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The large-scale structure and evolution of the solar wind are typically reproduced with
reasonable fidelity using three-dimensional magnetohydrodynamic (MHD) models.
However, such models are difficult to implement by the scientific community in
general, because they require technical expertise and significant computational
resources. Previously, we demonstrated how a simplified two-dimensional surrogate
solar wind model, the Heliospheric Upwind eXtrapolation (HUX) technique, could
reconstruct MHD solutions in the ecliptic plane, given either an inner (or outer) radial
boundary condition. Here, we further develop the HUX technique and apply it to a range of
solar wind in-situ datasets. Specifically, we: (1) provide a thorough mathematical analysis
of the underlying reduced momentum equation describing the solar wind. (2) Propose flux-
limiter numerical schemes that more accurately capture stream interaction regions and
rarefaction regions; and (3) Apply the HUX technique to a variety of in-situ spacecraft
measurements, focusing on Helios (1 and 2) and near-Earth spacecraft (Wind/ACE), for
which near-latitudinal alignments occurred. We suggest that this refined HUX tool can be
used for both retrospective studies as well as real-time predictions to better understand
and forecast the large-scale structure and origin of the solar wind.

Keywords: heliosphere, solar wind streams, numerical methods, magnetohydrodynamics, space weather, in-situ
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1 INTRODUCTION

Beyond 10–20 solar radii (RS), plasma launched from the Sun travels along roughly radial
trajectories. Temporal variations, likely driven by re-configurations of the coronal magnetic field,
as well as the large-scale differential rotation of the Sun, conspire to place parcels of plasma of
different speeds, densities, and temperatures along the same radial path [e.g., (Riley et al., 2012)].
Where faster material attempts to outrun slower material, compression fronts are created, whereas
when fast material outruns slower material behind, an expansion wave (or rarefaction) forms [e.g.,
(Gosling and Pizzo, 1999)]. Particularly during the declining phase and at solar minimum, when
transient activity (and coronal mass ejections in particular) is reduced, these processes produce large-
scale corotating interaction regions (CIRs); global structures that appear to corotate with the Sun.

The structure and properties of these CIRs has been explored and reproduced with a
reasonably-high degree of fidelity over the years with increasingly sophisticated numerical
models [e.g. (Pizzo, 1978; Pizzo and Gosling, 1994; Riley et al., 2001; Riley et al., 2012; Shiota
et al., 2014; Riley et al., 2019; Poedts et al., 2020; Poirier et al., 2020; Réville et al., 2020)].
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However, such approaches are computationally expensive and
generally require significant time investment by the user.
Previously, we developed an extrapolation procedure, HUX
(Heliospheric Upwinding eXtrapolation), which provided a
simpler approach for reconstructing the structure of the inner
heliosphere (out to distances where pick-up ions could be
neglected) based on a simplification of the momentum
equation. Riley and Lionello (Riley and Lionello, 2011)
(“Paper 1”) introduced the HUX technique and
demonstrated that it could reproduce MHD solutions with
high accuracy (Pearson correlation coefficient, PCC ∼ 0.98).
Riley and Issan (Riley and Issan, 2021) (“Paper 2”) extended
the model to allow the user to map solar wind streams both
outward (away from the Sun) and inward (back to the Sun); in
both cases, the results being considerably more accurate than
ballistic mapping solutions.

In this study, we further investigate the theoretical
underpinnings of the HUX technique, as well as refinements
to it. We also apply the technique to several solar wind datasets.
Specifically, in Section 2 we summarize the main methodologies
used, including models and data, while in Section 3 we focus on
several theoretical considerations, including higher-order
refinements to the HUX technique. In Section 4 we apply the
refined HUX technique to in-situ measurements, mapping
observed stream structure from one location to another and
comparing it directly with observations from spacecraft at that
location. Finally, in Section 5, we discuss the main points of this
study, point out a few important caveats and limitations, and
suggest how these results may be employed in future studies.

2 METHODOLOGY

2.1 Models
2.1.1 The HUX Technique
We consider three distinct model approximations here: (1)
ballistic; (2) HUX; and (3) MHD. The so-called ballistic
approximation simply states that a parcel of plasma maintains
its speed throughout the region of interest, say, from 30RS to 5
AU. This provides an exceedingly simple way to map the plasma
to different locations in the heliosphere, assuming that it
maintains a radial trajectory. In Supplementary Appendix A,
we recover the ballistic approximation using the method of
characteristics, and in Supplementary Appendix B, we derive
an expression that defines where the characteristics intersect, and,
hence, where the ballistic approximation fails.

The HUX approach, which represents a compromise between
the ballistic and MHD approximations has been described in
more detail in papers 1 and 2. Briefly, we begin by assuming that
the large-scale evolution of the solar wind motion can be
approximated by the fluid momentum equation in a
corotating frame of reference (Pizzo, 1978; Riley and Lionello,
2011; Riley and Issan, 2021):

−Ωrot
z�v

zϕ
+ �v · ∇( )�v � 1

ρ
∇p − GMs

r2
er (1)

where r is the radial distance from the Sun, ϕ is Carrington
longitude in Heliographic (rotating) coordinate system (HG), θ is
heliographic latitude, �v � [vϕ, vθ, vr] is the solar wind velocity,
ρ(ϕ, θ, r) is the plasma density, p(ϕ, θ, r) is the plasma pressure, G
is the gravitational constant, Ms is the solar mass, and Ωrot(θ) is
the angular frequency of the Sun’s rotation set equal to
2π

25.38 rads/day at the solar equator, and more generally is a
function of latitude (Riley and Issan, 2021). This last term,
however, as we have shown previously, is unlikely to be
important for mapping out solar wind streams (Riley and
Issan, 2021), although it is worth noting that Parker Solar
Probe (PSP) did observe substantial tangential solar wind
speeds [e.g. (Finley et al., 2020)].

To progress further, as in Papers 1 and 2, we neglect the
pressure gradient and gravity terms, and only consider variations
of the velocity in the radial direction (Pizzo, 1978; Riley and
Gosling, 1998). With these simplifications, the fluid momentum
equation reduces to a two-dimensional non-linear scalar
homogeneous time-stationary equation, described by:

zvr
zϕ

− 1
Ωrot

vr
zvr
zr

� 0 (2)

where the independent variables are r, ϕ and the dependent
variable is vr(ϕ, r). The initial-boundary value problem (IBVP) is
defined by Eq. 2 on the domain 0 ≤ ϕ ≤ 2π and r ≥ 30RS, where RS
denotes solar radii unit of distance.

The problem described by Eq. 2 is subject to the initial
condition vr(ϕ, r0) with periodic boundary conditions, such
that vr(0, r) � vr(2π, r) for all radial locations. Eq. 2 would be
considered to be of the form of the well-studied inviscid Burgers’
equation, if the propagation was in the longitude direction;
however, we advance in the radial direction. By solving Eq. 2
we aim to approximate the solar wind radial speed near Earth at
1AU ≈ 215RS given an initial condition in the inner heliosphere,
say, at 30RS. Having defined the problem, we are now in the
position to explore mathematical methods to solve our
underlying equation (Eq. 2).

2.1.2 Acceleration Effects
Riley and Lionello (Riley and Lionello, 2011) proposed adding an
ad hoc acceleration boost to the initial velocity profile near the
Sun (approximately 30RS to 50RS) to account for residual
acceleration of the solar wind. The acceleration boost is
described by the following expression:

vacc r( ) � α vr ϕ, r0( )[ ] 1 − e−r/rh( ) (3)

where vr(ϕ, r0) is the initial solar wind speed, α is the factor by
which we increase the speed, and rh is the span over which the
acceleration lasts (Riley and Lionello, 2011). Essentially, α and rh
are free parameters, but which previously (papers 1 and 2) were
found to be: α � 0.15 and rh � 50RS. Thus, for forwardmapping, to
account for the solar wind acceleration, we alter the initial velocity
by adding vacc before propagating the solution, while, for
backward mapping, we first back-propagate then subtract the
results at, say, 30RS by vacc.
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2.2 Data
In this study, we initially surveyed a range of data from NASA’s
Space Physics Data Facility (SPDF). These included the OMNI
dataset, providing in-situ measurements of the plasma and
magnetic field upstream of the Earth, as well as Helios 1 and
2, Voyagers 1 and 2, Pioneers 10 and 11, and Ulysses, which
spanned a range of heliocentric distances, latitudes, and
longitudes. However, as discussed more below, to reduce the
likelihood that disagreements in the mapped and observed data
were the result of the spacecraft sampling different plasma, we
required that the two datasets being compared were substantially
aligned in latitude at the time of the observation. This reduced the
number of conjunctions to three: Helios 1 and 2 and OMNI.

The Helios mission was aimed at providing observations of the
inner heliosphere region to gain a better understanding of solar
wind evolution. Helios 1 and 2 were launched on December 10,
1974, and January 15, 1976, respectively, and Helios 1 continued
to operate up to 1984 (Rosenbauer et al., 1977; Mariani et al.,
1979; Schwenn and Marsch, 1990). On April 17 1976, at a
distance of 0.29 AU, Helios 1 travelled closer to the Sun than
any other previous spacecraft; a record that was not broken until
October 29 2018 by Parker Solar Probe.

For this study, we used Helios data collected by the plasma
experiment instrument, which measured the density, speed, and
temperature of the solar wind (Rosenbauer et al., 1977). To
download the data, we used HelioPy, a community-developed
Python package for space physics (Stansby et al., 2021), which, in
turn retrieved the data from NASA’s Space Physics Data Facility
(SPDF) website (https://cdaweb.gsfc.nasa.gov/index.html/). We
also used the Python package PsiPy to download PSI’s MAS
(Magnetohydrodynamics Algorithm outside a Sphere) model
results (Riley, 2021).

The OMNI dataset is an aggregation of data from multiple
near-Earth spacecraft (primarily IMP 8, Geotail, Wind and ACE),
providing solar wind measurements at Earth (King and
Papitashvili, 2005). These data were also obtained from SPDF
using the HelioPy interface.

3 REFINEMENTS TO THE HUX TECHNIQUE

In this section, we introduce several explicit 2-level numerical
methods to solve Eq. 2. Ideally, a sufficient numerical method is:
(1) at least second-order accurate; (2) highly-accurate at
discontinuities; and (3) absent of artificial oscillations
(LeVeque, 1992). Before applying numerical methods to
estimate derivatives, we rewrite Eq. 2 in hyperbolic
conservation form as:

z

zr
vr + z

zϕ
f vr( )[ ] � 0 (4)

The physical flux function is f(vr) � − Ωrotln(vr) and because
f′′(vr) � Ωrot

vr2
> 0 ∀vr > 0, f is said to be convex. When f′′(vr) does

not change sign, such in the model described here, discontinuous
solutions appear in the form of either a shock or an expansion
wave (LeVeque, 1992).

3.1 Convergence
Numerical methods are considered convergent, i.e., the numerical
solution converges to the true solution, if the method is consistent
and stable (LeVeque, 1992). To satisfy the consistency
requirement, the numerical flux function should meet the
following condition: If vi,j � vi,j+1, then F(vi,j, vi,j+1) � f(vi,j),
where F and f denote the numerical and physical flux functions,
respectively. Furthermore, for any numerical method to be
considered stable, it must satisfy the Courant–Friedrichs–Lewy
(CFL) condition as the grid is refined. The CFL condition states
that the method’s numerical domain of dependence must contain
the true domain of dependence of the equation (Courant et al.,
1967). For Eq. 2 with the first-order upwind scheme, the CFL
restriction is based on the grid cell and the domain of dependence,
such that the following inequality must hold:

ϕ − Δϕ≤ ϕ − Ωrot

vr
Δr( )≤ ϕ (5)

More succinctly, the Courant number ] is restricted to be less
than or equal to 1 to ensure stability1:

] � ΔrΩrot

vrΔϕ
(6)

for 0 ≤ ] ≤ 1, where Δr can be dynamically modified as the
method propagates the solution forward in the radial direction.
Note that for higher order numerical methods, the Courant
number has a more lenient tolerance.

3.2 First-Order Numerical Methods
The Heliospheric Upwind eXtrapolation Technqiue developed in
paper 1 leverages the first-order upwind scheme in quasi-linear
form to solve Eq. 2 numerically. The reasoning behind this is
because we assume vr > 0, ∀r, ϕ; therefore, the wave propagates
only in one direction, the “upwind” direction. The HUX-f
(forward) technique maps solar wind streams from the inner
heliosphere (≈ 30RS) to Earth (1 AU), such that:

vi+1,j � vi,j + ΔrΩrot

vi,j

vi,j+1 − vi,j
Δϕ( ) (7)

where v denote the discretizion of vr and the indices i and j refer to
r and ϕ grids, respectively. In contrast, the HUX-b (backwards)
technique, which is also based on the first-order upwind method,
marches in the downwind direction, such that the mapping
technique is applied to near-Earth data and mapped back to
the Sun. The HUX-b method is defined as:

vi−1,j � vi,j + ΔrΩrot

vi,j

vi,j−1 − vi,j
Δϕ( ) (8)

Although the first-order upwind method is simple and stable,
it also results in smeared solutions near discontinuities,
mimicking–in a crude sense–the effects of viscosity.

1In paper 2, this condition was mistakenly written with the fraction inverted;
however, in the code that was distributed with the publication, it was implemented
correctly.
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3.3 Higher-Order Numerical Methods
To overcome significant numerical dissipation that is associated
with all first-order numerical methods, we now consider higher-
resolution methods in an attempt to improve the standard HUX-
f/b technique. The higher-resolution methods are at least second-
order accurate in smooth regions yet still are easy to implement
and computationally efficient.

3.3.1 MacCormack’s Method
The upwind method discussed in Section 3.2 is a first-order
method. The MacCormack method is a higher-order method that
uses first-order differencing and then backward differencing to
achieve second-order accuracy (MacCormack, 1969). It is
described by:

~vi,j � vi,j − Δr
Δϕ f vi,j+1( ) − f vi,j( )[ ]

vi+1,j � 1
2

vi,j + ~vi,j( ) − Δr
2Δϕ f ~vi,j( ) − f ~vi,j−1( )[ ] (9)

It should be noted, however, that although the MacCormack
method is highly accurate on smooth solutions, the method’s
results exhibit artificial oscillations at discontinuities.

3.3.2 Richtmyer Two-step Lax-Wendroff Method
Similar to MacCormack’s method, the Richtmyer two-step Lax-
Wendroff method is second-order accurate on smooth regions
(LeVeque, 1992), and is based on the Taylor series expansion
(LeVeque, 1992). The method is applied in two steps. The first
step approximates the half steps as

vi+1/2,j+1/2 �
1
2

vi,j+1 + vi,j( ) − Δr
2Δϕ f vi,j+1( ) − f vi,j( )[ ]; (10)

Then, the second step computes the next full radial iteration,
where:

vi+1,j � vi,j − Δr
Δϕ f vi+1/2,j+1/2( ) − f vi+1/2,j−1/2( )[ ] (11)

Again, the Lax-Wendroff method suffers from artificial
oscillations near discontinuities. Figure 1 illustrates the effects

of implementing these second-order schemes. We make the
following remarks. First, overall, both the first- and second-
order schemes are able to map out the MHD solution
reasonably well from 30RS to 1 AU. Second, the second-order
schemes seem to perform better in capturing the smaller scale
structure, such as the oscillations in the slow solar wind from 0° to
120° longitude. Third, the higher-order approaches are able to
maintain the amplitude of the high-speed streams better than the
first-order approximation. Fourth, the higher-order schemes
significantly overshoot the troughs between each of the high-
speed streams. Fifth the higher-order schemes are better able to
capture the rising gradients (rarefaction side) in the streams.

3.4 Flux-Limiter Methods
First-order methods are total variation diminishing (TVD),
meaning that they attempt to better capture shocks or
discontinuities without introducing spurious oscillations, yet,
they result in numerical dissipation. Higher-order methods
result in better accuracy in smooth regions, but exhibit
artificial oscillations near discontinuities. Flux-limiter methods
aim to address both limitations. In regions of discontinuities, the
flux-limiter method will behave as a low-order method, while in
smooth regions, it chooses the higher-order approximation
(LeVeque, 2002). The flux-limiter method depends on the
wave gradient, such that:

F vi,j( ) � FL vi,j( ) +Φ FH vi,j( ) − FL vi,j( )[ ] (12)

where Φ(v) is the limiter function, FL is the numerical flux
function of the first-order method (e.g. 1st-order upwind
scheme), and FH is the numerical flux function of a higher-
order method (e.g., MacCormack’s method). Near
discontinuities, Φ is close to zero (F ∼ FL), while in smooth
regionsΦ is approximately 1 (F ∼ FH). There are multiple ways to
measure the smoothness of the data, a common approach being
to evaluate the gradient, Θ:

Θi,j � vi,j − vi,j−1
vi,j+1 − vi,j

(13)

FIGURE 1 | Comparison between 1st-order upwind scheme (HUX-f),
MacCormack method, and Lax Wendroff method versus the MHD solution.
The initial solar wind data is at 30RS, at the solar equator, and mapped out
to 1AU.

FIGURE 2 | Comparison between limiter functions (Superbee, Van Leer,
MC, and Minmod) and the 1st-order upwind scheme in the original HUX
technique, with the “ground truth” MHD solution for CR 2210. The high and
lower order methods used for the flux-limiter method is Lax-Wendroff
and the 1st-order upwind scheme, respectively. The initial solar wind data is at
30RS, at the solar equator, and mapped out to 1 AU.
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Some of the most common limiter functions used in the
scientific literature are the “superbee” and “minmod” limiters
developed by Roe, and the smooth limiter function and
monotonized central (MC) function developed by Van Leer
(Van Leer, 1974; Van Leer, 1977; LeVeque, 2002). These are
defined by the following functions:

ΦSuperbee Θ( ) � max 0, min 1, 2Θ( ), min Θ, 2( )( )
Φminmod Θ( ) � max 0, min 1,Θ( )( )
ΦVanLeer Θ( ) � Θ + |Θ|

1 + |Θ|
ΦMC Θ( ) � max 0, min 1 + Θ( )/2, 2, 2Θ( )( )

(14)

Figure 2 illustrates the improvement of flux-limiter methods
from solely lower or higher-order methods. Many of the same
points made for Figure 1 can be made when comparing the flux
limiter techniques with the first-order upwind approach. More
importantly, however, the major artifact that was introduced by
the second-order approaches–the drop in speed between the
high-speed streams–is now gone. The flux-limiter techniques
have combined the best aspects from each of the earlier
approaches.

Table 1 provides the mean squared error (MSE) and the
pearson correlation coefficient (PCC) between flux-limiter
numerical method schemes and the MHD solution for
CR2210 at the solar equator after mapping from 30RS to 1AU.
For this time period, theMacCormack method coupled with first-
order upwind method slightly out-performed the Lax-Wendroff
coupled with the first-order upwind scheme. However, the
difference was not significant. Among the four different limiter
functions (Superbee, VanLeer, MC, and minmod), the minmod
flux-limiter function resulted in the best fit, with the
MacCormack method coupled with the first-order upwind
scheme along with minmod flux-limiter function resulting in:
PCC ∼ 0.966 and MSE ∼ 1599.0. All the flux functions showed
improvement from the original HUX technique that used a first-
order upwind scheme, and for which: PCC ∼ 0.921 and MSE ∼
2581.8. Moreover, the flux limiter functions provides second-
order accuracy in smooth regions, yet is as simple to implement
and as computationally efficient as the original HUX technique.
For standard HUX and flux-limiter methods, the average
computation time was 0.03 and 0.3 s on a modest desktop
CPU, respectively. In contrast, computing global MHD
solutions for a full Carrington rotation requires several to
many hours on a reasonably large multi-processor or GPU
system (Riley et al., 2021).

Finally, we remark that even more sophisticated high-order
numerical methods exist, such as weighted essentially non-
oscillatory (WENO) methods. Since the HUX technique is
used primarily as a surrogate model for the 3-D MHD model,
we have aimed to improve the accuracy of the HUX technique
while retaining ease of use and computational efficiency. Thus, we
suggest that improving the standard HUX technique by
leveraging flux-limiter methods provides the optimum balance
by: (1) accurately capturing shock formation; (2) achieving higher
accuracy in smooth regions; and (3) avoiding severe numerical
dissipation when mapping out to large heliocentric distances.

4 Mapping In-Situ Measurements Through
the Heliosphere
Armed with this refined HUX (rHUX) technique we now apply it
to in-situ measurements. We apply the Lax-Wendroff method
coupled with the first-order upwind scheme along with the
minmod flux-limiter function. As noted earlier, although there
exist a large number of spacecraft datasets that we could
potentially investigate, the requirement that the measurements
be taken while the spacecraft are aligned in latitude, as well as over
periods of relatively low solar activity, effectively limited the set to
Helios 1 and 2 and Earth-based spacecraft (captured by the
OMNI dataset). We begin by mapping Helios 1 measurements
to Earth, then taking Earth measurements and mapping them to
the location of Helios 1. Following this, we repeat the process
using Helios 2 measurements.

4.1 Mapping From Helios 1 to OMNI and
OMNI to Helios 1
During it’s almost 10-years span, Helios 1 provided more than 30
latitudinal alignments with Earth-based spacecraft (Figure 3A).
Of these, more than 20 occurred with a radial separation of more
than 0.3 AU (Figure 3B). To illustrate several points, we chose
three specific Carrington rotations (1634, 1647, and 1653, yellow
boxes in Figure 3). These spanned the solar minimum of March
1976, ensuring that transient solar activity was at a relative
minimum, and also separated sufficiently in time so that the
quasi-stationary component of the source of the wind had
evolved sufficiently from one interval to the next, i.e., that we
were analysing a new, and distinct structure.

For our first comparison, we focus on CR 1634, which
occurred between 10/22/1 975 and 11/18/1 975. During this
time, Helios 1 spanned from 136.14RS to 187.08RS, with a
mean distance from the Sun of 165.67RS. Thus, in terms of
separation from Earth, it was, on average, closer to the Sun by
50RS or 0.23 AU. Figure 4A summarizes the HUX mapping of
smoothed Helios data (green/red/purple curves) with OMNI data
at 1 AU. Each of the curves assumes that the Helios spacecraft is
located at the minimum (green), mean (red) or maximum
(purple) spacecraft distance during the interval, and, thus,
provides a measure of the likely uncertainty in making this
approximation. In general, we infer that the mean distance
appears to give the best match with the observations. Several
other features are notable. First, the main high-speed stream

TABLE 1 | A comparison of flux-limiter functions.

Flux-limiter function Higher-order method PCC MSE

Superbee MacCormack 0.937 2205.452
Lax-Wendroff 0.923 2571.44

VanLeer MacCormack 0.961 1654.929
Lax-Wendroff 0.957 1723.747

MC MacCormack 0.958 1680.657
Lax-Wendroff 0.948 1904.528

Minmod MacCormack 0.966 1598.995
Lax-Wendroff 0.962 1672.187
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(> 700 km s−1) at 180° matches well between the mapped and
observed values, including some of the smaller scale structure
within it. Second, given our confidence from the previous point,
we suggest that where there are OMNI data gaps at ∼ 45 − 100°

and ∼ 201 − 280°, the mapped Helios 1 data perhaps provides a
reasonable prediction for what would have been observed, in
particular, a modest high-speed (600 km s−1) stream and slow/
steady solar wind, respectively.

FIGURE 3 | Latitude and radial absolute difference between Helios 1 and Earth Trajectories. The red dots represent the local minima for latitude absolute difference
between Helios 1 and Earth.

FIGURE 4 | (A) Comparison of mapped solar wind streams from Helios 1 spacecraft with Earth-based measurements (OMNI) for CR 1634. The three coloured
curves correspond to the minimum, mean, and maximum (green, red, and purple, respectively) of Helios 1 radial distance from the Sun for this period. (B) As (A) but
mapping Earth-based measurements (OMNI) back the location of the Helios 1 spacecraft.
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In Figure 4B, we compare OMNI data mapped back to the
location of Helios 1 showing that the procedure works well in
both directions. The missing data in the OMNI dataset are
mapped back as straight, unstructured lines, centred at more
westerly longitudes than at Earth; ∼ 90° and ∼ 270°. Similar
points can be made here, as for the outward mapping case. The
main inference to be drawn, however, is that HUX-f and HUX-b
are, at least on large scales performing well.

Next, we consider CR 1647, which occurred between 10/11/
1 976 and 11/07/1 976. Unlike the previous case, here, there are no
significant data gaps in the OMNI dataset, but one substantial gap
in the Helios 1 data between ∼ 285° and ∼ 330° longitude

(Figure 5). The minimum/mean/max separations were 69.5/
102.4/140.3 RS. Focusing first on the Helios 1 data mapped
outward to the location of Earth, we note that the modest
( ∼ 500 km s−1) stream centred at ∼ 80° is well captured by
the Helios-mapped data, and the HUX-f min profile, in
particular. This makes sense as the data at earlier longitudes
corresponds to later times during the interval, which, as can be
seen from Figure 3B, occurred during minimum radial
separation (middle yellow box). The large high-speed stream
centred at ∼ 300° is missing from the HUX-f mapped Helios
data. However, this was also when a substantial gap in Helios 1
data occurred. Finally, it is worth noting here, albeit

FIGURE 5 | As Figure 4, but for CR1647.

FIGURE 6 | As Figure 4, but for CR1653.
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unsurprisingly, that intervals of slow and steady solar wind are
mapped correctly from one spacecraft to the other
(e.g., ∼ 135° − 270°).

As a final illustration of mapping between Helios 1 and Earth,
in Figure 6, we compare outwardly-mapped Helios 1 data and
inwardly mapped OMNI data for CR 1953. Again, there are
relatively few missing data points at Earth, but a large gap in
Helios 1 data in the range: ∼ − 15°→ 90°. Overall, the
comparisons hold up well. In this case, the fact that the
missing Helios 1 data occurred during an interval where the
observed speed at Earth was slow and constant, led to a
reasonable mapping throughout. It is also worth noting for
this rotation, that the sub-structure within the main high-
speed stream centered around ∼ 180° appears to have been
captured by the HUX-mapped data; in particular, three
distinct sub-streams. However, while the amplitude of these
sub-streams is reproduced well at 1 AU, they are more
attenuated at Helios 1. In fact, comparing the observed peaks
of these streams, we note that they reached almost ∼ 800 km s−1

at Helios 1, but did not even reach ∼ 700 km s−1 at Earth.

4.2 Mapping From Helios 2 to OMNI and
OMNI to Helios 2
During the almost four-year interval during which Helios 2
returned results, there were almost 20 points where the
latitude difference between it and Earth vanished (Figure 7A).
Of these, approximately half occurred with a radial separation of
more than 0.3 AU (Figure 7B). We again identified three specific
Carrington rotations to illustrate several key points: CR 1653,
1667, and 1675 (yellow shaded intervals). The first interval
coincided with the last interval analyzed for Helios 1, and the
remaining two were separated by approximately 1 year from one

another. Thus, they represent solar minimum, and early
ascending phases of the solar activity cycle.

Figure 8 compares mapped Helios 2 data with OMNI data (a)
and mapped OMNI data with Helios 2 (b) for 1653. In both cases,
the comparisons demonstrate that the HUX-f and HUX-b
techniques accurately extrapolate data from one location to
another. Here, it is particularly noteworthy that the three
major sub-streams around ∼ 180° are captured by each
mapping; however, as before, while the amplitude of the
streams matches well in the outward mapping to 1 AU, it is
attenuated during the inward mapping to the location of Helios 2.

Figure 9 provides a complementary illustration of the impact
of missing data intervals. CR 1667 spanned the interval: 04/09/
1 978–05/06/1 978. In this case, there were substantial data gaps at
Earth ( ∼ 85° − 160°) and Helios 2 ( ∼ 0° − 120°). Again, where
data and mapped results coincide, the large-scale comparisons
are good: streams are reasonably well reproduced, both in terms
of phase and amplitude. Additionally, given the good matches
where data are available, the mapped data in the intervals of
missing data, such as the high-speed stream centred at ∼ 75° in
panel (b), can be given a reasonably high confidence of being
present.

As a final illustration, in Figure 10 we compare data and
mapped profiles for CR 1675, which occurred during the interval
from 11/13/1 978 to 12/10/1 978. Only one small data gap
occurred in the Helios 2 dataset ( ∼ 310° − 360°). While most
of the stream structure is captured well with either the inward or
outward mappings, there is a notable disagreement in the range
∼ 0° − 30°. This is not associated with anymissing data, but likely
reflects an underlying difference in the latitutinal separation of
the spacecraft. Note that from Figure 7A, while the interval began
with the two spacecraft being latitudinally-aligned, for much of
the interval, they were separated by ∼ 1° − 2°. Of course, it is also

FIGURE 7 | As Figure 3, but for Helios 2.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2022 | Volume 8 | Article 7953238

Issan and Riley Mapping Solar Wind Streams

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


possible that the divergence in structure is due to transient effects,
or some combination thereof.

5 SUMMARY AND DISCUSSION

In this study, we have further refined a simple technique for
mapping solar wind streams from one location to another
location in the inner heliosphere. Additionally, we applied the
technique to a variety of solar wind datasets, focusing on Helios 1
and 2 and near-Earth (OMNI), to illustrate some of the

capabilities and limitations of such an approach. We suggest
that rHUX can support studies aimed at understanding the
evolution of solar wind streams from the Sun to 1 AU (and
beyond) as well as inferring the likely source regions of observed
solar wind plasma. Moreover, it can support real-time forecasts,
by providing a computationally economical and efficient method
for predicting stream structure at various locations in the
heliosphere.

As noted in papers 1 and 2, the HUX technique relies on a
number of potentially significant assumptions and
approximations, including: (1) that all observed structure is

FIGURE 8 | (A) Comparison of mapped solar wind streams from Helios 2 spacecraft with Earth-based measurements (OMNI) for CR 1653. The three coloured
curves correspond to theminimum,mean, andmaximum (green, red, and purple, respectively) Helio 2 radial distance from the Sun for this period. (B)As (A) but mapping
Earth-based measurements (OMNI) back the location of the Helios 2 spacecraft.

FIGURE 9 | As Figure 8, but for CR1667.
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quasi-stationary; (2) that non-radial propagation can be ignored;
and (3) that the simplification of the momentum equation is
reasonable (i.e., that several forces (e.g., gravity, magnetic and
thermal pressure) can be neglected). In addition to these, we also
assumed that the spacecraft did not significantly move in radial
distance during the mapping interval (one solar rotation). As can
be seen from the comparisons in Figures 4–6; Figures 8–10, this
can introduce errors of up to ∼ 10°.

Focusing specifically on our simplification of the momentum
equation, we note that it has been previously shown that the ram
(or dynamic) pressure of the solar wind at 1 AU near the ecliptic
exceeds the thermal pressure by a factor of ∼ 200 (Feldman et al.,
1977; Riley, 1999). Moreover, the plasma-β is typically ∼ 2
(Wilson et al., 2018). Thus, the dynamic pressure substantially
dominates over both the thermal and magnetic pressure terms.
Additionally, the gravity term ceases to control the coronal
plasma beyond a few solar radii, at which point the solar wind
begins accelerating away from the Sun, and is certainly negligible
by 20, − , 30RS, where the present model is applied.

Our results are in apparent disagreement with those of
Macneil et al. (Macneil et al., 2021), who found that by Nolte
and Roelof (Nolte and Roelof, 1973), at least to some extent,
errors introduced by neglecting solar wind acceleration and non-
radial (azimuthal) flows tended to cancel. They concluded that
the “constant speed radial solar wind backmapping” technique
was likely as accurate and simpler to apply than more
sophisticated approaches, including the various iterations of
the HUX technique. While this is certainly possible, the results
from the current study do not show any obvious longitudinal
offsets. Of course, to firmly identify such an effect might require a
more comprehensive study. More importantly, however, the
constant speed backmapping technique does not address the
evolution of solar wind streams, which was one of the main
motivations for its development. Thus, if the objective is simply to
identify the likely source regions of plasma observed in situ, the

constant speed approximation might be sufficient; however, if
knowledge of stream evolution is paramount, then the HUX
technique should be used.

We treated the 3-DMHDmodel results as the “gold standard”
or “ground truth”, and previous studies have shown that the
MHD model is, in general, reasonably accurate [e.g., (Riley et al.,
2001; Riley et al., 2011; Riley et al., 2021)]. Yet, despite this, it is
important to note that the MHD model solutions can exhibit
numerical dissipation effects that are not physically apparent.
Thus, it should be borne in mind that a small contribution to the
error in the HUX technique may be spurious; however, since we
have no independent way to evaluate this (such as though an
analytic solution), this remains speculation. In any case, this is
likely to be a relatively small effect.

Our investigation has focused on intervals surrounding solar
minimum, for which transient activity is expected to be minimal.
However, the HUX approach has also been refined to explicitly
allow for temporal variations, including large-scale CMEs
(Owens et al., 2020). One interesting forecasting application
would be to use the results produced from HUX as the
ambient solar wind into which CMEs are launched. Indeed, a
promising “proof of concept” has already been demonstrated by
Barnard et al. (Barnard et al., 2020) using heliographic imager
data. More generally, however, a range of ICME models could be
launched into the HUX-derived 3-D background solar wind. We
anticipate that the relatively high accuracy of the ambient solar
wind produced by rHUX would lead to better estimates of CME
shock arrival times at multiple locations in the heliosphere (Wold
et al., 2018; Verbeke et al., 2019). Moreover, given the simplicity
of the approach it would be straightforward to develop a large set
of realizations as well as to explore the sensitivity of the parameter
phase space. By developing hindcasts of the shock arrival times at
NASA’s CCMC CME Scoreboard database (Riley et al., 2018), it
should be possible to optimize the algorithm to produce at least
modestly more accurate predictions.

FIGURE 10 | As Figure 8, but for CR1675.
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