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In this research, first considering the electron–electron interaction in the high-density Fermi
electron gas at T � 0 K, this interaction causes the pressure 2/137 time less than the
original value. However, the pressure of the Fermi electron gas should have something to
do with temperature. Then, we estimate the temperature effect using statistical mechanics
and find that the complicated form of the pressure p depends on temperature at the given
particle number N and volume V. According to this, the central density–mass (ρc-M),
central density–radius (ρc-R), and mass–radius (M-R) relations of the white dwarf star are
obtained by considering the equation of state (EOS). Traditional formula gives the
problematic mass–radius relation R∝M−1/3 for the low-density white dwarf stars
because it leads to R→∞ and p→0 when M→0. We correct this relation and obtain
two reasonable relations in the relativistic and nonrelativistic regions. In our EOS
calculations, the central density is divided into the high-, middle-, and low-density
regions. All three relations are almost unchanged until 108 K in the high-density region.
The temperature effect mainly affects the middle- and low-density regions, and it becomes
explicitly above 107 K. Our calculations can explain Sloan Digital Sky Survey observations
where some white dwarf stars with a radius of more than 8 × 103 km have larger mass than
the predictions by the relativistic EOS at T � 0 K. This result tells us that the temperature
effect is important for the low andmiddle central-density white dwarf star and also useful to
estimate the inner temperature of a white dwarf star.

Keywords: white dwarf star, degenerate Fermi electron gas, pressure, upper mass limit, electron–electron
interaction

INTRODUCTION

The white dwarf star has been investigated for many years, and it was named first in 1922 (Holberg,
2005). It usually has a very high density with mass similar to our Sun, but the volume is small like the
Earth. The Chandrasekhar mass limit is the famous restriction for the upper mass of a non-rotating
and uncharged white dwarf star (Chandrasekhar, 1935; Chandrasekhar, 2012). The reported largest
mass seems to be the one found in 2007, which is 1.33 times as large as the solar massMʘ (Kepler
et al., 2007). The white dwarf star is thought to be the type of the low to medium mass stars in the
final evolution stage (Schutz, 1985; Hans and Ruffini, 1994; Mould, 2002; Misner et al., 2017).
The early theory to explain its mass upper limit is based on the ideally degenerate Fermi electron
gas (Chandrasekhar, 1935; Kittel and Kroemer, 1980; Schutz, 1985; Huang, 1987; Greiner et al.,

Edited by:
Scott William McIntosh,

National Center for Atmospheric
Research (UCAR), United States

Reviewed by:
Kazuharu Bamba,

Fukushima University, Japan
Herman J. Mosquera Cuesta,

Tecnologia e Innovacion, Colciencias,
Colombia

*Correspondence:
Ting-Hang Pei

Thpei142857@gmail.com
thpei@asiaa.sinica.edu.tw

Specialty section:
This article was submitted to

Stellar and Solar Physics,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 21 October 2021
Accepted: 08 December 2021
Published: 01 February 2022

Citation:
Pei T-H (2022) The Highly Accurate
Relation Between the Radius and

Mass of the White Dwarf Star From
Zero to Finite Temperature.

Front. Astron. Space Sci. 8:799210.
doi: 10.3389/fspas.2021.799210

Frontiers in Astronomy and Space Sciences | www.frontiersin.org February 2022 | Volume 8 | Article 7992101

ORIGINAL RESEARCH
published: 01 February 2022

doi: 10.3389/fspas.2021.799210

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2021.799210&domain=pdf&date_stamp=2022-02-01
https://www.frontiersin.org/articles/10.3389/fspas.2021.799210/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.799210/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.799210/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.799210/full
http://creativecommons.org/licenses/by/4.0/
mailto:Thpei142857@gmail.com
mailto:thpei@asiaa.sinica.edu.tw
https://doi.org/10.3389/fspas.2021.799210
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2021.799210


1995; Honerkamp, 2002; Schwabl, 2002; Chandrasekhar,
2012). The calculation adopts all electrons like free particles
occupying all energy levels until Fermi energy as they are at
zero temperature (Koester and Chanmugam, 1990). It is
amazing that, even in the high-temperature and high-
pressure situation, the ideal Fermi gas still works to explain
the existence of the white dwarf star. It makes us curious to
further discuss the more detailed temperature effect through
statistical mechanics.

Actually, the central temperature of the Fermi electron gas
in the white dwarf star might be about 107–108 K (Soares,
2017), the temperature effect should be further considered to
get more accurate results. The problems about surface
luminosity and temperature evolution of the white dwarf
stars have been discussed (D’antonia and Mazzitelli, 1990).
Here, we care about the central temperature more. According
to statistical mechanics, we first build the pressure produced by
the Fermi electron gas at given temperature T, the number of
electrons N, and the total volume V. Then, we discuss the
temperature effect on the electron pressure. Next, the relations
between the central density ρc, mass M, and radius R of the
white dwarf star are derived from the equation of state (EOS).
Finally, on the basis of these relations, the temperature effect is
discussed and the results are compared to the Sloan Digital Sky
Survey (SDSS) observations. Although the temperature is
maximum at the center and minimum at the surface, we
still adopt the uniform temperature approximation as most
research did. After all, it is more complicated to consider the
temperature varying with position, and our results imply that
the uniform temperature approximation may remain valuable.
Furthermore, the temperature can change with time because
the white dwarf stars cool down by thermal emission.
However, the cooling time is much longer than the
astronomical observations, and the temperature of the white
dwarf star is kept constant at each calculation in our research.
If we want to compare the calculation results with the
astronomical observations in several decades, then to hold
the initial temperature throughout each calculation is a good
enough way.

THE DEGENERATE FERMI ELECTRON GAS
FOR THE WHITE DWARF STAR

First, we review the calculation of the upper mass limit for the
white dwarf star. It adopts the ideally degenerate Fermi electron
gas and considers the relativistic kinetic energy in the calculation
(Huang, 1987; Greiner et al., 1995). Because the electron has spin
s � ±1

2, each energy state permits two electrons occupied. Each
electron has the rest massme, and its relativistic kinetic energy Ek
at momentum p is

Ek � mec
2
⎧⎪⎨⎪⎩⎡⎢⎢⎢⎢⎣1 +⎛⎝ p

.

mec
⎞⎠2⎤⎥⎥⎥⎥⎦

1/2

− 1
⎫⎪⎬⎪⎭, (1)

The Fermi electron gas with the total number N and total
volume V has total kinetic energy

E0 � 2mec
2 ∑∣∣∣p.∣∣∣<pF

⎧⎪⎨⎪⎩⎡⎢⎢⎢⎢⎣1 +⎛⎝ p
.

mec
⎞⎠2⎤⎥⎥⎥⎥⎦

1/2

− 1
⎫⎪⎬⎪⎭

� 2Vmec2

h3
∫pF
0

dp4πp2
⎧⎪⎨⎪⎩⎡⎢⎢⎢⎢⎣1 +⎛⎝ p

.

mec
⎞⎠2⎤⎥⎥⎥⎥⎦

1/2

− 1
⎫⎪⎬⎪⎭, (2)

where h is the Planck’s constant and pF is the Fermi momentum
defined as

pF � h( 3N
8πV

)1/3

, (3)

Considering a white dwarf star mainly consisting of helium
nuclei, then the total massM in terms of the massmp of a proton
and the mass mn of a neutron is

M � (me + 2mp + 2mn)N ≈ 4mpN ≈ 4mnN, (4)

If we define the parameter

xF ≡
pF

mec
� h

2mec
( 3N
8πV

)1/3

, (5)

then Eq. 2 becomes

E0 � 8πm4
ec

5V

h3
[f(xF) − 1

3
x3
F], (6)

where

f(xF) � ∫xF
0

dxx2[(1 + x2)1/2], (7)

The pressure produced by the ideal Fermi electron gas is
(Huang, 1987)

P0 � −zE0

zV
� 8πm4

ec
5

h3
[1
3
x3
F

      
1 + x2

F

√
− f(xF)], (8)

It is almost 1,000 times larger than the pressure of the helium
nuclei in the same white dwarf star (Greiner et al., 1995). Further
discussions give the relation between the radius R and massM of
the star for the relativistically high-density Fermi electron gas

�R � �M
2/3⎡⎣1 − ( �M

�M0
)2/3⎤⎦1/2, (9)

where

�R � (2πmec

h
)R, (10)

�M � 9π
8

M

mn
, (11)

and

�M0 � (27π
64δ

)3/2( hc

2πGm2
n

)3/2

, (12)

In Eq. 12, G is the gravitational constant and δ is a parameter
of pure number. Some considerations (Greiner et al., 1995) give
the upper mass limit M0 in unit of the mass Mʘ of our Sun
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M0 ≈ 1.44M⊙, (13)

which is also the upper limit for appearance of the white dwarf
star at T � 0 K.

THE CORRECTION OF THE
ELECTRON–ELECTRON INTERACTION
FOR THE WHITE DWARF STAR AT T = 0
The ideal Fermi electron gas has been widely discussed in solid
state physics. The ground state energy of non-relativistically high-
density Fermi electron gas has been calculated by the
Hartree–Fock approximation (Mattuck, 1976; Mahan, 2000),
and the energy per electron at T � 0 is

EHF

N
� 2.21

r2s
− 0.916

rs
+ 0.0622 ln rs − 0.096(Redberg

electron
), (14)

where EHF is the total energy of the Fermi electron gas, and rs is
defined by using the Bohr radius aB

V

N
� 4
3
πr3s a

3
B, (15)

The first two terms are dominant terms, and the ratio of the
first term to the second one is proportional rs or N1/3. As N
increases, the first term increases faster than the second one.
Actually, the calculation of the first term at the right-hand side
in Eq. 14 should use Eq. 6 because of the relativistic electrons.
Considering xF>>1 in the relativistic region, then Eq. 6
becomes

E0

N
≈
2πm4

ec
5

h3
V

N
x4
F(1 − 4

3xF
+ 1
x2
F

) (16)

The second term consider the Feynman diagram of the oyster
type, so this correlation energy E1 is (Mattuck, 1976; Mahan,
2000)

E1

N
� − 2

N
× 1
2
× [ V

(2π)3]
2

× 4πKee2

V
× 16π4

h4
∫∫p
.

F

p
.

1 , p
.

2� 0
.

d3p
.

1d
3p
.

2∣∣∣∣∣∣p.1 − p
.

2

∣∣∣∣∣∣2
� − 3

2π
(2πKepFaB

h
)( e2

2aB
) � −3mecKee2

2h
xF,

(17)

where Ke is the Coulomb’s constant. Using Eqs. 16 and 17, the
pressure PHF of the Fermi electron gas at T � 0 K is

PHF � −zEHF

zV

� 2πm4
ec

5

3h3
(x4

F − x2
F − 2

2πKee2

hc
x4
F) ≈

2πm4
ec

5

3h3
(x4

F − x2
F

− 2
137

x4
F),

(18)

where 2πKee
2/hc is the fine structure constant (Gasiorowicz, 1974;

Levin, 2002; Roger, 2002; Gottfried and Yan, 2003). It means that
the electron–electron interaction causes the pressure to be about
2/137 time less than the original value. Some related discussions
can be checked in the early reference (Salpeter, 1961).

THE TEMPERATURE EFFECT ON THE
PRESSURE OF THE IDEAL FERMI
ELECTRON GAS IN THE WHITE DWARF
STAR

The EOS for ideal and non-interacting electron gas has been given
in many resources like Ref. 12. In reality, the central temperature
of a star is usually about 107–108 K, and the upper mass limit in
Eq. 13 calculated at T � 0 should be improved. Otherwise, it
cannot reflect how the relation between the radius andmass of the
white dwarf star varies with temperature. Then, we consider the
case for T>>0, and the grand partition function in statistical
mechanics (Greiner et al., 1995) is

q(T,V, z) � lnZ � ∑
k

ln[1 + z · exp(−βEk)], (19)

where Ek is the kinetic energy, β � 1/kBT, and z � exp (μβ) with μ
being the chemical potential of the Fermi electron gas. Because
the energy eigenstates are treated as arbitrarily close to each other
in a very large volume, the grand partition function becomes

lnZ � ∫∞
0

dEg(Ek) ln[1 + zexp(−βEk)], (20)

Integrating it by parts, then we have (Greiner et al., 1995)

lnZ � g
4πV
h3

β

3
∫∞
0

p3dp
dEk

dp

1
z−1exp(βEk) + 1

, (21)

where g � 2s + 1 is the degeneracy factor and

p2 � E2
k

c2
+ 2meEk, (22)

Substituting Eq. 22 into Eq. 21 and considering Fermi energy EF
>> mec

2, it gives

lnZ � g
4πVβ
3h3c3

∫∞
0

dEk

E3
k[1 + 2mec2

Ek
]3/2

z−1exp(βEk) + 1
, (23)

Using the Taylor series expansion to the second-order term,
then we have

lnZ ≈ g
4πV

3h3c3β3
∫∞
0

d(βEk) (βEk)3[1 + 3(βmec2

βEk
) + 3

2(βmec2

βEk
)2]

z−1exp(βEk) + 1

(24)

Then, the integral gives
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lnZ ≈ g
4πV

3h3c3β3
[Γ(4)f4(z) + 3(mec2

kBT
)Γ(3)f3(z)

+ 3
2
(mec2

kBT
)2

Γ(2)f2(z)], (25)

where we define the function

fn(z) � 1
Γ(n)∫

∞

0

d(βEk) (βEk)n−1
z−1e(βE) + 1

, (26)

The corresponding Fermi energy EF is roughly 20 MeV
(Huang, 1987) and 1/(2mec

2β) ∼ 1/1,000 at 107 K. The
chemical potential μ∼EF, so z � exp (βμ)∼exp (20,000). When
z>>1, the approximation of Eq. 26 (Greiner et al., 1995) is

fn(z) ≈ (ln z)n
n!

[1 + π2

6
(n − 1)n
(ln z)2 ], (27)

and the ratio of the first term to the second term is about

3(mec2

kBT
) Γ(3)

Γ(4)
f3(z)
f4(z) ≈ 3(mec2

kBT
) 1/3

(ln z)/4 ≈
1
100

(28)

According to the relation ln Z � pV/kBT, the pressure causing
by the Fermi electron gas is

Pelectron gas ≈
8π(kBT)4
3h3c3

[Γ(4)f4(z) + 3(mec2

kBT
)Γ(3)f3(z)

+ 3
2
(mec2

kBT
)2

Γ(2)f2(z)], (29)

Then, we calculate the particle number N (T, V, z) using a
similar way in statistical mechanics. It gives

N(T,V, z) � g
4πV
h3

∫∞
0

p2dp
1

z−1exp(βEk) + 1

� g
4πV
h3c3

∫∞
0

dEk

E2
k(1 + 2mec2

Ek
)1/2(1 + mec2

Ek
)

z−1exp(βEk) + 1
(30)

Using Taylor series expansion to the second-order term, then
we have

N(T,V, z) ≈ g
4πV

h3c3β3
∫∞
0

d(βEk) (βEk)2[1+2(βmec2

βEk
)+ 1

2(βmec2

βEk
)2]

z−1exp(βEk) + 1

(31)

Further calculation gives

N(T,V, z) ≈ 8πV(kBT)3
h3c3

[Γ(3)f3(z) + 2(mec2

kBT
)Γ(2)f2(z)

+1
2
(mec2

kBT
)2

f1(z)] (32)

Combining Eq. 29 with Eq. 32, it gives Pelectron gas in terms of
T, V, and N, that is,

Pelectron gas ≈
NkBT

3V

⎡⎢⎢⎢⎢⎣Γ(4)f4(z) + 3(mec2

kBT
)Γ(3)f3(z) + 3

2 (mec2

kBT
)2Γ(2)f2(z)

Γ(3)f3(z) + 2(mec2

kBT
)Γ(2)f2(z) + 1

2 (mec2

kBT
)2f1(z)

⎤⎥⎥⎥⎥⎦ (33)

Substituting Eq. 27 into Eq. 33 and further rearrangement
give

P
electron gas

≈
NkBT

3V

⎧⎪⎨⎪⎩
(lnz)4

4
+(mec

2

kBT
)(lnz)3+[3

4
(mec2

kBT
)2

+π
2

2
](lnz)2+π2(mec

2

kBT
)lnz

(lnz)3
3

+(mec
2

kBT
)(lnz)2+[1

2
(mec2

kBT
)2

+π
2

3
]lnz+π2

3
(mec

2

kBT
)

⎫⎪⎬⎪⎭
≈
NkBT

4V
(lnz){1+(mec

2

kBT
) 1
lnz

−3
2
(mec2

kBT
)2

1

(lnz)2+
π2

(lnz)2

+[3(mec2

kBT
)3

−π2(mec
2

kBT
)] 1

(lnz)3}
(34)

In Eq. 34, (ln z) can be obtained by substituting Eq. 27 into Eq.
32. Then, we have

N

V
≈
8π(kBT)3
(hc)3 × [(ln z)3

3
+ (mec2

kBT
)(ln z)2 + [1

2
(mec2

kBT
)2

+ π2

3
](ln z) + π2

3
(mec2

kBT
)]

(35)

In the following, we have to solve the important chemical
potential for the ultra-relativistic Fermi electron gas.
Most textbooks and references still use the chemical potential
for the non-relativistic Fermi electron gas to deal with the ultra-
relativistic Fermi electron problem, so we propose the appropriate
chemical potential here. Considering (lnz)>>(mec

2/kBT) and
using (lnz) � μ/kBT with the definition of the Fermi
momentum in Eq. 3, it further gives

(cpF)3 ≈ {μ3 + 3(mec
2)μ2 + [3

2
(mec

2)2 + π2(kBT)2]μ
+π2(mec

2)(kBT)2} (36)

Finding the cubic roots at both sides in Eq. 36 and expanding
the bracket to the second-order (1/μ) term give

cpF ≈ μ{1 + (mec2

μ
) + [ − 1

2
(mec

2)2 + π2

3
(kBT)2] 1

μ2
} (37)

Equation 37 results in two μ solutions, and we choose the
reasonable one

Frontiers in Astronomy and Space Sciences | www.frontiersin.org February 2022 | Volume 8 | Article 7992104

Pei Mass–Radius Relation for White Dwarfs

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


μ ≈
(cpF −mec2) + (cpF −mec2){1 − 2[−1

2(mec2)2+π2
3 (kBT)2

(cpF−mec2)2 ]}
2

≈ cpF[1 − (mec2

cpF
) + 1

2
(mec2

cpF
)2

− π2

3
(kBT
cpF

)2],
≈ EF − π2

3
(cpF)(kBT

cpF
)2

,

(38)

where the relativistic Fermi energy by using Eq. 1 is defined as

EF ≈ cpF[1 − (mec2

cpF
) + 1

2
(mec2

cpF
)2] (39)

It reasonably reveals that μ→EF when T→0 in Eq. 38.
Substituting Eq. 38 into Eq. 34, the pressure of the electron
gas in Eq. 34 is

Pelectron gas ≈
N

4V
(cpF)⎧⎪⎨⎪⎩[1 + 1

2
(mec2

cpF
)2

− π2

3
(kBT
cpF

)2]
−

[32 − π2( kBTmec2
)2]

[( cpF
mec2

)2 − ( cpF
mec2

) + 1
2 − π2

3 ( kBTmec2
)2]

+
[3 − π2( kBTmec2

)2]( cpF
mec2

)
[( cpF

mec2
)2 − ( cpF

mec2
) + 1

2 − π2

3 ( kBTmec2
)2]2

⎫⎪⎬⎪⎭ (40)

It explicitly tells us that the total pressure depends on
temperature complicatedly at the given particle number N and
volume V. The pressure of the Fermi electron gas in the white
dwarf star should have something to do with the temperature as it
is in Eq. 40.

After obtaining the pressure of the degenerate Fermi electron
gas varying with temperature, then we can estimate the relation
between mass and radius of the white dwarf star without
considering the equations of the hydrostatic equilibrium. The
relation between V and R is

V � 4
3
πR3 (41)

Using Eqs. 4 and 10, (11) (35), it gives (Huang, 1987)

N

V
≈

3M
8πmnR3

� ( 3
8πmn

)(8mn

9π
)(2πmec

h
)3 �M

�R
3 � (8πm3

ec
3

3h3
) �M

�R
3

(42)

The equilibrium condition by considering the gravitational
self-energy (Huang, 1987) is

1
4
(8πm3

ec
3kBT

3h3
){(cpF)[1 − (mec2

cpF
)2

+ 2π2

3
(kBT
cpF

)2]} �M
�R
3

� K’
�M

2

�R
4 ,

(43)

where

K’ � δ

4π
G(8mn

9π
)2(2πmec

h
)4

(44)

In Eq. 38, δ is a parameter of pure number and G is the
gravitational constant (Greiner et al., 1995). Substituting Eq. 38
into Eq. 37, then we improved Eq. 9 to be

�M
�R
� 1
4
( 27
64δG

)( 2h
m2

nmec
){(cpF

kBT
)[1 − (mec2

cpF
)2

+ 2π2

3
(kBT
cpF

)2]} (45)

Further arrangement gives

M

R
≈ ( 3

2δGmn
){cpF

4
[1 − (mec2

cpF
)2

+ 2π2

3
(kBT
cpF

)2]} (46)

Then, we adopt the approximation of EF ∼ cpF in Eq. 46, and it
gives

M

R
≈ ( 3

8δGmn
){c(3h3N

8πV
)1/3

− ( 8πV
3h3N

)1/3[(m2
ec

3)
− 2π2(kBT)2

3c
]} (47)

Substituting Eq. 42 into Eq. 47 and arranging it, then we have

(8δGmn

3c
)M4/3 ≈ ( 9h3

64π2mn
)1/3

M2/3 − (64π2mn

9h3
)1/3[(m2

ec
2)

−2π
2(kBT)2
3c2

]R2 (48)

Solving R in Eq. 48 and expanding the square root to the
second order, the relation between radius, temperature, and
mass is

R ≈
1

mec[1 − 2π2(kBT)2
3(mec2)2]

1/2 ( 9h3

64π2mn
)1/3

M1/3⎡⎣1 − (M

M0
)2/3⎤⎦1/2,

(49)

where

M0 � ( 3c
8δGmn

)3/2( 9h3

64π2mn
)1/2

� 9hc
64πδGm2

n

(3hc
8δG

)1/2

(50)

M0 in Eq. 50 is the upper mass limit of the white dwarf star
in the extremely relativistic case (Huang, 1987; Greiner et al.,
1995). Equation 49 at T � 0 K shows the same result as the
case of pF >> mec in some references (Huang, 1987; Greiner
et al., 1995). According to Eq. 49 at T � 0 K, the radius of the
white dwarf star with the solar mass is about 2,700 km
(Greiner et al., 1995). The more important thing is that
the temperature term appears in the denominator of Eq.
49, which is much more reasonable than it is at T � 0 K. It
explicitly tells us that the relation between M and R depends
on T, mn, and me.
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Then, the mass–radius curves described in Eq. 49 at T � 108 K
and 8 × 108 K are respectively drawn in Figure 1. The upper mass
limitM0 is 1.44M⊙ at δ � 0.65 andM⊙ � 1.99 × 1,030 kg (Greiner
et al., 1995; Graham, 2000). The T � 0 K curve is very close to the
T � 108 K curve. The temperature effect is explicit and the
mass–radius curve at the high temperature is different from it
at the low temperature. Most early research has derived the
relation of the radius and mass of the white dwarf star
(Huang, 1987; Greiner et al., 1995). However, the result shows
the divergence of the radius when mass goes to zero for the low-
mass white dwarf star (Huang, 1987; Greiner et al., 1995). As we
know, the density of the white dwarf star is about (Huang, 1987;
Greiner et al., 1995)

ρ ≡
N

V
≈ 107 g/cm3 ≈ 1013 mole/m3 ≈ 6 × 1036 electrons/m3

(51)

When we consider the ultra-relativistic condition pF >> mec, it
means

N

V
≫

8π(mec2)3
3h3

� 5.2 × 1035 electrons/m3 (52)

As long as the white dwarf star has the minimal density as shown
in Eq. 51, this condition in Eq. 52 is automatically satisfied. In our
common environment on the Earth, most things have density much
lower than that of the white dwarf star in Eq. 51. When something
disappears like the water evaporating, its volume will become larger
and larger, and then, its density is closer and closer to zero. A white
dwarf star with very large radius as its mass approaches zero is much
unreasonable because it directly violates the criterion in Eq. 52 and

our knowledge about the white dwarf star. The similar mass–radius
relation trend has been shown in Figure 9 of the reference (Bvdard
et al., 2017) where pure iron cores surrounded by helium and
hydrogen layers are considered. Three demonstrations reveal arc
curves whose maximum radii appearing at mass M between 0.40
and 0.55M⊙, and then, the radii in these three cases are all decreased
when the mass of the white dwarf star is below maximum (Bédard
et al., 2017). Even for the C/O-core model, a core consisting of a
uniform mixture of carbon and oxygen in equal proportions, the
mass–radius relations of three different temperatures all show
gradual decrease below M � 1.10M⊙ (Bédard et al., 2017).
Another similar mass–radius trend at the low-mass region is
shown in Figure 2 of the reference (Nunes et al., 2021) where it
clearly exhibits all five temperature cases, leading to the radial
coordinate R→0 at the mass of the white dwarf star M→0. This
result supports our above statements that the radius of the white
dwarf star is close to zero when its mass approaches zero. The zero-
mass thing shall occupy no volume in space, not to be a sphere with a
divergent radius. On the other hand, although our calculations do
not have relation with themagnetic field, it is still worthy to mention
that some recent research also show the radius of the highly
magnetized white dwarf star approaching zero at their mass M
close to zero (Das and Mukhopadhyay, 2012; Kundu and
Mukhopadhyay, 2012; Das and Mukhopadhyay, 2013). This kind
of the strongly magnetic white dwarf star has the strong magnetic
field about 1015–1017 G at the center (Das and Mukhopadhyay,
2012) and may explain the origin of overluminous peculiar type Ia
supernova. The research of the strongly magnetic carbon–oxygen
white dwarf star exhibits the mass–radius relation in Figure 2
(Kundu and Mukhopadhyay, 2012) where the Chandrasekhar

FIGURE 1 | The relation between the radius and mass of the white dwarf star calculated by Eq. 49 at the condition pF >>mecwithout considering the equations of
hydrostatic equilibrium.
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mass limit is exceeded and the generic mass limit is proposed to be
2.58M⊙. The mass–radius relations in Figures 2 and 3 of the
reference (Das and Mukhopadhyay, 2012) are shown for one-
level, two-level, and three-level systems. The curve of the one-
level system is single-valued, but one mass corresponds to three
radii at most for the two-level system and four radii at most for the
three-level system (Das and Mukhopadhyay, 2012). All curves also
exhibit radii close to zero at mass M approaching zero. Usually
speaking, the lower level system corresponds to the higher magnetic
field at the center, and the larger Fermi energy has the higher
magnetic field at the center (Das and Mukhopadhyay, 2012). For
example, the central magnetic field is 6.6 × 1013 G at EF � 2mec

2

for the one-level system, but it is as high as 8.82 × 1017 G at
EF � 200 mec

2 for the same system (Das and Mukhopadhyay,
2012). The higher-level mass–radius relation trend is much
different from the non-magnetic white dwarf stars that we
discuss in this manuscript. In addition, Figure 3 of the reference
(Das and Mukhopadhyay, 2013) also show the mass–radius
relations of the magnetic white dwarf stars for one-level systems
where all the radii approach zero as their mass are close to zero. By
the way, it also points out that the peculiar type Ia supernovae SN
2003fg, SN 2006gz, SN 2007if, and SN 2009dc may have super-
Chandrasekhar mass limit of up to 2.4–2.8 M⊙ (Das and
Mukhopadhyay, 2012). Furthermore, the stability of such
strongly magnetic white dwarf stars has also been discussed
(Xhamel et al., 2013).

Another thing that we have to notice is the radius of the white
dwarf star at its mass close to the upper mass limit. The
mass–radius relation trends of most research and textbooks
(Huang, 1987; Greiner et al., 1995; Carroll and Ostlie, 2006;
Parsons et al., 2010; De Carvalho et al., 2014; Hermes et al., 2014;
Franzon and Schramm, 2015; Bera and Bhattacharya, 2016;
Boshkayev et al., 2016; Parsons et al., 2017; Sahu et al., 2017;
Tremblay et al., 2017; Nunes et al., 2021) including ours all
predict a zero radius when the mass is equal to the
Chandrasekhar mass limit. However, it belongs to the black
hole category, so we have to define a lower radius limit when the
mass is close to M0. Because we consider a non-rotating and
non-charged white dwarf star, this lower radius limit is the
Schwarzschild radius, which is GM0/c

2 � 4.25 km for M0 �
1.44M⊙.

The other consideration is about mec
2>>EF for the non-

relativistic case, then the partition function, pressure, and
number of the ideal Fermi electron gas become

lnZ ≈ g
4πV(2me)3/2

3h3β3/2
× [Γ(5

2
)f5/2(z) + 3

4
(kBT

mec2
)Γ(7

2
)f7/2(z)

+ 3
32

(kBT

mec2
)2

Γ(9
2
)f9/2(z)],

(53)

Pelectron gas ≈
8π(2me)3/2(kBT)5/2

3h3
[Γ(5

2
)f5/2(z)

+ 3
4
( kBT

mec2
)Γ(7

2
)f7/2(z)], (54)

and

N(T,V, z) ≈ 4πV(2me)32(kBT)3/2
h3

× [Γ(3
2
)f3/2(z)

+ 5
4
( 1
mec2β

)Γ(5
2
)f5/2(z) + 7

32
( 1
mec2β

)2

Γ(7
2
)f7/2(z)]

(55)

Combining Eq. 55 with Eq. 54, it gives the relation between
Pelectron gas, T, V, and N

Pelectron gas ≈
2NkBT

3V

⎡⎢⎢⎢⎢⎣Γ(52)f5/2(z) + 3
4 ( kBTmec2

)Γ(72)f7/2(z) + 3
32 ( kBTmec2

)2Γ(92)f9/2(z)
Γ(32)f3/2(z) + 5

4 ( kBTmec2
)Γ(52)f5/2(z) + 7

32 ( kBTmec2
)2Γ(72)f7/2(z)

⎤⎥⎥⎥⎥⎦
(56)

Here, we use the non-relativistic chemical potential for EF >>
kBT (Honerkamp, 2002)

μ ≈ EF[1 − π2

12
(kBT
EF

)2

− 7π4

640
(kBT
EF

)4] (57)

where

EF ≈
p2
F

2me
− p4

F

8m3
ec

2
(58)

Further rearrangement of Eq. 56 and ignoring T2 terms in Eq.
56 and T4 term in Eq. 57 give

P
electrongas

≈
2NkBT

3V
⎡⎢⎣Γ(52)f5/2(z)
Γ(3

2
)f3/2(z)
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1+3

4
(kBT

mec
2)⎡⎢⎣Γ(72)f7/2(z)

Γ(5
2
)f5/2(z)
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1+5

4
(kBT

mec
2)⎡⎢⎣Γ(52)f5/2(z)

Γ(3
2
)f3/2(z)

⎤⎥⎦
⎫⎪⎪⎬⎪⎪⎭

≈
NkBT

V
(2
5
lnz)[1− 3

14
(kBT

mec
2lnz)]

≈
N

V
{2
5
EF[1−π2

12
(kBT
EF

)2]}{1− 3
14
( EF

mec
2)[1−π2

12
(kBT
EF

)2]}
(59)

After obtaining the pressure of the ideal Fermi electron gas
varying with temperature, then we can estimate the relation
between mass and radius of the white dwarf star. The
equilibrium condition in Eq. 43 becomes

(8πm3
ec

3

3h3
){2

5
EF[1 − π2

12
(kBT
EF

)2]}
×{1 − 3

14
( EF

mec2
)[1 − π2

12
(kBT
EF

)2]} �M
�R
3 � K’

�M
2

�R
4 ,

(60)

and then it gives

M � ( 3
2δGmn

){2
5
EF[1 − π2

12
(kBT
EF

)2]}
×{1 − 3

14
( EF

mec2
)[1 − π2

12
(kBT
EF

)2]}R (61)
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This reasonably shows that the radius disappears as M→0
verifying the previous viewpoint that zero mass represents no
occupation or zero radius. However, the previous result shows the
divergence of radius at M→0 (Carroll and Ostlie, 2006), and the
mass–radius relation is

R ≈
(18π)2/3

10
Z2

GmeM1/3
[(Z

A
) 1
mn

]5/3

, (62)

where Z and A are the number of protons and nucleons,
respectively. This expression is very problematic because the
pressure is close to zero as R→∞ which can be seen directly
from Eq. 59 that p is proportional to the inverse volume of the
star or∝ 1/R3. As we know, the pressure inside the white dwarf
star is much higher than it is inside the Sun. The zero pressure
inside the white dwarf star cannot satisfy the criteria in Eq. 52.
When the pressure is close to zero everywhere, it cannot
support a stable star anymore and the white dwarf star
disappears at this zero-density and zero-pressure limit
situation. Therefore, it is incorrect that the radius of the
white dwarf star is divergent when its mass goes to zero.
Besides, in Figure 6 of the reference (De Carvalho et al.,
2014), the pressure in 12C white dwarf star decreases from
1022 to 1016 erg/cm3 when the density decreases from 5 × 106 to
2 × 102 g/cm3. Theoretically speaking, when its density goes to
zero, the pressure must approach zero. If the pressure is not
zero but the density is zero at some temperatures (De Carvalho
et al., 2014), then the calculations shall have some problem. A
white dwarf star with a very large radius when its mass goes to
zero is much unreasonable because it directly violates the
criterion in Eq. 52 and our knowledge about the white
dwarf star. In addition, as mentioned before, another
similar mass–radius relation trend at the low-mass region
clearly exhibits in Figure 2 of the reference (Nunes et al.,
2021) that all five temperature cases lead to the radial
coordinate R→0 as the mass of the white dwarf star M→0.
This result supports our prediction given in Eq. 61 where R→0
atM→0. In summary, both the relativistic and non-relativistic
electron gases lead to zero radius atM approaching zero, which
correct the divergent result in the old R∝M−1/3.

THE MASS–RADIUS RELATION OBTAINED
BY CONSIDERING THE EQUATIONS OF
HYDROSTATIC EQUILIBRIUM
Next, we further obtain some relations from the equation of
hydrostatic equilibrium for the stellar structure in the
Tolman–Oppenheimer–Volkoff (TOV) form (Koester and
Chanmugam, 1990; De Carvalho et al., 2014; Boshkayev et al.,
2016; Carvalho et al., 2018). There are two equations in TOV
considered here without the correction 1/c2 terms (Boshkayev
et al., 2016):

dP(r)
dr

� −Gm(r)ρ(r)
r2

(63)

and

dm(r)
dr

� 4πr2ρ(r), (64)

where p(r),m(r), and ρ(r) are the distributions of the pressure, mass,
and mass density varying with the radial position in the star,
respectively. This ignorance of the 1/c2 terms makes us pay
more attention to the dominant terms. Theoretically speaking,
once the distribution of ρ(r) is known, the distributions of the
pressure and mass can be obtained by substituting ρ(r) into Eqs. 63
and 64. The boundary conditions arem (0) � 0, ρ(0) � ρc,m (R+) �
ρ(R+) � 0, and dρ(r)/dr � 0 at r � 0 where ρc is the central density.
Two boundary conditions ofm (0) � 0 at the center and p (R+) � 0
have been introduced in the paper (Koester and Chanmugam, 1990;
Carvalho et al., 2018; Nunes et al., 2021). Then, defining a parameter

x � xF ≡
pF

mec
� ( ρ

ρ0
)1/3

, (65)

where

ρ0 � 2mn(8πm3
ec

3

3h3
), (66)

Using this parameter in Eq. 65, the high Fermi-energy
pressure in Eq. 40 becomes

Pelectron gas ≈
2πm4

ec
5

3h3
x4
⎧⎪⎨⎪⎩[1 + 1

2
(1
x
)2

− π2

3
( kBT

mec2
)2(1

x
)2]

−
[32 − π2( kBTmec2

)2]
[x2 − x + 1

2 − π2

3 ( kBTmec2
)2] +

[3 − π2( kBTmec2
)2]x

[x2 − x + 1
2 − π2

3 ( kBTmec2
)2]2

⎫⎪⎬⎪⎭
(67)

From Eq. 63, it leads

dρ

dr
� −(dP

dρ
)−1

Gmρ

r2
(68)

Then, it results in

dP

dρ
� (2πm4

ec
5

3h3
) 1

3ρ0

⎧⎪⎨⎪⎩4x + x − 2π2

3
(kBT

mec2
)2

x

−[3
2
− π2( kBT

mec2
)2] 4x

x2 − x + 1
2 − π2

3 ( kBTmec2
)2

+[3
2
− π2(kBT

mec2
)2] x2(2x − 1)

[x2 − x + 1
2 − π2

3 ( kBTmec2
)2]2

+[3 − π2( kBT

mec2
)2] 5x2

[x2 − x + 1
2 − π2

3 ( kBTmec2
)2]2

−[3 − π2(kBT

mec2
)2] 2x3(2x − 1)

[x2 − x + 1
2 − π2

3 ( kBTmec2
)2]3

⎫⎪⎬⎪⎭ (69)

Finally, we can obtain the differential equation of ρ(r) by
substituting Eq. 69 into Eq. 68. Similarly, the case for the low
Fermi-energy pressure can be obtained by using Eq. 56. For μ≥kBT,
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� d

dx
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,

(70)

where

y ≡
kBT

μ
, (71)

and the expression of μ in Eq. 57 is adopted here. Using Eqs.
64 and 68 with the boundary conditions ρ(0) � ρc, ρ(R

+) � 0,
and dρ/dr � 0 at r � 0, we can obtain the central density–mass,

central density–radius, and mass–radius relations
numerically. The numerical method is the fourth-order
Runge–Kutta method (Nakamura, 1995). According to the
definition of the parameter x in Eq. 65, the calculations are
divided into three regions by considering the central mass
density ρc at different temperature. The temperature of the
white dwarf star is considered homogeneously here. The high-
density region is for ρc > ρ0, and we choose ρc ≥ 5 × 1010 kg/m3

in our high-density calculations by using Eqs. 67 and 69. The
low-density region is for ρc < ρ, and we choose ρc ≤ 109 kg/m3

in the low-density calculations by using Eqs. 56 and 70.
Between 109 kg/m3 and 5 × 1010 kg/m3 is the middle-
density region, where it can be approximated by connecting
the high- and low-density regions directly. In Figure 2A, the
relation between mass and the central density of the white
dwarf star is given in the high-, middle-, and low-density
regions at different temperature. In the high-density region,

FIGURE 2 | The relations at different temperature in the high-, middle-, and low-density regions between (A)mass and the central density, (B) the central density
and radius, and (C) mass and radius. All the above results are obtained by considering the equations of hydrostatics equilibrium.
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the mass is close to 1.4 M⊙ after 10
13 kg/m3. Those curves are

almost the same one from low temperature to 108 K in this
region, so only two cases at 107 K and 108 K are shown. In the
low-density region, those curves have tiny deviations until T �
107 K, and especially, they are almost coincident at ρc ≥ 2 ×
107 kg/m3. At T � 5 × 107 K, the curve is explicitly changed,
and the starting point is at 5 × 106 kg/m3. It means that the
white dwarf star at this temperature has a central density
higher than 5 × 106 kg/m3. As temperature increases, the
starting point of the central density also increases. It is
about 107 kg/m3 at 108 K, 4 × 107 kg/m3 at 2 × 108 K, and
7 × 107 kg/m3 at 3 × 108 K. In the middle-density region,
although the central density is only from 109 kg/m3 to 5 ×
1010 kg/m3, the range of mass covers a large interval from
0.4M⊙ to 1.1M⊙. It means that a large part of the white dwarf
stars are in this region.

In Figure 2B, the relation between the central density and
mass is given in the high-, middle-, and low-density regions at
different temperature. Both axes are shown in log scale. The
central density is from 105 kg/m3 to 1014 kg/m3, and the radius is
from 5 × 105 to 5 × 107. At 106 K, it shows a logarithm relation
between the central density and the radius of the white dwarf star.
The higher central density is, the smaller the radius is. However,
the trend is broken at 107 K and above. At 107 K, there is a turning
point around the central density of 106 kg/m3, which means that
the maximal radius of the white dwarf star at this temperature is
less than 3 × 107 m or 3 × 104 km. This turning point also means
that the radius of the white dwarf star cannot increase infinitely as
mentioned in Eq. 62. When the mass goes to zero, the radius also
approaches zero. If we extend the curve to zeros radius, then it
exhibits that the central density is always above 105 kg/m3 at
107 K. The turning point increases in the central density as
temperature increases, but the maximal radius decreases at the
same time. The turning point is roughly 107 kg/m3 at 5 × 107 K
and 108 kg/m3 at 2 × 108 K. In conclusion, the same radius of the
white dwarf star would correspond to different central density,
and one is in the high-density region and the other is in the low-
density region.

In Figure 2C, the mass–radius relation for the white dwarf star
is shown. As mentioned in Figure 2A, the mass is close to 1.4M⊙
after 1013 kg/m3 in the high-density region. Those curves are
almost the same one from low temperature to 108 K in the high-
density region, and only two cases at 107 K and 108 K are shown
in this region. In the low-density region, those curves have tiny
deviations until T � 107 K, and it is almost coincident at ρc ≥ 2 ×
107 kg/m3. In the middle-density region, the range of mass covers
a large interval from 0.4 to 1.1M⊙ where the central density is
only from 109 kg/m3 to 5 × 1010 kg/m3. It also implies that a large
part of the white dwarf stars that we found astronomically belong
to the middle-density region. Those results are the same as
Figure 2A. Especially, at T � 5 × 107 K and above, there exist
some parts where the mass at the same radius is larger than the
curve at 107 K and below. Recently, the Sloan Digital Sky Survey
Release 4 shows a lot of observations having larger mass
compared to the relativistic EOS at T � 0 K when the radius is
larger than 8 × 103 km (De Carvalho et al., 2014). By using our
calculations in Figure 2C, this phenomenon can be explained

because the higher temperature results in these white dwarf stars
with larger mass appearing at the same radius in the low-density
region. Usually, the temperature of these white dwarf stars is
higher than 107 K. Those parts are denoted by the dotted elliptic
curve in Figure 2C. This explanation can also extend to the
middle region in Figure 2C.

Compare Figure 2C with Figure 1, both mass–radius relation
trend is similar for T > 0. We can find that all cases show the
maximum radii appearing between 0 and 1.4M⊙. In addition, as
mentioned previously, the similar mass–radius relation trend has
been shown in Figure 9 of the reference (Bédard et al., 2017)
where pure iron cores surrounded by helium and hydrogen layers
are considered. Three demonstrations reveal arc curves whose
maximum radii appearing at massM between 0.40 and 0.55M⊙,
and then, the radii in these three cases are all decreased when the
mass of the white dwarf star is below maximum (Bédard et al.,
2017). Even for the C/O-core model, a core consisting of a
uniform mixture of carbon and oxygen in equal proportions,
the mass–radius relations of three different temperatures all show
gradual decrease below M � 1.10M⊙ (Bédard et al., 2017).

CONCLUSION

In summary, the mass–radius relation of the white dwarf star
derived according to statistical mechanics shows that the
temperature effect has to be considered at high temperature
above 107 K. After all, the ideally degenerate Fermi electron
gas is described at T � 0 K, and the temperature effect would
show something difference. The other correction is due to the
electron–electron interaction considered at T � 0. The calculation
considers the relativistic electrons, and the result shows that this
effect causes the pressure 2/137 time less than the original value. It
means that the many-particle effect appears and causes about
1.5% deviation in pressure. When the temperature effect is
considered, the pressure is calculated by statistical mechanics.
According to the Fermi energy, two cases are calculated. One is EF
>>mec

2 for the relativistic case, and the other is EF <<mec
2 for the

non-relativistic case. Because of the temperature effect, the
chemical potential is also temperature-dependent and different
expression in these two cases. From the deductions, the pressure
produced by the Fermi electron gas depends on temperature
complicatedly at the given particle number N and volume V.
Traditional formula gives the problematic relation R∝M−1/3
because it leads to R→∞ and p→0 as M→0. Therefore, we
correct this relation and obtain two much reasonable relations in
the relativistic and nonrelativistic regions. The mass–radius
relation of the white dwarf star without considering the
equations of hydrostatic equilibrium is obtained for the
relativistic and non-relativistic cases in which the radius is
shown to be zero as the mass of the white dwarf star disappears.

Then, further considering the equations of hydrostatic
equilibrium, the central density–mass, the central
density–radius, and the mass–radius relations are obtained.
The central density is divided into the high-, middle-, and
low-density regions where the results can be coincident with
the SDSS observations. In the high-density region, three relations
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are almost unchanged until 108 K. The temperature effect
mainly affects the low-density region at temperature above
107 K. Especially, the mass–radius curves show some parts
having larger mass at the same radius when temperature is
higher. It gives a way to explain the SDSS observations at the
radius more than 8 × 103 km that the mass of the white dwarf
star is often larger than the prediction by the relativistic EOS at
zero temperature. Those white dwarf stars of larger mass just
correspond to the low- and middle-density regions. It means
that we should consider the temperature effect to get better
calculations that can reasonably explain the astronomical
observations. Although the temperature is maximum at the
center and minimum at the surface in reality, we still adopt the
uniform temperature approximation as most research did. Our
results imply that the uniform temperature approximation
may remain valuable. Furthermore, the temperature can
change with time because the white dwarf stars cool down
by thermal emission. However, the cooling time is much longer
than the astronomical observations, the temperature of the
white dwarf star is kept constant at each calculation in our
research. It is a good enough way to hold the initial
temperature throughout each calculation if we want to
compare the calculation results with the astronomical
observations in several decades.
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