
Surface Morphologies in a
Mars-Analog Ca-Sulfate Salar, High
Andes, Northern Chile
Nancy W. Hinman1*, Michael H. Hofmann1, Kimberly Warren-Rhodes2, Michael S. Phillips3,
Nora Noffke4, Nathalie A. Cabrol 5, Guillermo Chong Diaz6, Cecilia Demergasso7,
Cinthya Tebes-Cayo7, Oscar Cabestrero6, Janice L. Bishop2, Virginia C. Gulick2,8,
David Summers2, Pablo Sobron2, Michael McInenly1, Jeffrey Moersch3,
Constanza Rodriguez6, Philippe Sarazzin2, Kevin L. Rhodes9, Camila Javiera Riffo Contreras6,
David Wettergreen10 and Victor Parro11 on behalf of the SETI NAI team

1Department ofGeosciences,University ofMontana,Missoula,MT, United States, 2SETI Institute,Mountain View, CA, UnitedStates,
3Department of Earth and Planetary Science, The University of Tennessee, Knoxville, TN, United States, 4Ocean, Earth, and
Atmospheric Sciences, Old Dominion University, Norfolk, VA, United States, 5Carl Sagan Center, SETI Institute, Mountainview, CA,
UnitedStates, 6Departmento deCienciasGeológicas, CatholicUniversity of theNorth, Antofagasta, Chile, 7Center for Biotechnology,
CatholicUniversity of theNorth, Antofagasta, Chile, 8AmesResearchCenter, National Aeronautics andSpaceAdministration (NASA),
Moffet Field, CA, United States, 9MAR Alliance, San Francisco, CA, United States, 10Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, United States, 11Center for Astrobiology, Spanish National Research Council (CSIC), Madrid, Spain

Salar de Pajonales, a Ca-sulfate salt flat in the Chilean High Andes, showcases the type of
polyextreme environment recognized as one of the best terrestrial analogs for early Mars
because of its aridity, high solar irradiance, salinity, and oxidation. The surface of the salar
represents a natural climate-transition experiment where contemporary lagoons transition into
infrequently inundated areas, salt crusts, and lastly dry exposed paleoterraces. These surface
features represent different evolutionary stages in the transition from previously wetter climatic
conditions to much drier conditions today. These same stages closely mirror the climate
transition onMars from awetter early Noachian to theNoachian/Hesperian. Salar de Pajonales
thus provides a unique window into what the last near-surface oases for microbial life on Mars
could have been like in hypersaline environments as the climate changed and water
disappeared from the surface. Here we open that climatological window by evaluating the
narrative recorded in the salar surface morphology and microenvironments and extrapolating
to similar paleosettings on Mars. Our observations suggest a strong inter-dependence
between small and large scale features that we interpret to be controlled by extrabasinal
changes in environmental conditions, such as precipitation-evaporation-balance changes and
thermal cycles, and most importantly, by internal processes, such as hydration/dehydration,
efflorescence/deliquescence, and recrystallization brought about by physical and chemical
processes related to changes in groundwater recharge and volcanic processes. Surface
structures and textures record a history of hydrological changes that impact the mineralogy
and volume of Ca-sulfate layers comprising most of the salar surface. Similar surface features
on Mars, interpreted as products of freeze-thaw cycles, could, instead, be products of water-
driven, volume changes in salt deposits. On Mars, surface manifestations of such salt-related
processes would point to potential water sources. Because hygroscopic salts have been
invoked as sources of localized, transient water sufficient to support terrestrial life, such
structures might be good targets for biosignature exploration on Mars.
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1 INTRODUCTION

The Andean Salar de Pajonales (3,537 m asl, 25o08′40″ S,
68o49′12″ W; Figure 1) is an evaporitic basin located on the
westernmargin of theHighAndes in theAltiplano1. At present, it is
in the desiccation period of wetting and drying cycles, comprising
lagoons/salt ponds, salt crusts, infrequently inundated areas, and
dry exposed paleoterraces (Chong Diaz et al., 2020).

The hydrological progression from active lagoons to exposed
salt paleoterraces forms a natural climate-transition experiment,
where each salar surface represents a different stage of evolution
in the wet-to-dry transitions during (micro-)cycles of climate
change over geological time scales. The climate transition
exemplified at Salar de Pajonales partly mirrors that postulated
for early Mars (Kite, 2019; Wordsworth et al., 2021), thus making
it a unique terrestrial analog for early climate change on that
planet (Cabrol et al., 2009; Cabrol et al., 2010; Cabrol, 2018; Farías
and Acuña, 2020; Pueyo et al., 2021).

At present, the High Andes are characterized by daily
occurrences of dust devils and enhanced evaporation
(-1,500 mm/yr) (Cabrol and Grin, 2010; Benison, 2017). Indeed,
surface measurements in the High Andes recorded the highest
solar radiation levels on Earth, including UVB (Cabrol et al., 2014;
Albarracin et al., 2015; Häder and Cabrol, 2018; Häder and Cabrol,
2020). The thin atmosphere produces sudden and sharp daily
temperature (T) and relative humidity (Warren-Rhodes et al., in
review; Kereszturi et al., 2020) fluctuations that generate high UV/
T ratios further extending the Salar de Pajonales region’s
environmental analogies to Martian conditions.

Salar de Pajonales furnishes a window into the possible last
microbial refugia on Mars as the climate shifted and water
disappeared from the surface (Davila and Schulze-Makuch,
2016) Here we open that climatological window by evaluating
the morphological and mineralogical properties of the salar and
its implications for evaporitic basins on Mars during the
Noachian through early Hesperian (Cabrol et al., 2018; Kite,
2019; Wordsworth et al., 2021). We test the hypothesis that
hydrological processes on a time scale relevant to recent
climate changes, coupled with volcanic processes, are the
major control on surface morphology in this Martian analog.
If true, then these morphologies could reflect similar hydrological
conditions during the wetter climate of early Mars and could
guide site and sample selection—going beyond the “follow the
water” model for on-going and upcoming Mars missions.

1.1 Site Overview
Salar de Pajonales (Figure 1) is a large (104 km2) salt flat that lies
in a high elevation basin on the westernmargin of the High Andes
in northern Chile to the east of the Atacama Desert—a well-

described Martian analog (Cabrol et al., 2001; Cabrol et al., 2007;
Gómez-Silva et al., 2008; Gómez-Silva, 2010; Artieda et al., 2015;
Wilhelm et al., 2018; Kereszturi et al., 2020).

The Andes Mountain arise from the subduction of the
Nazca plate beneath the South American Plate since the
Upper Triassic—Early Jurassic (Haschke et al., 2002;
Haschke et al., 2006). The subduction activity created the
Andean arc magmatism, which has been practically
continuous to the present (Charrier et al., 2007). Along this
geological time span different paleogeographic changes took
place. The physiographic provinces change with latitude but
follow a general discontinuous pattern of N-S trending orogens
separated by intermontane valleys. In Northern Chile (∼18° S
to 27° S), the order from west-to-east is the Coastal Cordillera,
the Central Depression (Longitudinal Valley), the
PreCordillera, and the Preandean Depression (Salar de
Atacama/Salar de Punta Negra Depression), the Western or
Volcanic Cordillera, which overlies the Altiplano-Puno of
Northern Chile and, in Argentina, the Eastern Cordillera or
Cordillera Oriental (Eocene to Pliocene), and the Subandean

FIGURE 1 | Location of study area. (A) Map of Chile. (B) Overview of
Salar de Pajonales. (C) Truncated digital elevation model (DEM) of the study
site composed in the Cartalytics (www.cltix.com) spatial data software; aerial
imagery is downloaded from the Leaflet open-source library (https://
leafletjs.com/).

1It should be noted that this high elevation desert is known as the Puna in
Argentina and the (Chilean) Altiplano in Chile and Bolivia, and is sometimes
referred to as the Atacama Altiplano or as an extension of the Atacama Desert in
Chile (e.g., Farias and Acuña, 2020; Wierzchos et al., 2020). This observation is
provided to clarify the physiographic location of Salar de Pajonales relative to other
high-elevation study sites.
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and Santa Bárbara Ranges (Jordan et al., 1983; Rehak et al.,
2010; DeCelles et al., 2015; Quade et al., 2015; Reiners et al.,
2015; Chong Diaz et al., 2020; Wierzchos et al., 2020).

The physiographic regions of Northern Chile (18°–27°S) are
characterized by a temporal and compositional progression of
Cenozoic salt deposits at the surface most often expressed as salt
flats (e.g., Artieda et al., 2015; Finstad et al., 2016; Alonso and
Rojas, 2020; Chong Diaz et al., 2020). In west-to-east order, the
Coastal Range hosts the oldest salt flats; these are inactive and
fossilized. Inland to the east are the salt flats of the Central
Depression and the Preandean salt flats located at the western
border of the Precordillera (i.e., Salar de Atacama). The youngest
are the Andean salt flats and saline lakes emplaced in basins of the
Altiplano.

Salar de Pajonales is located in the Altiplano at the foothills of
the Sierra de Varas, which form the western side of the endorheic
depression (Riquelme et al., 2007; Pfeiffer et al., 2018). Miocene to
Recent volcanoes of the Western Cordillera form the salar’s
eastern border (Figure 1).

Oligocene to Holocene volcanic rocks of the Altiplano
comprise basaltic to dacitic and rhyolitic extrusives that
erupted from 10–11 Ma to <1 Ma (DeCelles et al., 2015), and
volcanic activity continues today (Quade et al., 2015). The main
eruptive centers near the salar are Lastarria to the east and
Llullaillaco to the north in the Western Cordillera (Risacher
and Alonso, 2001; Robidoux et al., 2020) (Supplementary
Figure S1). Lastarria has not erupted in recorded history but
continues intense fumarolic activity (Global Volcanism
Program, 2013). Llullaillaco erupted most recently in the
19th Century (Casertano, 1963). This volcanic activity
influences the chemistry of the adjacent salars (Risacher
et al., 2003; Chong Diaz et al., 2020). Salar de Pajonales is
thus set within the wider Andean landscape (Artieda et al.,
2015) of sulfur-rich volcanic, hydrothermal, lacustrine, and
aeolian deposits (Chong Diaz et al., 2020).

Salar de Pajonales is a hydrologically active evaporitic
system. Brines that fill the remaining active lagoons in the
lower elevation portions of Salar de Pajonales are formed by a
combination of atmospheric aerosol input, volcanic emissions,
chemical weathering of country rock, and high rates of
evaporation relative to precipitation (Risacher et al., 2003;
Chong Diaz et al., 2020; Otalora et al., 2020; Pueyo et al.,
2021). During the transition to the more arid climate of today,
episodic evaporation of the brines and inundation of the basin
left an evaporite package several meters thick (Figure 2; see
below). At present, the basin receives recharge from both
surface water (Risacher et al., 2003) and, by inference from
other endorheic basins, groundwater, which originates from the
volcanic arc of the Andes to the east (Urrutia et al., 2018; Chong
Diaz et al., 2020; Pueyo et al., 2021).

1.2 Climate
Climate records, extensively reviewed by Pfeiffer et al. (2018)
from the Atacama Desert, Altiplano, and Puna indicate wet
periods since the Pleistocene, most notably during the
Minchin phase (35–23 ka), the MIS 2 (∼26.5–22 ka), the Tauca
highstand (∼17.5–15 ka), and in late glacial times (i.e., Younger

Dryas, 13–10 ka; Coipasa, ∼13–11 ka) (e.g., for Chile: Geyh et al.,
1999; Ward et al., 2015; Ward et al., 2017; Pfeiffer et al., 2018;
Palacios et al., 2020)2. At present, there are no confirmed glacial

FIGURE 2 | (A) Shaded DEM of study area with A-A′ elevation transect.
Maps and cross section were created in Cartalytics (www.cltix.com); aerial
imagery is downloaded from the Leaflet open-source library (https://leafletjs.
com/). (B) Air photo of study site with Domes (red arrows) and randomly
oriented ridge segments that connect to form irregular Megapolygons
(outlined in dashed red lines). (C) Paleoterraces of exposed gypsum beds. (D)
Rhyolite surface eroded by abrasive flooding. Field of vew ca 25 m. (E)
Drainage cut through gypsum bed looking south. The Dome Field is to the
right on the top of the gypsum terrace. (F) Stratigraphy column illustrating
cyclic deposition in the upper 0.5 m of salar surface at the Dome Field. The
surface layer is a coherent but breakable crust of cemented grains extending
downward between crystals from the underlying layer. Crystal beds are
vertically oriented selenite. Silt beds are thin, recessive laminar beds
comprising detrital crystals and grains. Breccia layers comprise flat lying
selenite that is very friable. (G) Dome field looking west. A dashed red line
highlights the dome in the center right.

2The dates are somewhat different to the east in the Bolivian Altiplano, but the
sequence remains the same (Chepstow-Lusty et al., 2005).
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landforms recorded in the Salar de Pajonales area (Palacios et al.,
2020), suggesting that glacial processes did not directly influence
the basin during the last glacial period. Gypsum beds exposed in
paleoterraces testify to higher lake stands and thicker lake fill,
much of which has been removed by surface runoff
(Figures 2C,E).

During the late glacial wet periods, precipitation is inferred to
have been 2–5 times higher than present day (∼200 mm/yr;
(Grosjean et al., 2001; Latorre et al., 2006; Ward et al., 2015).
Lake levels in the Altiplano reached their maximum between 10.8
and 9.2 ka and disappeared sometime between 8.4 and 8.0 ka
(Geyh et al., 1999). Since then, the climate has been extremely arid
except for brief wetter periods, the most recent being probably
from the same time (1.39+/− 0.10 ka) as that of the Gorbea and
Ignorado salt flats located ∼40 km south of Salar de Pajonales and
at higher elevation (Figure 1; ∼4000 m asl (Pueyo et al., 2021).
Other climate records, found in fossilized rodent middens,
wetland deposits, and archeological sites also reflect wetter
time periods within the last 90 ka (Chepstow-Lusty et al.,
2005; Maldonado et al., 2005; Díaz et al., 2012; Pfeiffer et al.,
2021).

Historic, significant rainfall events, which occur episodically,
flood salar surfaces and lead to increased biodiversity (Schulze-
Makuch et al., 2018; Ortega et al., 2019; Pfeiffer et al., 2021). The
frequency and intensity of these freshening events have changed
over the last 106 ka based on a 100 m core from Salar de Atacama
(Bobst et al., 2001). Such events are controlled by the complex
hydrometeorological patterns of the southern Pacific Ocean. The
more usual configuration of SE Trade Winds bringing moisture-
depleted air over the Andes is disrupted episodically (Garreaud
et al., 2009; Diederich et al., 2020). These interruptions are known
as El Niño events, which are linked to high sea-surface
temperatures in the eastern Pacific Ocean (Garreaud et al.,
2009; Bozkurt et al., 2016; Urrutia et al., 2019). This relatively
common weather pattern, which is part of the El Niño Southern
Oscillation (ENSO), disrupts the southeasterly trade winds and
allows moist air to flow inland from the warm Pacific Ocean
leading to austral winter precipitation events in parts of the
Atacama desert (Houston and Hartley, 2003; Houston, 2006;
Diederich et al., 2020; Meseguer-Ruiz et al., 2020). However, El
Niño events have a different effect on the Altiplano. There they
lead to negative precipitation while La Niña years yield wetter
seasons (Garreaud et al., 2003; Urrutia et al., 2019). These extreme
events are associated with the Madden-Julian Oscillation during
which sea surface temperatures increase in the southeastern
Pacific Ocean, effectively blocking the normal westerly Ferrell-
cell flow and diverting moisture toward north-central Chile
(Ortega et al., 2019). Monsoonal summer rain events are tied
to normal northeasterly airflow from the Atlantic Ocean, over the
Amazon basin, and to the Andean mountain range (Garreaud,
2000; Garreaud et al., 2003; Diederich et al., 2020).

Salar de Pajonales lies in the Arid Diagonal on the divide
between regions of dominantly winter rain (generally to the
west and south) and dominantly summer (monsoonal) rain
(generally to the east and north) (Betancourt et al., 2000;
Diederich et al., 2020; Hooper et al., 2020; Palacios et al.,
2020, see their Figure 1) and is subject to infrequent

freshening events (Bozkurt et al., 2016). Recent rainfall
events caused significant flooding and destruction along
rivers in the southern reaches of the Atacama Desert
(Barrett et al., 2016; Bozkurt et al., 2016; Wilcox et al., 2016;
Valdés-Pineda et al., 2017; Cabre et al., 2020) but were
insufficient, in large part, to mobilize hillslopes. Most fluvial
features suggest that much larger rain events occurred in the
Pleistocene (Pfeiffer et al., 2021). At that time, large river
systems drained westward into the Central Depression
(Garcia et al., 2011). Unlike the Calama Basin where the Rio
Loa cuts through the Domeyko Cordillera (De Wet et al., 2020),
there is no geomorphic evidence of large rivers that drained to
the Pacific Ocean from the Salar de Pajonales area. However,
post-glacial flooding events are inferred along the eastern and
much of the southern margin of the salar where large portions
of volcanic rhyolitic basement are eroded flat by abrasive
flooding (Figure 2D, Chong Diaz, unpubl.).

2 METHODS

Here, we used field observations to spatially resolve surface
features that can be explored for different textural surfaces as
defined by distinct physical, chemical, and hydrological
conditions. Detailed descriptions are provided in the figure
caption illustrating each characteristic (see below). Additional
laboratory analyses confirmed and augmented field observations.
This paper relates and refers to two other works that present
results about the surface features, the threshold for detection from
drone and satellite imagery, and on the distribution of microbial
colonies within habitats (Phillips et al., 2021 in prep.; Warren-
Rhodes et al., in review).

2.1 Site Selection
The Dome Field study site is in the eastern area of Salar de
Pajonales. It stands about 8 m above a dry river channel that
bounds the study area on the eastern and southern sides
(Figure 2). From the study site, the salar surface slopes
irregularly toward the west eventually giving way to water-
saturated salt flats and ponds. Within the larger Martian
analog site, this Dome Field was selected because of the
presence of endolithic photosynthetic microbial communities
(Warren-Rhodes et al., in review). The features described
herein provided visual access to the subsurface allowing us to
probe the processes leading to the development of the surface
morphology.

2.2 Field observations
Visual observations of the shape, size, and distribution of surface
features were made during three field campaigns (Oct. 2016–Oct.
2019).

2.3 Aerial imagery
Aerial images were collected with a Phantom 4 Professional drone
at an elevation of 120 m above the salar surface, which
corresponds to a ground sampling distance of ∼2.5–3.0 cm. An
orthophotomosaic (OPM) and digital elevation model (DEM)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org February 2022 | Volume 8 | Article 7975914

Hinman et al. Morphologies in a Mars-Analog Ca-Sulfate Salar

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


were generated from the images using Pix4D, a structure from
motion software package, to enable measurements and analyses
of landforms and textures. See Phillips et al. (2021) (in prep.) for
additional information.

2.4 Sample Collection
Fist-sized samples were collected from the surface down to a
maximum depth of 12 cm with a rock hammer and placed in
plastic bags. The samples were selected to represent the range of
surface types and textures.

2.5 Photomosaic
Samples were photographed with a hand-held camera (Sony
alpha 6,000) and/or a Insight Spot 4 camera (Diagnostic
Instruments, Sterling Heights, MI) mounted on a Leica MZ95
stereoscope (Wetzlar, Germany). Photomosaics were prepared
using the Adobe Photoshop automated merge function.

2.6 X-ray diffractometry
Field samples were analyzed at two laboratories and the results
were compared. One set was powdered (<63 μm) and analyzed
from 2 to 70°2Θ at a step size of 0.017°2Θ with a PANalytical
X-Pert Pro MPD X-ray diffractometer with a Cu X-ray tube (Kα1
1.54060Å, 45 mA, 40 kV). The data were pattern-matched and
Reitveld-refined with High Score Plus (Malvern PANalytical, Inc.,
Netherlands) using the ICDD PDF-4 Minerals database (ICDD,
Newtown Square, PA). The other set was powdered (<20 μm) and
analyzed from 2 to 65°2Θ at a step size of 0.02°2Θ on a Bruker D8
Advance diffractometer with Cu X-ray tube (Kα1 1.54051Å,
30 mA, 40 kV). The data were pattern-matched with Sieve
(ICDD, Newtown Square, PA, United States) and quantified
with the software, DIFFRAC. EVA (Bruker, Billerica, MA,
United States) using the ICDD PDF-2 and PDF-4/Minerals
database. Major minerals were detected (signal/noise 3) by
both systems.

2.7 Optical microscopy
Twenty three field samples were selected for thin section
preparation to represent different textures and provide spatial
distribution. Samples were stabilized with blue-dyed resin and
vertically oriented prior to cutting. Single-side polished, 30 μm,
thin sections were prepared by Spectrum Petrographics, Inc.
(Vancouver, WA, United States). Samples were imaged in
transmitted and reflected light modes with a Leica DMLP
petrographic microscope equipped with a LeicaMC170HD camera.

2.8 Spectroscopy
Raman spectroscopy measurements were performed on a custom
Raman spectrometer with a Raman probe (Impossible Sensing,
St. Louis, MO, United States). We performed our Raman analyses
in the field using optical fibers housed in a single cable to transmit
the laser (532 nm) to the sample and to transfer the Raman signal
from the sample to a TE-cooled CCD spectrometer and detection
system. The recorded spectra were compared to existing spectral
databases of minerals (Lafuente et al., 2015). Infrared (IR) spectra
were taken with using Thermo Scientific Nicolet iN10 MX FTIR
Microscope. Spectra were taken in “reflectance mode.” In that

mode, the beam passes through the sample, is reflected off the
gold surface, and passes through the sample again. The
spectrum are absorption spectra, not reflectance spectra, the
light passes through the sample. The spectra were taken at
4 cm−1 resolution with liquid nitrogen cooling of the detector.
Spectra were taken from 7,000 cm−1 to 700 cm−1. We used a
square IR beam with a width of 75 µm. Powder samples were
placed on top of a gold-coated glass slide. The particles were
smaller than the beam, so aggregates of particles were observed
to maximize signal.

3 RESULTS

Diffraction data from powdered samples showed that the study
site comprised almost entirely gypsum (Supplementary Figure
S2). XRD or Raman and VNIR spectra show additional Ca-sulfate
phases, along with small quantities of calcite, halite, magnetite,
and plagioclase (Table 1, Supplementary Figure S2).

These gypsum deposits are bedded on a decimeter scale, and a
cyclic deposition can be inferred from the stacking of thin beds
comprising well-developed gypsum crystals inter-layered with
thinner beds of gypsum breccia (Figure 2). The lateral continuity
of individual gypsum layers is unknown, but a largely layer-cake
stratigraphy within the study area can be inferred.

In this gypsum-dominated environment, surface structures
can be distinguished into two groups based on spatial scale
(Table 2). Macroscale structures have dimensions centered on
the meter scale and above. They affect multiple gypsum layers,
however, the maximum depth to which these feature extend
into the subsurface cannot be determined by our available
dataset. These macroscale structures are distinct from
centimeter to millimeter scale structures, herein called
microscale structures. The latter only affect the surfaces of
individual, thin beds. Further, the microscale structures are
often superimposed on the macroscale structures. Surfaces of
microscale structures have one or more textures at the
centimeter to millimeter scale.

All of our interpretations on these geomorphic structures,
independent of scale, are based on observations of the surface
layer; our data do not allow interpretation of facies stacking and
associated morphologic structures with depth.

3.1 Macroscale Structures
Macroscale structures are summarized in Table 2 and include
PolygonRidges, Megapolygons, Domes, and Quasi-Flat areas. We
describe these endmembers below but recognize that there is
overlap among the structures. For example, PolygonRidges may
incorporate Domes as part of their structure.

3.1.1 PolygonRidges
As termed by Phillips et al. (2021), PolygonRidges are the most
recognizable structures in the study area (Table 2; Figure 3).
They are elongate topographic features with variable surface
texture and generally a maximum of a few tens of meters long
(Table 2; Figures 3A,B). From above, the ridges form a
honeycomb pattern (Figure 2B). They were defined as
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structures with a length to width ratio (L:W) value of >2:1 and are
said to be continuous when the distance between ridge segments
was less than the width of the ridge, i.e., the separation was less
than ∼ 2 m. PolygonRidge crests fall into two types: intact and
eroded (Figure 4). In addition to the two crest types, ridges may
have rough or spiny (i.e., having extruded crystals) macroscale
surface textures, or both (Figure 3C); few smooth ridges were
observed. These PolygonRidges show no preferred orientation
relative to the tectonic stress field as determined qualitatively
from aerial photographs and digital elevation models (Figure 2).

3.1.2 Megapolygons
Easily seen in drone images, Megapolygons were irregularly shaped
and discontinuously bounded by PolygonRidges (Table 2;
Figure 2B). Their interiors were overall relatively flat but might
encompass low ridges or small domes with relief of less than 1m.

3.1.3 Domes
Domes are the most characteristic features in our study area
(Table 2; Figures 3A,C) They are convex-upward, quasi-
circular, topographic highs and are defined as structures with 1:
1 < L:W < 2:1 and heights that varied continuously between circa
0.1 and 2.0 m. All domes that breached during sampling had lined
convex-upward cavities below the surface gypsum layer. Most
Domes had surface cracks, some of which widened into circular
holes that connected the cavity to the surface (Figure 4D). The
ceilings of cavities and edges of the holes were lined with an
undulating layer of hard, white gypsum often with fractures and
sometimes damp (i.e., moisture was present; Figure 5D). The
Domes, some of which are partially collapsed, had surface textures
that are either uniform or had gradual or abrupt transitions
between textures (Figure 3C). Some surfaces had
micropolygons, which are tiles in which the micropolygon
interiors (MP Interiors) are flat and micropolygon rims (MP
Rims) demarcate the margins (Table 2). These surfaces had
combinations of smooth, rough, or spiny textures, which
allowed further separation of Domes into sub-types (Figure 3C,
Figures 5A–C).

3.1.4 Quasi-Flat Areas
Quasi-Flat areas have minimal positive relief and constitute the
space between Domes and PolygonRidges (Figure 3A). Some
surfaces comprise rimmed, irregular micropolygons lacking
surface texture (smooth) or they are covered with duricrust,

TABLE 1 | Mineralogical detections by different methods.

XRD Raman IR Petrography

Gypsum x x x x
Anhydrite — x x x
Bassanite — — x —

Halite x — — —

Calcite x — — x
Magnetite x — — —

Plagioclase — — — x
Chromate — x — —

TABLE 2 | Macroscale and microscale structures and textures observed in the field at Salar de Pajonales.

Megascale structures and combinations

Name Dimensions (m) Relief (cm) Length to
width

Continuitya Figure

Domes <7.5 diameter 10–200 1:1 < L:W < 2:1 na 3a - ground view
PolygonRidge <2.5 wide 10–200 >2:1 0–2 3b - ground view
Quasi-Flat areas 10s across <5 ∼1:1 0–2 3c - ground view
Megapolygon 10s across <200 na 0–2 2 aerial view

Macroscale Surface Textures

Surface Relief (cm) Maximum visible crystal size (cm) Duricrustb

Smooth <7 na 1–2 4a
Rough <10 na 2 4b
Spiny <20 15–18 0–1 4c

Ridge Types
Intact <200 na 4d
Eroded <100 15–18 4f

Centimeter to Millimeter Scale Structures and Combinations
Micropolygon (MP) <2 na na 5a

MP rims <2 cm not exposed white, brown 0–2 5a
MP interior <0.5 cm not exposed white, tan 0 5a

Microscale Surface Features
Fractures or cracks <20 cm not fully exposed white, gray, brown na 5c

Centimeter to Millimeter Scale Surface Cover
Duricrust, Gypcrete <2 mm na brown, tan na 6a
Bulbous, Rugosic Texture <2 cm na white, tan 1–2 6b
Spines up to 15 up to 18 cm white, tan 0–1 6c
Regolith <1 cm up to 18 cm white to brown to black 0–1 6d

a0 � discontinuous, 1 � continuous with gaps, 2 � continuous.
b0 � no duricrust, 1 � partial duricrust, 2 � completely covered with duricrust.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org February 2022 | Volume 8 | Article 7975916

Hinman et al. Morphologies in a Mars-Analog Ca-Sulfate Salar

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


bulbous material, gypcrete (strongly indurated rock comprising
gypsum), and regolith (Table 2; Figure 5). Other Quasi-Flat areas
lack micropolygons. These surfaces are covered with duricrust,
bulbous material, gypcrete, and regolith, whereas smooth surfaces
do not occur. Micropolygons had similar shapes to those present
on Domes except that the MP Interiors may be smooth, and the
MP Rims appear partly eroded.

3.2 Centimeter to Millimeter Scale Features
Upon closer examination, some macroscale features (i.e., Domes,
PolygonRidges, and Quasi-Flats; Figure 3 and Table 2) were not
just distinguishable by their large-scale morphology but also by a
variety of gypsum types (Figure 6).

The most common crystal habit for gypsum is fishtail twinned
selenite. Twins are bottom-nucleated and originated from a

FIGURE 3 |Morphologies of PolygonRidges, Domes, and Quasi-Flats. (A) Landscape view identifying PolygonRidges, Domes, and Quasi-Flats. Field of view is ca.
12 m at the bottom edge. (B)Ground view of eroded PolygonRidge and regolith-covered Quasi-Flat. Dashed red line delineates eroded ridgemargins. On ridgemargins,
selenite crystals are randomly oriented. Regolith occupies the space between the selenite crystals. Field of view is ca. 8 m. (C) Dome with rough surface and fractures.
Rough surfaces had combinations of irregular micropolygons comprising MP Interiors, which are irregular tiles with diameters of 10–30 cm that are separated from
each other by cracks or rims. MP Rims are narrow (3–5 cm) sinuous topographic highs (<ca. 2 cm). Rough surfaces had a layer of duricrust and/or bulbous (i.e., platey,
rugosic, or knobby) cover. Both rough and smooth surfaces (see 3D) had fractures, which were sinuous, semi-continuous cracks that were vertically displaced up to ca.
20 cm. Intact, growth-aligned crystals were visible on the upward-thrust side of the fractures. (D) Quasi-Flats with regolith, micropolygons, MP interiors, and MP Rims.
MP interiors could be bare, hard, smooth surfaces with selenite crystals truncated across the growth plane or could be covered with regolith. MP Rims were gray/brown,
cemented, sand-sized or finer material present as elongate, positive topographic features. The profile of MP Rims comprised a central, grain-filled, cm-scale-deep furrow
and two parallel edges that thinned towards and blended into the MP Interiors.
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horizontal, likely erosional, surface. They terminate
perpendicular to the growth direction at another likely
erosional surface (Figure 6A). Petrographic analysis reveals
growth fronts visible in hand specimens and in thin sections
of the crystals (Figure 6 and Figure 7). On spiny dome surfaces,
some twinned crystals increase, while others decrease in size
resulting in more crystal-nucleation sites at the base of the
gypsum layer than extend through the height of the crystal
layer. Selenite domains are rigid and coherent.

Alabaster is a less common habit, most often occurring at
the bottom of PolygonRidges and Domes at the juncture of
these structures and the salar surface but also inter-grown with
selenite and filling vertical slot pores (Figures 6, 7). Alabaster
was not observed in spines but could be observed associated
with un-erupted crystals. When intermingled, alabaster and
selenite domains were sometimes difficult to visually
distinguish in the field, but the presence of alabaster could
usually be determined by its physical properties. Domains

FIGURE 4 | Sketch of intact ridge (A) and eroded ridge (B). Intact ridges are short segments of upwardly convex linear structure with rough surfaces as defined for
domes and with an intact surface bed (roof), and ii) eroded ridges are defined by two quasi-parallel, sinuous lines of randomly oriented spines of similar length (<18 cm)
between which are areas of mixed regolith. (C) Image of eroded ridge showing branching form. Person for scale.

FIGURE 5 | Surface textures and holes. (A) View of rugosic texture and regolith from above. Scale bar is ca. 50 cm. (B) Partially detached duricrust on smooth
surface. Scale bar is 1 cm. (C) Partially detached duricrust. Note pigments below duricrust. Scale bar is 1 cm. (D) Lined hole in bulbous texture with regolith. Scale bar
is 5 cm.
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dominated by alabaster were powdery and easily crumbled
between fingers and yet were difficult to break with a rock
hammer; the alabaster became somewhat thixotropic under
hammer pressure.

Surface cover is present over both habits; duricrust, bulbous
texture, rugosic (wrinkly) texture, gypcrete, or regolith is present
and could form from a combination of physical (changes in
temperature or hydration) and mineralogical (phase changes) as
invoked here for larger structures and biological processes
(Warren-Rhodes et al., in review). It likely stabilizes the
alabaster surface and prevents mechanical erosion. Selenite
sometimes has a surface cover (Figure 5, Figure 8). Duricrust
and bulbous texture are diagnostic for the presence of alabaster
(Warren-Rhodes et al., in review). Among selenite crystals, those
occurring in MP Interiors or on surfaces of smooth and rough
domes have duricrust, bulbous texture, rugosic texture, or
gypcrete surfaces and are often denser at the surface than at
depth, while erupted selenite has surface cover less frequently.
Loose material, i.e., regolith, covered some of the surfaces.

Taken together, the observations across spatial scales record a
history of conditions/mechanisms causing morphologies at the
macroscale (Domes, PolygonRidges, Megapolygons, and Quasi-
Flats) and microscale (surface-cover type and selenite or alabaster
crystal domains).

4 DISCUSSION

Our observations suggest a strong inter-dependency between
small and large spatial scale features that we interpret to be

controlled by extrabasinal changes in environmental conditions
(e.g., relative humidity, precipitation, and temperature as
controlled by climate). The environmental parameters may
include precipitation-evaporation balance changes and thermal
cycles and most importantly, internal processes of hydration/
dehydration, efflorescence/deliquescence, and recrystallization
typical for chemical sedimentary systems.

This section first discusses the macroscale features, followed
by the microscale features, the origin and timing of their
formation, and lastly the implications for Mars exploration.

4.1 Processes Controlling the Formation of
Macroscale Features
4.1.1 PolygonRidges and Megapolygons in Salars
PolygonRidges as geomorphic features can form through a wide
variety of geologic processes, including warping due to pressure
or shrinkage caused by tectonic or other processes, during
deposition, and as remnants of erosion. The gypsum ridges in
the salar are part of a polygonal network that enclosed
Megapolygons without any aligned distribution (Figure 2B).
All PolygonRidges were about the same height. We attribute
this to ongoing constructional processes in the salar that exceed
erosion rates.

Tectonic and volcanic processes in the actively uplifting
Cordillera are constantly at play. However, the dominant
regional structures related to the ongoing tectonic shortening
and uplift are oriented in a NE-SW and NW-SE direction
(Figures 1B,C), whereas the polygonal patterns are not
aligned. The Dome Field itself is aligned with a series of

FIGURE 6 | Crystal and alabaster textures. (A) Surface bed of in-place crystals caps sediment package with alabaster domains. (B) Close up of selenite and
alabaster in (A). (C) Selenite crystal. Scale bar is 1 cm. (D) Alabaster. Arrow indicates up direction. Scale bar is 1 cm.
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cinder cones that are strung along the direction of one of the
main regional structural grains (Figure 1). However, tectonic
forces act on long timescales, and a degradation of ridge axes
would be expected to reflect their erosion between tectonic
events, contrary to the observed roughness on the ridges and
overall high topographic relief. Although some
PolygonRidges were over 100 m long, most measured tens
of meters in length but maintained an overall consistent
height. Tectonic ridges that comprise fault scarps related
to regional forces would be expected to have lateral
continuity of hundreds of meters and kilometers with
heights that scale to the length and taper towards the tip
of the faults. No such continuity is observed on the relatively
local scale of the ridges in the Dome Field, and we do not
attribute the PolygonRidges to tectonic forces.

Instead, we propose the PolygonRidges in the Dome Field
reflect intrabasinal volume changes associated with wetting and
drying cycles, i.e., hydration-dehydration or recrystallization
cycles, along with increases in salt volume during transport
and evaporation of saturated brines. Figure 9 illustrates
gypsum-specific processes based on Warren’s (2016) model
for ridge formation in evaporites; a model we propose is
largely apropos to ridge formation in the salar. The original
salar surface formed during a time of inundation, has become
exposed, and has since been flattened by mechanical and
chemical weathering (Figure 9A). Chemical weathering
occurs in subsequent rain events during which selenite
crystals dissolve and recrystallize into a dense gypsum surface
layer (Figure 6A). Such horizons in the subsurface can undergo
extensive dissolution and reprecipitation, as water chemistry
changes, with associated volume changes over time (Figure 9B).
These horizons can promote lateral water flow and additional
salt dissolution to destabilize the salar surface, which leads to the
PolygonRidges. The spacing of the ridges would depend on the
amount of water flow, and therefore destabilization, in the
subsurface; more water flow in the subsurface (volume or

frequency) would lead to more closely spaced ridges,
i.e., smaller Megapolygons.

4.1.2 Domes in Salars
Domical structures within an evaporite basin can form by several
processes that largely hinge on volume changes associated with
wetting and drying cycles, with an associated change in salt
volume during dilution and evaporation of saturated brines.

Domes are common features in gypsum evaporites (Warren,
2016). Their origin is most often attributed to volume changes
associated with recrystallization brought on by cycles of
hydration-dehydration reactions. The details of this process
vary. Artieda (2013) suggests that after in situ dissolution and
precipitation events, secondary gypsum fills pores, increasing
volume and pressure, leading to lateral gypsum expansion to
form domes, called “tumuli.” Calaforra and Pulidobosch (1997)
offer the alternative that the volume increase is caused by
recrystallization from anhydrite to gypsum. They agree with
Artieda (2013) that infilling the gypsum matrix within macro-
crystalline gypsum could also cause the volume to increase.
Gutiérrez (2005) suggests that tumuli may form from changes
in volume due to wetting and drying of a thin layer below the
surface gypsum bed, which Warren (2016) attributes to
efflorescence within the surface bed. We propose a very
similar genesis—i.e., the result of volume changes in the
evaporites during multiple hydration cycles—for the formation
of the domes in the salar. This leads to warping of the salar
surface.

Warping only affects the uppermost gypsum bed giving clear
evidence for a control associated with surface processes, rather
than deep-rooted tectonic forces. Textural transitions also occur
on the sub-centimeter scale. As a result, we agree with Warren
(2016) and attribute the presence of alabaster in the proximity of
or filling small cracks in the deformed selenite crust to
efflorescence (Figure 7B). Efflorescence involves the
precipitation of salt from brine. The brine is transported as

FIGURE 7 | Petrographic thin section showing growth fronts in selenite crystal habit. (A) Scan of petrographic thin section. (B)Close-up of area within red box in A.
Selenite crystal with growth fronts and small patches of alabaster with slot pores. Such growth fronts were ≤2 mm thick and comprised an opaque black layer separating
layers of selenite gypsum. Pores can be filled with intraclastic gypsum grains, secondary gypsum crystals, and/or volcanic detritus and may be adjacent to alabaster
domains. Slide background is a mixture of mineral grains to show slide thickness during preparation.
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salt-saturated vapor until it condenses in pores. When conditions
become warmer or dryer, the water evaporates again, leaving the
salt behind to increase the mineral volume. The presence of
anhydrite remnants in some of our samples suggests episodic
complete dehydration of the Ca-sulfate phase. The decrease in
volume associated with the dehydration (recrystallization to
anhydrite) and increase in volume with subsequent hydration
(recrystallization to gypsum) is another process we consider as a
mechanism for dome formation. These processes could be aided
by accompanying changes in brine chemistry brought about by
changes in volcanic activity and groundwater recharge.
Consequently, a water-related process, one with multiple

episodes of wetting and drying, is the most reasonable
explanation for the formation of tumuli in the salar, an
explanation in line with the formation processes proposed for
similarly sized tumuli elsewhere (Gutiérrez and Cooper, 2013).
Holes, interpreted to be gas vents lie within two larger gas domes
and provide individual sites for water vapor and gas exchange
leading to focused warping to form Domes (Hofmann et al., in
review).

4.1.3 Quasi-Flat Areas in Salars
Quasi-Flat areas had surface characteristics different fromDomes
and PolygonRidges except for the presence of polygonal features,
which could be found on Domes. Rims separate MP Interiors on
the solid, quasi-flat salar surface. The arrangement of the MP
Interiors and rims forms the “patterned ground” referenced in
Phillips et al. (2021) and Warren-Rhodes et al. (in review).

The MP Interiors and MP Rims (Table 2) may have formed
during wetter times if thin microbial mats had covered the
surface of the shallow salar. Wetting and drying cycles may
contribute to both abiotic and biological processes during which
a thin surface layer experiences cycles of hydration and

FIGURE 8 | Surface textures on gypsum. (A) Duricrust comprises a tan
crust (white line) that overlies and is fully attached to the alabaster gypsum
surface (blue line). Gypsum may have either selenite or alabaster habit, but
alabaster is used here to match the image. Scale bar for (A,C,E) is ca.
1 cm. (B) Image of duricrust. Scale bar is 1 cm. (C)Bulbous texture comprises
detached duricrust (white line) over the gypsum surface, which is drawn here
as alabaster (blue line) above selenite (yellow lone) to match the example. Gray
line connects void space beneath the detached crust. Duricrust and bulbous
texture are diagnostic for the presence of alabaster (Warren-Rhodes et al.,
in review). (D) Image of duricrust and bulbous texture. Scale bar is 1 cm. (E)
Gypcrete comprises a denser selenite texture (black line) where pore space
has been filled with secondary gypsum. Gypcrete overlies selenite (yellow line).
(F) Image of gypcrete. Scale bar is 1 cm.

FIGURE 9 | Drawing of proposed sequence of ridge formation. The
upper sketch is the starting point for the evaporitic-sediment package. The
inferred basal lakebeds becomemore salt-rich (calcite, gypsum and halite (^s)
with increasing evaporation. The gypsum surface beds (^s) form during
freshening events. The lower sketch shows a somewhat wetter time when the
Ca-Na-Cl-SO4 mixture (highlighted by +) precipitates minerals that force the
surface upward (arrows) forming expansion ridges in pseudo polygonal
patterns. Modified from Warren (2016).
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dehydration, leading to development of rims around polygonal
tiles, called tepees (mainly abiotic origin) or petees (mainly
biotic origin) (Noffke, 2010; Warren, 2016). In the Dome Field,
elevated micropolygon margins and shrinkage cracks are both
present, forming irregular rims of sand-sized and finer particles
bound together by tan to gray gypsum cement. The sometimes
smooth, interior flat surfaces may crack secondarily into
shrinkage structures, exposing the barren deposits beneath.
Both the surfaces of the micropolygons and MP Rims have
been abraded by wind and degraded by episodic rain events
during which water pools in MP Interiors and infiltrates
preferentially into rims (Warren-Rhodes et al., in review).
Although our data do not yet allow us to determine the
biogenic or abiotic origin of these flats and micropolygons,
the laminae size, occurrence of microbial layers, and the
substrate composition (gypsum) suggest that physical
processes might play the primary role while biologic
processes might be secondary and may serve to exaggerate
the physically induced micro-morphology.

There are alternative explanations for the formation of
micropolygons. Artieda et al. (2015) report different types of
halite polygonal structures in Salar Grande and Yungay basins
and attribute the differences to an evolutionary process whereby
regular, flat polygons transform first into well-developed tepees
with open, axial troughs and then into nodular, heavily uplifted,
highly deformed, fin-like near vertical structures with distinct
internal zonation. Deliquescence serves to enrich the salt content
along the margins of the polygons and increasing the height of the
rims (Artieda et al., 2015). These structures appear to require
deliquescent salts and limited precipitation and would be
incompatible with the much less soluble Ca-sulfate matrix,
although we cannot rule out that other salts played some role.
Nevertheless, the structures observed at the Dome Field do not
require such processes.

4.2 Centimeter and Millimeter Scale
Features
Mineralogical transformations between gypsum, the dominant
mineral, and its dehydrated form, anhydrite involve a 39% change
in volume (Jowett et al., 1993); gypsum dehydrates to the denser
anhydrite leading to slot pore formation on a millimeter scale and
surface-crack formation and structural collapse on a centimeter
to meter scale. Cracks then enable water transport leading to
rehydration of anhydrite to gypsum. These dehydration-
rehydration cycles lead to expansion and contraction of the
salar surface (Charola et al., 2007). In addition, salts
accumulate at the surface by efflorescence, increasing the
volume of solids at the surface. Associated deliquescence
results in a decrease in volume of solids at the salar surface.
All three processes—recrystallization, dehydration-hydration,
and efflorescence - are probably at work, and all three point to
the role of water, and therefore climate, on the surface
morphology.

Changes in mineral habit affect porosity (Yilmaz and Karacan,
2005) and thus the ability of the gypsum materials to transport
water (Koponen et al., 1997). Thus, the more porous alabaster has

greater permeability than does less porous selenite. The sequence
of wetting and drying cycles leads to the current distribution of
selenite and alabaster habits (Figure 10). In the initial stages,
bottom-nucleated selenite formed on the bed of a shallow saline
lake during freshening events. During more arid times, the
surface would be eroded. Climate could drive changes in the
water table, which, along with surface precipitation, could cause
variations in the depth and saturation of the vadose zone.
Temperature could also play a role. Meteoric water could
infiltrate and freeze in the surface layer as temperature
decreases (Warren-Rhodes et al., in review). The associated
volume changes could lead to formation of slot pores further
enhancing water transport and retention.

Quasi-Flat areas and Domes have either smooth surfaces or
low relief covers of duricrust, bulbous cover, or gypcrete.
Duricrust forms during lithification of biological soil crust, by
physical deposition processes (Davis et al., 2010) or by capillary
migration and evaporation of soil water (Wierzchos et al., 2011).
At the Dome Field, there is ample evidence microbial
communities populate the shallow subsurface even under

FIGURE 10 | Scenario for textural changes in gypsum at the salar
surface caused by climate change, which is depicted as a change in water
table elevation and the thickness of the saturated zone (shaded area). (A)
Bottom-nucleated selenite forms on the bed of a shallow saline lake. (B)
The surface is eroded during arid times. Changes in the water table lead to
variable saturation and salt transport in vadose zone. (C) Surface crust and
slot pores develop. (D) Additional alabaster zones develop further enhancing
water availability.
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today’s hyperarid conditions (Warren-Rhodes et al., in review).
We can infer that, during wetter times, microbial mats may have
covered the salar surface as they do in other saline environments
(Des Marais, 2010; Noffke, 2010). The EPS from the mat would
have bound detrital grains from volcanic and local sources
(Noffke, 2010) and been in contact with salt-saturated
solutions, either halite or gypsum, depending on the degree of
concentration. Gypsum-saturated solutions would infuse the
microbial mat and serve to lithify the EPS prior to saturation
with respect to halite. The detritus-bearing surface layer points
toward the relevance of EPS mineralization as a process for
forming duricrust at the Dome Field. However Wierzchos
et al.’s (2011), model describes duricrust formation in systems
saturated with respect to halite, which is much more soluble than
gypsum. Warren-Rhodes et al.’s (in review) model promotes
capillary migration as a cause for the formation of a denser
gypsum surface layer, i.e., gypcrete, but does not mention
formation of duricrust. Efflorescence also has a role in shaping
the salar surface. As a potential cause for dome formation (Warren,
2016), efflorescence may contribute to the formation of gypcrete
and bulbous cover by transporting salt-saturated solutions to the
surface where they deposit Ca-sulfate minerals and change the
texture and rigidity of the surface horizon. Bulbous cover likely
evolves over time as fresh water from precipitation events seeps into
slot pores leading to recrystallization from selenite to alabaster.
Over time, the surface becomes knobby, and such knobs would
indicate where alabaster would be found (Warren-Rhodes et al., in
review).

4.3 Origin and Evolution of Surface
Forms—The Role of Water
The surface structures and textures at the Dome Field record a
history of hydrological changes that affect the mineralogy and
volume of Ca-sulfate in beds that comprise the salar surface and
are visible as paleoterraces (Figures 2C,E). Several mechanisms
for surface structure formation are presented in Table 3. The
most likely scenarios involve water-related processes.

Changes in groundwater lead to Megapolygon-defining
surface ridges due to expansion and contraction in response to
mineral precipitation. Cycles of wetting and drying accompanied
by vapor exchange in vents or salt cones lead to focused warping
of the surface Ca-sulfate bed to form Domes, i.e., tumuli. Water
ponds in Quasi-Flat areas lead to smaller polygonal patterns of
tepees, petees, and shrinkage cracks. In the course of their
formation, mineralogical transformation and recrystallization
affect the texture and porosity of the surface material. The
transition from primary selenite crystals to secondary alabaster
is accompanied by a change in porosity that would enable water
transport. Indeed, water is the driving factor in the distribution of
photosynthetic life among all macro- and micro-scale structures
at Pajonales (Warren-Rhodes et al., in review). Evidence of
this selenite-to-alabaster transition takes the form of surface
textures: duricrust, bulbous cover, and gypcrete are indicators
of selenite-alabaster transitions. These climate-related changes in
hydrological conditions are evident at the macro to microscale at
the Dome Field.

The timing of formation remains uncertain. It is not entirely
clear whether PolygonRidges and Domes are
contemporaneous. One observation would suggest that the
PolygonRidges predate the Domes: intact ridges are rare and
most are eroded, unlike domes for which a substantial number
are intact. Most of the ridges have collapsed, which suggests loss
of structural integrity and eroded to axial deposits of
intraclastic selenite detritus and regolith (Figure 4). It is
possible that this collapse is linked to climate-related, water-
table-elevation cycles, which caused dissolution of salt or
hydration and dehydration of mixed chloride-sulfate salts in
the subsurface (Bishop et al., 2021) that led to volume changes
and destabilization of the surface (Figure 9). This would lead to
linear features creating quasi-tiles, such as, PolygonRidges and
Megapolygons. In contrast, more local focii would lead to
circular features, like Domes, which would accommodate the
volume changes from a central point rather than from a
landscape-scale pressure field. This would suggest that the
PolygonRidges represent longer-term processes, which
would explain their degraded condition. An alternative
observation is that Domes have a shape with more structural
integrity than do PolygonRidges and therefore, would not rule
out contemporaneous formation and must be considered, along
with genetic mechanisms.

4.4 Implications for Mars Exploration
Salar de Pajonales is an excellent analog for evaporitic basins on
Mars because of its high UV radiation, relatively thin atmosphere,
broad diurnal and annual temperature variations, volcanic and
hydrothermal activity, mineralogy, morphology, geomorphology,
salt abundance, and aridity (Cabrol et al., 2001; Bada et al., 2003;
McKay et al., 2003; Wettergreen et al., 2005; Grunthaner et al.,
2006; Warren-Rhodes et al., 2007a; Warren-Rhodes et al., 2007b;
Cabrol et al., 2007; Piatek et al., 2007; Gómez-Silva et al., 2008;
Cabrol et al., 2010; Cabrol and Grin, 2010; Fairen et al., 2010;
Fiahaut et al., 2017; Cabrol et al., 2018; Wilhelm et al., 2018). Our
evidence suggests that repeated wetting and drying cycles are
responsible for the geomorphic and petrographic characteristics
of surface structures at the Dome Field.

PolygonRidges and Domes are topographic modifications
caused by wetting and drying of Ca-sulfate salts on the
existing salar surface and in the subsurface. The effects of
water on the volume changes in Ca-sulfate minerals, coupled
with the ability of gypsum to form indurated beds, may be key to
the formation of these macroscale surface structures (Domes, in
particular); we are not aware of any occurrences of Domes in
exposed evaporite beds dominated by minerals other than
gypsum. Changes on the microscale are equally important.
Specifically, the changes in porosity and pore structure signal
the effects of water on the habit, texture, and mineralogy of the
gypsum beds. Pores isolated by reprecipitation, efflorescence, or
mechanical closure might serve as micro-reservoirs.
Consequently, it may be possible that gypsum evaporite beds
and structures could retain water in pore spaces or along crystal
surfaces despite overall salar desiccation. Thus Ca-sulfate surface
structures could pinpoint evidence of water-related processes and
mimic surface patterns—“patterned ground” or “polygonal
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networks”—at mid-to higher latitudes on the Martian surface
(Malin and Edgett, 2000; Mangold et al., 2004; Langsdorf and
Britt, 2005; Mangold, 2005; Levy et al., 2009). Such polygonal
patterned ground manifests itself at two scales at Salar de
Pajonales—Megapolygons (tens of meters) and micropolygons
(tens of centimeters), which represent the combined effects of
polyextreme conditions on salar materials at different spatial and
temporal scales.

Terrestrial polygons formed by desiccation processes in playa
environments can range from diameters of centimeters
(micropolygons) to up to 300 m (megapolygons) (Neal et al.,
1968; Brooker et al., 2018). The larger polygons are thought to
form by periods of intense evaporation due to increased aridity,
combined with lowering of the ground-water table (Neal et al.,
1968; El-Maarry et al., 2014; Brooker et al., 2018). Polygonal
surface patterns (patterned ground) on Mars range in diameter
from meters to tens of kilometers and, like terrestrial polygons,
can form by several different processes and reflect a variety of past
climatic conditions (Pechmann, 1980; Seibert and Kargel, 2001;
Mangold, 2005; Soare et al., 2005; Morgenstern et al., 2007; Soare
et al., 2008; Lefort et al., 2009; Levy et al., 2009).

The polygonal surface patterns documented to date on Mars
are fairly young (∼0.1–1 Ma) and, at low latitudes, have been
attributed to thermal cracking (Levy et al., 2009) or, at high
latitudes, to freeze-thaw cycles (Malin and Edgett, 2000;
Mangold et al., 2004; Langsdorf and Britt, 2005; Mangold,
2005). In their model for low-latitude patterned ground, Levy
et al. (2009) propose that cracks form through thermal
expansion and contraction of subsurface ice. Ridges form
along margins of the cracks leading to the observed
polygonal patterns. But such ridges could form by
hydrochemical processes as well. An alternative explanation
for ridges onMars may be destabilization of hydrated salts in the
subsurface. Bishop et al. (2021) proposed such a model for
recurring slope lineae (RSL). In their model, RSL occur as a
consequence of seasonal hydration and dehydration of
subsurface chloride-sulfate salts leading to slope failure.
Ridge formation by a similar process, but over a longer time
scale, may be occurring at Salar de Pajonales and would reflect

changes in groundwater level (i.e., water table). Elevation
changes in the water table could be attributed to changes in
groundwater recharge and therefore to climate. Thus, it’s
possible the megapolygon-scale patterned ground illustrates
salt-related expansion and contraction in the subsurface as a
function of changes in the elevation of the water table. Similar
changes in groundwater may have been common during the
Noachian/Hesperian transition on Mars and contributed to the
formation of patterned ground.

While PolygonRidge formation reflects changes in the
subsurface (tens to hundreds of meters), Dome formation
points to wetting and drying cycles at shallower depths (meters
to tens of meters). On Mars, volume changes associated with
recrystallization, hydration and dehydration, and
efflorescence–deliquescence processes could create or modify
porosity pathways for water-exchange in the shallow subsurface.
Evidence for efflorescence-deliquescence transitions for chlorate
salts (Fernanders et al., 2022) supports proposed occurrence of
deliquescence on Mars (e.g., Pál and Kereszturi, 2020; Nazari-
Sharabian et al., 2020 and references therein). Water exchanged in
this manner may point towards oases for life during the last stages
of dehydration (Davila and Schulze-Makuch, 2016). Dundas and
Mcewen (2010) interpreted mounds observed in Mars
Reconnaissance Orbiter (MRO) High Resolution Imaging
Science Experiment (HiRISE) camera images as pingos, which
are mounds created by over-pressured groundwater that freezes
beneath an impermeable layer, usually frozen ground (Angel de
Pablo and Komatsu, 2009; Burr et al., 2009). Angel de Pablo and
Komatsu (2009) attribute similar structures in the Utopia basin on
Mars to pingos as well. On Earth, pingo ponds are often associated
with depressions formed after the ice coremelts, but pingos in their
initial phase are mounds that formed during pressurization of
groundwater in the subsurface (Burr et al., 2009). Volume changes
in sulfate salts could occur not as a consequence of freezing but
rather of changes in water content in Ca-sulfate systems (Warren,
2016). The resulting tumuli occur as tumuli fields, of which the
Dome Field is an example. This provides an alternative explanation
for the formation of mounds on Mars; one in which an
impermeable surface layer is pushed upwards by the force of

TABLE 3 | Possible mechanisms for formation of the macroscale features.

Structure Process

Tectonic processes Hydration-dehydration Salt-mineral
recrystallization

Efflorescence-deliquescence Artesian springs

PolygonRidge Ridges are not aligned
with regional structural
grain and are localized

Can result in volume change
over a broad area in the
subsurface

Can result in volume change
over a broad area in the
subsurface

NA NA

Domes NA Can provide volume change
but needs an alternative
mechanism to focus process

Can provide volume change but
needs an alternative
mechanism to focus process

Can provide volume change but
needs an alternative mechanism
to focus process

Springs do not
produce subsurface
hollows and surface
warping

Quasi-Flats NA Can produce the
micropolygons and rims

Can produce the
micropolygons and rims

Can produce the cover textures
(duricrust, gypcrete, rugosic, and
bulbous) micropolygons and rims

NA

unlikely NA—not applicable
possible
likely
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mineral transformation, rather than freeze-thaw, processes
over time.

Desiccation polygons have been identified at the centimeter
scale on the floor of Gale Crater using data from the Mars Science
Laboratory (MSL) Curiosity rover (Stein et al., 2018) as well as by
both MER Spirit and Opportunity rovers. In Gale Crater,
ChemCam Laser Induced Breakdown Spectrometer (LIBS) and
Alpha-Particle X-Ray Spectrometer (APXS), identified parallel
bedding seams of Ca-sulfate (CaSO4) running through a gray
sandstone unit which is overlain by a ∼1 cm thick red
mudstone unit (Stein et al., 2018). CaSO4 veins run through
most of the polygonal ridges and sometimes cut across them. In
addition, sulfate-mineralized fractures are present throughout
the region and are attributed to hydraulic fracturing
(Grotzinger et al., 2014; Caswell and Milliken, 2017; Young
and Chan, 2017). The eventual transformation of desiccation
cracks into ridges likely formed by persistent flows of sulfate-
rich waters through the cracks and eventually formed the
ridges. The discovery of these desiccation polygons in Gale
Crater suggests a history of oscillating lake levels, which
confirms the existence of a paleolake that rose and fell
dramatically over time (Stein et al., 2018).

Gulick et al. (2019) studied the gullies and landforms
surrounding the central peak of Lyot Crater (∼220 km in
diameter), which is located on the edge of the Northern
Lowlands of Mars (50.4°N and 29.3°E). The crater floor
located just to the west of the central peak region marks the
lowest elevation (-7,034 m) in the northern hemisphere
(50.6030°N, 29.16503°E) (Gulick et al., 2019). It is also the
youngest major impact basin on Mars (Amazonian age, <3 Ga;
Greeley and Guest, 1987; Tanaka et al., 2014). In their study,
Gulick et al. (2019) mapped the gullies and landforms in this
region. They identified two scales of polygonal landforms,
numerous depressions connected by a system of channel
forms that trended downslope, a pristine-appearing 200-m
diameter impact crater with lobate ejecta, gullies on the
western slope of the central peak, and evidence for a paleolake
just west of the central peak region. Because the central peak
region would reflect the last vestiges of hydrothermal activity of
this large impact crater, the adjacent paleolake likely experienced
evaporation similar to Salar de Pajonales. Because current
temperatures and pressures are consistent with a climate
where liquid water could flow seasonally if present, Gulick
et al. (2019) concluded that Lyot’s central peak and paleolake
region likely provided a unique microclimate where westerly
winds blowing across the paleolake deposited water vapor to the
central peak’s western slopes. Seasonal and hydrothermally
induced snowmelt on the slopes could eventually have
formed the gullies. As this local hydrological cycle ebbed due
to decreasing hydrothermal activity, this region would have
formed an evaporative basin similar to that of Salar de Pajonales.

A follow up study by Glines and Gulick (in review) included a
more detailed mapping study of the features and landforms in
this region of Lyot Crater floor. In additional to several other
features, they characterized the two types of polygons. The first
being the low-centered dark-toned polygons with prominent
raised ridges, which are up to ∼10 m in diameter and are

located downslope of the system of depressions and channels.
The second type are fractures outlining extensive high-centered
polygons ∼500–1,000 m in diameter located in light-toned
regions. These are located southeast of the central peak region
and were mapped in the original Gulick et al. (2019) study.
Although, HiRISE would not have resolved the cm-scale polygons
identified in Salar de Pajonales, polygons were identified down to
the HiRISE meter-scale spatial resolution. Surface exploration of
this young, low elevation region might reveal additional smaller
scale features similar to those identified in Salar de Pajonales.

El-Maarry et al. (2014) completed a systematic study of
potential desiccation polygons (PDPs) from orbit using images
from the HiRISE camera. They found that PDPs tend to be
located in regional depressions such as impact craters or flat
plains and are associated with light-toned phyllosilicate-rich
terrains. PDPs observed from orbit range from 1- to 30-m
wide, although those observed at the surface by all three
rovers are centimeter scale. El-Maarry et al. (2014) pointed
out that the size range may reflect variable hydrological
conditions where the smaller polygons observed at the rover
scale may have formed through surface evaporation while the
larger PDPs may suggest fluctuating water tables like what is
proposed in this paper for Salar de Pajonales.

Based on our results, surface manifestations, such as domes
and polygons, of salt-related processes on Mars could point to
potential water sources. Because hygroscopic salts have been
invoked as sources of localized, transient water sufficient to
support terrestrial life (Davila et al., 2010; Hallsworth, 2020),
areas displaying such structures would be good targets for
biosignature exploration on Mars.

4.5 Summary and Future Directions
The Salar de Pajonales is currently in a desiccation period of a
series of wetting and drying cycles. The salar surface
types—lagoons, salt crusts, infrequently inundated areas, and
dry exposed paleoterraces (Chong Diaz et al., 2020)– spatially
reflect climate changes that partly mirror similar climate
transitions postulated for early Mars. These intermittently
moist areas offer a glimpse into the possible last microbial
refugia on Mars as the climate changed and water vanished
from the surface (Davila and Schulze-Makuch et al., 2016).

Different salar surface types offer opportunities to follow
morphological transformations that create distinct environmental
conditions for life. These morphologies could reflect similar
hydrological conditions during the wetter climate of early Mars.
Focusing on the Dome Field, an exposed paleoterrace, we identified
surface structures that can be identified by drone imagery (Phillips
et al., 2021) and explored for different textural surfaces as defined by
distinct physical, chemical, and hydrological conditions.

The Dome Field comprises gypsum deposits that infer a cyclic
deposition of thin beds comprising well-developed gypsum
crystals inter-layered with thinner beds of gypsum breccia and
laminar sediments (Figure 2). Surface characteristics fall into two
distinct groups based on spatial scale. Macroscale structures
(meter-scale; PolygonRidges, which encircle Megapolygons;
Domes; and Quasi-Flats) formed by volume changes
associated with water-related processes, and microscale
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structures, which are attributed to water-brine-related processes
active within the upper gypsum bed. Our observations suggest a
strong inter-dependency between these structures across scales
that we interpret to represent changes in environmental
parameters related to changing climate.

Polygonal surface patterns on Mars have a bimodal size range
similar to what we observe at Salar de Pajonales. At Salar de
Pajonales, we attribute these changes to hydrological conditions
where smaller scale polygons observed at the rover scale may have
formed through surface evaporation, and larger potential
desiccation polygons may suggest groundwater fluctuations.
Thus domes and polygons on Mars could represent potential
water sources and, hence, brine transport, creating excellent
targets for biosignature exploration on Mars.

This research is part of a larger effort to determine remote-
sensing thresholds of detection for the surface structures
described here (Phillips et al., 2021 in prep), to establish the
distribution and predictability of biosignatures within the salar
(Warren-Rhodes et al., in review), and to test the hypothesis of
underlying unique geologic conditions in the Dome Field
(Hofmann et al., in review). Consequently, we focused on the
Dome Field where both the structures and the biosignatures are
present. However, a complete study of the facies distribution in
the Dome Field and across the larger Salar de Pajonales
evaporitic basin could provide further context for the
geologic and climatic controls on the observed structures and
would further help to strengthen the site as a Martian analog. In
this study and the accompanying papers mentioned above, our
focus is on a smaller area to provide a more detailed picture of
the interrelationships of structure, life, and water and our ability
to detect relevant targets.
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