2015, BARREL balloon payload 3 A observed
bremsstrahlung x-rays (∼5–150 keV) attributed to precipitation
of energetic electrons with energies < 200 keV. The balloon was
located over Kiruna, Sweden, and magnetically conjugate to the
Van Allen Probes (RBSP) spacecraft as they entered a region of
high plasma density. The high density region was spatially
confined and persisted for multiple orbits indicating that it is
a plasmaspheric plume or detached plasma region. Strong
whistler-mode hiss waves were observed by both spacecraft in
the high density region.

Plasmaspheric hiss is a major driver of radiation belt loss
inside the plasmasphere, contributing to the creation of the slot
region between the inner and outer radiation belts (Lyons and
Thorne, 1973). These low-frequency (∼50 Hz-2 kHz)
electromagnetic whistler-mode waves are broadband and
incoherent. Their power is also proportional to the density,
with more power in dense regions (Malaspina et al., 2016;
Malaspina et al., 2018). Recent RBSP observations and
simulations demonstrate the importance of hiss waves; these
waves generate major loss up to L � 5.5 from pitch angle
diffusion when the plasmasphere is widely extended during
quiet times (Ripoll et al., 2016; Ripoll et al., 2017; Ripoll et al.,
2019). More information about hiss waves and the dynamics of
the radiation belts can be found in the review of Ripoll et al.
(2020a).

Outside the plasmasphere, at higher L-values, energetic
electron precipitation has been primarily attributed to whistler
mode chorus waves or electromagnetic ion cyclotron (EMIC)
waves [e.g., Millan and Thorne (2007); Thorne (2010)]. Recent
work suggests that hiss may also be active at higher L-values in
dense plasmaspheric plumes and detached plasma regions. A
plasmaspheric plume (also called a “tail” in the literature) is a
narrow region of dense cold plasma that extends out from the
main plasmasphere at Earth. The EUV instrument on the IMAGE
spacecraft provided the first global observations of plasmaspheric
plumes, their formation and evolution (Sandel et al., 2001;
Goldstein, 2004). Plume evolution is driven by changes in the
dawn-dusk convection electric field due to changes in the solar
wind (Grebowsky, 1970; Lemaire, 2000). A sudden increase in the
convection electric field causes the plasmapause boundary to
move inward leaving behind plasma that E × B drifts towards the
dayside, forming a dayside plume that is wide in magnetic local
time (MLT). With a subsequent decrease in the convection
electric field, the plume wraps around Earth and the MLT
extent narrows. Spacecraft passing through a plume observe a
localized increase in cold plasma density over a narrow range in
MLT. In the absence of global imaging, the twin Van Allen Probes
spacecraft, moving in similar orbits - one following the other,
provide an opportunity to distinguish between temporal and
spatial variations, helping to identify spatial density structures
like plumes.

Properties of hiss waves in plumes have been statistically
characterized in Shi et al. (2019). The occurrence rate of hiss
in plumes has a clear dependence on MLT and geomagnetic
activity, peaking near the dusk sector during active times. These

waves are more powerful in plumes than inside the plasmasphere,
particularly during active times, and have low wave normal angles
compared to the wide wave distribution function in the
plasmasphere. Plume whistler-mode waves were frequently
observed by Van Allen Probes and may be an efficient loss
mechanism for radiation belt seed electrons (Zhang et al.,
2019). Zhang et al. (2018) calculated loss rates due to observed
hiss emissions in a nightside plume and found that such
emissions may result in fast (few hours) loss of 10–100 keV
electrons at L in [4.5, 5.5] and a slower decay of higher energy
particles. Li et al. (2019) examined a particular event and found
that plume whistler mode waves are an effective pitch-angle
scattering mechanism, particularly for electrons with energies
from tens to hundreds of keV.

In this paper, we investigate plume whistler-mode hiss waves
as the primary cause of the energetic electron precipitation
observed by BARREL balloon 3 A on 10 August, 2015. The
observations are described in Section 2.1. Data from Van
Allen Probes are used to precisely determine the properties of
observed waves, trapped electrons, and cold plasma density. An
event-driven quasi-linear diffusion model is then used (Section
2.2) to investigate wave-particle interactions between the plume
whistler-mode waves and the trapped electrons, seeking to
identify the theoretical energy of the precipitating electrons.
We further investigate the time evolution of the electron phase
space density.

2 MATERIALS AND METHODS

2.1 Data and Observations
In this study, we use data from BARREL Campaign 3 and the two
Van Allen Probes spacecraft to characterize observed electron
precipitation and in situ plasma and wave properties respectively.
BARREL measures electron precipitation by detecting the
bremsstrahlung x-rays produced as electrons collide with the
neutral atmosphere [see e.g., Sample et al. (2020) for review].
Each BARREL payload carries a single 3“ diameter by 3” tall
sodium-iodide scintillator nominally sensitive to x-rays from
20 keV to 10 MeV (Millan et al., 2013). Several BARREL data
products are available as described in Woodger et al. (2015). In
the present study, we use the fast spectra (FSPC) with 50 ms x-ray
count rates, available in six energy channels covering 3–1300 keV.
Note that the nominal FSPC energy range is 25–1500 keV but the
Level 2 data product used here is calibrated to account for
temperature-dependent gain shifts. GPS timing and
positioning are transmitted using the Iridium satellite network
along with the science and other housekeeping data. The third
BARREL campaign was carried out at the Esrange facility near
Kiruna, Sweden in August 2015. A total of seven balloons were
launched over 16 days. Here, we use data from BARREL 3 A
which was launched on 10 August at 13:50 UT and terminated on
10 August at 21:18 UT.

The twin Van Allen Probes (here also referred to as RBSP-A
and RBSP-B) were launched on 30 August 2012 into nearly-
equatorial orbits with 618 km perigee and 30,414 km apogee,
providing two passes through the outer radiation belts every
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roughly 9 h. Each spacecraft carries a comprehensive suite of
instrumentation to study particles and plasma waves throughout
the inner magnetosphere (Mauk et al., 2013). In this study, we use
data from the EMFISIS (Electric and Magnetic Field Instrument
Suite and Integrated Science) (Kletzing et al., 2013), and MagEIS
(Magnetic Electron Ion Spectrometer) instruments (Blake et al.,
2013).

The EMFISIS waves instrument uses a tri-axial search coil
magnetometer and electric field measurements from the EFW
(Electric Field/Waves) instrument. A 6-channel waveform
receiver (WFR) provides electric and magnetic field power
from 10 Hz to 12 kHz. A single channel high frequency
receiver (HFR) covers 10–500 kHz. For this study, we use
Level 4 CDF files for cold plasma density, and the Level 2
WFR Spectral matrix product CDF files for wave observations,
obtained from https://emfisis.physics.uiowa.edu/data/index/. The
analysis used to determine the wave properties is described in
more detail in Section 2.2 below. For more information about
EMFISIS, see Kletzing et al. (2013).

The MagEIS instrument consists of four magnetic
spectrometers, one low-energy unit (20–240 keV), two
medium-energy units (80–1200 keV), and a high-energy unit
(800–4800 keV). For this study, we use Level 3 CDF files from:
https://www.rbsp-ect.lanl.gov/data_pub/rbspa/mageis/level3/
which combine low, medium and high data into pitch-angle
resolved electron flux. For more information about the MagEIS
instrument design see Blake et al. (2013).

BARREL 3 A began to detect an increase in the 3–145 keV
x-ray count rate (obtained by summing the FPSC 1a, 1b, and 1c
energy channels) at 1505 UT (Figure 1, blue trace) just after the
balloon reached a float altitude of 37 km. The energy of the
precipitating electrons producing the x-rays was primarily below
145 keV as can be seen by the lack of count rate increase in the
FSPC2 (145–456 keV) channel (Figure 1, orange trace).
Precipitation was observed for about 3 h. Note that
precipitation may have begun prior to 1505 UT while the

balloon was ascending and thus not sensitive to these low
energy x-rays. At the onset of the observed precipitation,
BARREL 3 A was located at L ∼6, MLT ∼1740 (T89 magnetic
field model with Kp � 2), just east of the RBSP-B magnetic
footpoint. BARREL is nearly fixed geographically and thus moves
in MLT as earth rotates.

Figure 2 shows EMFISIS data for just over two RBSP orbits on
10 August 2015. The two spacecraft were in similar orbits with
RBSP-B (bottom panel) leading RBSP-A (top panel) by about
45 min. The white trace shows plasma density derived from the
upper hybrid frequency (Kurth et al., 2015). At 1150 UT, RBSP-B
exits the plasmasphere, as indicated by a steep decrease in plasma
density. At 1445 UT, it encounters a localized region of increased
density (∼80 cm−3). About 40 min later, at 1525 UT, RBSP-A
encounters a similar localized increase in density. Both spacecraft
encountered the high density region near apogee (L � 5.9) and in
the same magnetic local time range (∼16–17 MLT), indicating
that the density increase was a stable spatial structure which we
identify as a plasmaspheric plume or detached plasma region. The
high density region was also present on the previous orbit but
with more spatial variation (Figure 2).

Both RBSP spacecraft detected wave power between roughly
50 Hz-1 kHz, identified as whistler-mode hiss waves, throughout
the high density plume region (Figure 2, color spectrogram).
There was substantial variability of the observed wave amplitude,
with values ranging from ∼50–200 pT. For comparison, mean
hiss amplitudes are between 10 and 30 pT depending on
geomagnetic conditions (e.g., (Malaspina et al., 2018)). Large
amplitude whistler waves similar to those shown here are also
reported in the statistics of Shi et al. (2019). The wave analysis and
properties are discussed in more detail in Section 2.2 below.

We also examined electron data from the RBSP MagEIS
instrument (Figure 3). A small substorm injection between
54–132 keV was observed starting at 1430 UT, just before
RBSP-B entered the plume region. The injection shows some
energy dispersion at both RBSP spacecraft. Data from the LANL

FIGURE 1 | BARREL Payload 3 A x-ray count rate versus time in two energy ranges: 3–145 keV (blue) and 145–456 keV (orange), observed on August 10, 2015.
The 50 ms FSPC data have been summed to a 1 s cadence.
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geosynchronous spacecraft also show evidence of a substorm
injection, with the spacecraft closer to midnight (e.g., LANL-
02 A) observing a dispersionless injection at around 1330 UT (not
shown). This is consistent with the RBSP observations of a
dispersed injection a bit later, since the RBSP spacecraft were
in the afternoon sector. Figure 4 shows example MagEIS pitch
angle and energy distributions with superposed fits that are used
in the modeling analysis described below.

2.2 Analysis and Model Description
To investigate whether the observed plume hiss waves are the
cause of the precipitation observed by BARREL, we use an event-
driven quasi-linear diffusion model. Wave properties (mean
frequency, frequency cut-offs, wave normal angle, and wave

amplitude) over the time interval 1440–1700 UT on 10 August
were generated from the EMFISIS data. We first compute the
characteristic magnetic field amplitudes of whistler-mode waves
using the trace of the magnetic-field power-spectral matrix
calculated onboard RBSP-A from 3D measurements of the
EMFISIS search coil antennas. The data were further
processed into the Level 4 WNA data set (Kletzing et al.,
2013) which serves as a basis for our analysis and additionally
provides wave-normal angles. We select waves which propagate
in the whistler mode and are right-hand polarized with ellipticity
above 0.2 (Santolík and Gurnett, 2002). We restrict the analysis to
a frequency range typical for plasmaspheric hiss from 50 Hz to
2 kHz (Santolík et al., 2001; LiW. et al., 2013; Thorne et al., 1973).
The total power spectral density is therefore integrated over this
frequency band. Mean frequency, mean frequency width, and
wave normal angle are defined by equations (2)-(4) in (Ripoll
et al., 2017) (not repeated here for brevity).

The average wave properties are shown in Table 1 for RBSP-A
and RBSP-B. Although we use only RBSP-A values for the quasi-
linear computations described below, the wave properties
measured by RBSP-B are also shown in Table 1 to illustrate
the stability and small variations of the wave system within the
high density plume as measured by both spacecraft. We note that
the waves have relatively small wave normal angles (last column
in Table 1) in accordance with the statistical behavior found by
Shi et al. (2019). The median frequency is also quite low, in
agreement with observations of low frequency hiss (Malaspina
et al., 2017), which favors interactions with higher energy
electrons. Cold plasma density, derived from the upper hybrid
frequency as measured by EMFISIS (Kurth et al., 2015), is
reported in Table 2, along with the normalized wave parameters.

Diffusion coefficients are computed with the CEVA code
originally developed by Réveillé et al. (2001). In this code,
bounce averaged diffusion coefficients were computed
following the method and equations of Lyons et al. (1972),

FIGURE 2 | RBSP-A (A) and RBSP-B (B) EMFISIS data on 10 August 2015. The spectrogram shows the WFR cross spectrum diagonal matrix element, BuBu
(spacecraft spin plane component of magnetic field), between 10 Hz and 8 kHz. Plasma density derived from the upper hybrid frequency is shown with the white trace.

FIGURE 3 | Electron intensity near the loss cone (α � 24.5°) in five energy
channels as measured by the RBSP-B MagEIS instrument.
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which account for a sum over all harmonics (-n. . ., 0, . . ., n), a
wave normal integration, and bounce averaging between the
mirror points. Equations 2 to 8 of Lyons et al. (1972) define
the diffusion coefficients. The limit of low frequency (ωmed/ωce <
1) and high-density (ωmedωce/ω2

pe ≪ 1) that are assumed in these
computations are satisfied (cf. Table 2, last two columns). A more
synthetic and modern expressions of the diffusion coefficients is
available through Equations 8, 9 in Ripoll and Mourenas (2013)
using the notations of Albert (2005). Verification by comparison
with diffusion coefficients computed with the codes from the US
AFRL and BAS (e.g.,Albert (1994, 2008); Meredith et al. (2007))
have been performed in Ripoll and Mourenas (2013). Validation
studies include Ripoll et al. (2016, 2017, 2019), Ripoll et al.
(2020b), Ripoll et al. (2020c), and Loridan et al. (2019).

Diffusion coefficients were calculated using the average wave
and plasma parameters from RBSP-A. They are based on the
observed size of the high density region (∼1 h MLT) and there is

noMLT-averaging (e.g., Spasojevic et al. (2015)) that accounts for
the wave variations throughout the drift path (cf. more comments
below). The inclusion of the available ambient measurements
produces so-called event-driven diffusion coefficients which are
today the most sophisticated method for reproducing radiation
belt observations (see also Thorne et al. (2013); Tu et al. (2014);
Ripoll et al. (2020b); Pierrard et al. (2021)). In doing so, we
attempt to quantify the accuracy of this type of modeling. The
calculated diffusion coefficients are discussed in Section 3 below.

We also investigate the evolution of the electron phase space
density (PSD) using the calculated diffusion coefficients in a
pitch angle diffusion based Fokker-Planck equation (e.g. Ripoll
et al. (2017)). The initial electron distribution was taken to be
dependent on pitch angle following the RBSP-B observations.
A convolution with the energy spectrum can be performed
after the computation is made (in the absence of energy

FIGURE 4 | Example pitch angle (A) and energy (B) distributions from the RBSP-B MagEIS instrument with superposed fits. The pitch angle distribution is shown
for ∼75 keV electrons and the energy distribution is shown near the loss cone at α ∼ 8°.

TABLE 1 | Average wave parameters obtained from both Van Allen Probe
spacecraft during the event interval. θ is the wave normal angle.

Spacecraft Time Amplitude fmedian fmin fmax θ

RBSP UT (pT) (Hz) (Hz) (Hz) (degrees)

A 1500–1700 140 154 76 313 11
B 1440–1540 92 150 63 400 12

TABLE 2 | Average plasma and normalized wave parameters during the event
interval. ωmed is the median wave angular frequency calculated using fmedian

from Table 1.

Spacecraft ne ωpe ωce ωmed/ωce ωmedωce/ω2
pe

RBSP (cm−3) ×105s−1 ×103s−1 ×10−1 ×10−5

A 79.4 5.03 4.26 0.97 1.63
B 79.4 5.03 4.26 0.94 1.59

FIGURE 5 | Bounce averaged diffusion coefficient (1/s, log10 scale) with
respect to energy (E) and equatorial pitch angle (α) at L � 5.9 for the plume
conditions observed by RBSP-A on 10 August, 2015 1500–1700 (cf. Tables
1, 2.).
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diffusion). For each MagEIS energy channel, the pitch angle
distribution was fit with a sinb(α) function with a power b(E)
depending on energy (example shown for 75 keV in left panel
of Figure 4). We find b(E) � [0.15, 0.35, 0.52, 0.8, 0.6] for E �
[54, 75, 102, 132, 169] keV. The initial condition is regularized
in a continuous manner within the loss cone using the expression
f(t � 0, E) � sinb(E)(α) − sinb(E)(αlc) (Li Z. et al. (2013)).

3 RESULTS

Figure 5 shows the bounce averaged diffusion coefficients
calculated using the input parameters described above. At
large L-shell (e.g., in the outer belt or in plasmaspheric
plumes, L ∼ 6), hiss waves will predominantly act on low
energy electrons. Here, the diffusion coefficient for small pitch
angle particles is largest between ∼10–150 keV, consistent with
the energy of x-rays observed by BARREL. As mentioned
previously, the diffusion coefficient is not drift-averaged and is
representative of the wave particle interactions only within the
plume. The waves were observed only within the plume region,
extending ∼1 h of MLT, thus drift-bounce-averaged diffusion
coefficients would be a factor 1/24 lower in amplitude. Here, due
to the intense wave amplitude and the absence of MLT-averaging,
diffusion coefficients reach very high rates with Dαα ∼10−2 s−1.
Since BARREL was located in the northern hemisphere, it

observed predominantly local precipitation. This local bounce
loss comes from the immediate and intense (low pitch angle)
precipitation within the plume (thus proportional to the local
wave amplitude squared) and is not the result of wave particle
interactions all along the drift path (that would be proportional to
the MLT-averaged squared amplitude, a factor 1/24 lower in this
case).

Figure 6 shows the evolution of the phase space density for
electrons as a function of energy, E, and equatorial pitch angle, α,
from t � 0 to t � 100 min of interaction with hiss waves in
the high-density region. The initial condition (top left panel) is
f(t � 0, E) � sinb(E)(α) − sinb(E)(αlc). Sudden loss of 10–30 keV
electrons occurs almost immediately, within the first 5 min, in the
vicinity of the loss cone (Figure 6, top middle). Loss of 100 keV
electrons by one order of magnitude takes 25 min of interaction.
After 100 min (Figure 6, bottom right), the phase space density
has vanished by ∼2 (resp. 1) orders of magnitude for all pitch
angles below 70° for E in [20, 70] keV (resp [70, 200] keV). Note
that electrons, particularly of higher energy, may interact with the
plume multiple times as they gradient-curvature drift around
Earth in order to reach a total of 100 min of interaction. 10 keV
electrons with small pitch angle take ∼40 min to drift across the
plume, thus the rapid loss of low energy electrons within the first
5 min occurs upon their first encounter with the plume. The
predicted range of energies of the main loss are also in agreement
with the range of energy found by Shi et al. (2019). Some loss of

FIGURE 6 | Phase space density versus energy (log10 in keV) and equatorial pitch angle (degrees) plotted at t � 0, 5, 25, 50, 75, 100 min. This PSD is the solution of
the Fokker-Planck pitch angle diffusion equation.
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high energy electrons up to 1 MeV within the vicinity of the loss
cone are also computed.

We also study the influence of the initial conditions on the loss
and on the dynamics at early times, when pitch angle diffusion
has not yet reached an equilibrium state. Figure 7 shows the
evolution of the PSD in the vicinity of the loss cone (at α � 7.95°,
rounded to 7° in the figure’s label) during the first 100 min of
interaction with hiss waves. Comparing the top and bottom rows
of Figure 7 illustrates the important role of the loss cone
regularization. Comparing lines within each figure allows to
see the influence of the b(E) power index, with two limits
bounding the variations. The low limit b(E) → 0 (i.e. b �
0.01) is equivalent to the widely used and standard f(t � 0, α)
� 1 initial condition, either dropping abruptly from one for α ≠ αlc
to 0 for α � αlc if there is no regularization (top row) or going
continuously from one to 0 if regularized (bottom row). The
second limit of b(E) → 1 is a PSD approaching sin(α) and with
significant gradient at intermediate pitch angle. Figure 7 provides
interesting new insight into the dynamics and how they are
modeled. First, as expected, the larger the gradient at the loss
cone, the more intense will be the loss in the vicinity of the loss
cone and at the earliest times (generally below 1 min for our case,
depending on energy). The regularization, which can be seen as a
continuous process to fill out the loss cone, limits the gradient and
thus the intensity of the earliest loss. In turn, large b(E) power
index leads to intermediate pitch angle diffusion that will make
the overall loss-gain budget at fixed pitch angle to lean in favor of
a temporary growth of the PSD level during the earliest times.
This is better seen in the presence of the regularization (since loss

is even milder). On the contrary, without regularization the
loss can dominate for certain low energy and b(E), and
temporary growth can no longer exist. Most past parameter
studies in the literature have been done with f(t � 0, α) � 1 and
f(t � 0, αlc) � 0 (e.g., Shprits et al. (2008)) so that PSD growth
could not be seen. This is because the infinite gradient at the
loss cone creates intense sudden loss, and the absence of other
gradients with respect to pitch angle make the appearance of

FIGURE 7 | Phase space density versus time for different initial conditions. Initial conditions without (A) and with (B) regularization at the loss cone for E � 12, 49,
and 135 keV. Within each plot, the initial pitch angle distribution varies with a power b ranging from b ∼ 0 (for which it tends toward f(t � 0) � 1) to b ∼ 1 for which f(t � 0) �
sin(α). For certain energies and b(E) power, the initial condition induces a growth of the PSD prior to a decaying phase. The decay itself presents various phases with
different slopes. Changes of slope indicate the steady state has not been reached.

FIGURE 8 | Phase space density of 135 keV electrons versus pitch
angle for different times (in min) with four pitch angle regions of different
dynamics that are indicated with arrows.
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temporary PSD growth impossible. This explains why this
particular behavior has not been discussed in the past (to the
authors’ knowledge).

The temporary growth of the PSD can be best analyzed and
understood looking at Figure 8 in which we see a temporary
growth happening for times below 5 min at 135 keV for
equatorial pitch angle between ∼12 and ∼40°. The growth is
due to the diffusion coefficient whose maximum (first
cyclotron resonance) is located above 40° for 135 keV (cf.
Figure 5). That diffusion turns out to be faster than the
diffusion of the lower pitch angles below 40°and outside the
loss cone vicinity region. High pitch angle electrons (40°–75°)
thus diffuse faster and fill out lower pitch angles (∼12°–40°)

causing the flux at low pitch angles to rise progressively during
the first 3–5 min. That type of diffusion explains the various
growths of PSD we see happening in time in Figure 7.
Comparison of Figure 8 with Figure 7 also shows that the
growth cannot happen at ∼7° for this energy and initial
condition for which the absence of regularization in this
example increases the gradient at the loss cone and favors
the loss.

Figure 9 shows the evolution of the PSD using the specific
energy-dependent b(E) observed by RBSP-B. In addition, we plot
in Figure 10 the respective instantaneous growth (τ > 0) and loss
rates (τ < 0), previously discussed. We define these rates as 1/
τ � |Δf(t)/Δt| in units of hours. The considerable variation of
τ with time (including a change of sign) shows that steady
state, which defines the general electron lifetime (Lyons et al.,
1972), is not reached within the first 100 min for most of the
energies below 200 keV. At 74 keV, we see, for instance, a fast
loss rate of ∼12 min persisting during ∼30 min, which
signifies that the flux decreases by a factor e1 every 12 min
during 30 min, i.e. a factor of e(30/12) � 12 after 30 min. The
constant loss rate during that time is controlled by the largest
gradients, which flatten as diffusion occurs. After 30 min, the
loss rate of 74 keV starts to increase and reaches a plateau
value at ∼80 min, which is the steady state value. This is in
agreement with the theoretical lifetime from direct steady
state computation for 74 keV electron that is 90 min for this
problem. Therefore, during the first 30 min that followed the
growth phase, the loss is 7.5 times faster than the lifetime
would predict. After 100 min, the 49 and 74 keV electron flux
are reduced by two orders of magnitude and the 100–200 keV
electron flux is reduced by ∼1 order of magnitude. The initial
electron energy distribution observed by RBSP is exponential
and also strongly weighted towards lower energies (Figure 4),
thus the precipitation observed by BARREL was also
dominated by these energies.

FIGURE 9 | Predicted phase-space density at the loss cone edge (α �
7.95°) for a range of energies (E � 12, 24, 49, 70, 135, 210 keV). PSD growth
can occur during the first ∼10 min after which the PSD starts decaying
abruptly.

FIGURE 10 | Evolution of the instantaneous growth (τ > 0) (A) and decay (τ < 0) (B) timescales, defined as 1/τ(t) � − Δf(t)/Δt, for pitch angle in the vicinity of the loss
cone. The growth exists during the five first minutes and is entirely due to the initial condition, favored by the absence of an abrupt gradient at the loss cone, which allows
the low pitch angle population to be populated from higher pitch angle electrons diffusing toward the loss cone.
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4 DISCUSSION

An event-based study was conducted to investigate wave-particle
interactions in the radiation belts. A fortuitous magnetic
conjunction between the RBSP spacecraft and BARREL
balloon payload 3 A provided a rare opportunity to study
pitch-angle scattering by plume whistler-mode hiss waves. A
quasi-linear pitch angle diffusion model was developed using
wave and plasma parameters observed by RBSP as they passed
through a stable region of dense cold plasma (n ∼80 cm−3) near L
� 6. The model results show that interaction with the plume hiss
waves leads to rapid loss of electrons over the same energy range
observed by BARREL. Moreover, a significant decrease in the
trapped electron flux can occur within 2 h for electrons of pitch
angle up to 70° for E in [50, 100] keV.

We also examined the effects of the initial pitch-angle
distribution that is assumed when evolving the phase space
density. Many previous studies assume a completely empty
initial loss cone distribution which leads to an artificially rapid
loss rate due to the very steep gradient at the loss cone.
Regularization of the loss cone distribution reduces this effect
and also reveals how diffusion from larger pitch angles can
actually cause an initial increase in flux near the loss cone.
This effect is very sensitive to the initial pitch angle
distribution assumed for a given energy. These results
illustrate the importance of modeling the dynamic evolution of
the PSD; the assumption of steady-state loss lifetimes is not
accurate for event-based studies such as this one, since the
event duration is comparable to the time to reach a steady
state. We incorporated the observed pitch angle distribution
into the dynamic model of PSD. The present study did not
include the effects of the energy-dependent drift time for
electrons, rather examined the evolution of the PSD as a
function of total interaction time with the waves. The lowest
energy (∼10 keV) electrons spend ∼ 40 min within the wave
region (the plume) while higher energy (∼100 keV) electrons
drift across the plume more quickly and may encounter the
plume several times as they drift around Earth. In order to more
accurately model the energy spectrum observed by BARREL,
these effects must be included. The development of the model
presented here will allow for such future work.

Recent work from the Van Allen Probes mission has revealed
the prevalence of whistler-mode hiss waves in plasmaspheric
plumes, and several studies have suggested that plume hiss waves
could lead to strong loss of electrons. The event examined here
occurred during a substorm injection of electrons into the
radiation belts as observed by the RBSP MagEIS instruments.
Thus it was not possible to separate the effects of acceleration and
loss in order to quantify the overall impact of this plume on the
radiation belts. However, the loss rate indicated by this study
suggests that scattering by plume whistler-mode hiss waves,

which is currently not included in radiation belt models, could
be an important loss mechanism, particularly for radiation belt
seed electrons. In particular, the plume investigated in this study
was stable and persisted for several RBSP orbits. Electrons
gradient-curvature drift around the earth many times per day
and thus experience multiple encounters with such high-density
plumes and the hiss waves they support. Future work should
investigate the overall impact of plumes as a loss mechanism for
radiation belt electrons and the seed particles that generate them.
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