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The loop quantum cosmological model from ADM Hamiltonian is studied in this article. We
consider the spatially flat homogeneous FRW model. It turns out that the modified
Friedmann equation keeps the same form as the APS LQC model. However, the
critical matter density for the bounce point is only a quarter of the previous APS
model, that is, ρcL � ρc

4 . This is interesting because the lower critical bounce density
means the quantum gravity effects will get involved earlier than the previous LQC model.
Besides, the lower critical density also means the detection of quantum gravity effects
easier than the previous model.
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1 INTRODUCTION

Loop quantum gravity (LQG) is a quantum gravity model which is trying to quantize Einstein’s
general relativity (GR) by using background independent techniques. LQG has been widely
investigated in last decades (Ashtekar and Lewandowski, 2004; Rovelli, 2004; Han et al., 2007;
Thiemann, 2007). Recently, the LQG method has been successfully generalized from GR to the
metric f(R) theories (Zhang and Ma, 2011a; Zhang and Ma, 2011b), Brans–Dicke theory (Zhang
and Ma, 2012), as well as scalar–tensor theories of gravity (Zhang and Ma, 2011c). However, due to
the extreme complexity of the full theory of LQG, one approach usually taken to bypass this difficulty
is to study some simpler symmetry-reduced models. Though these symmetry-reduced models look
relatively simple, they still capture some useful ingredients of the full theory of LQG, and therefore
could be used to test the constructions of LQG and to draw some physically meaningful predictions.
One famous of such a symmetry-reduced model from LQG is the so-called loop quantum cosmology
(LQC). We refer to the study by Ashtekar et al. (2003); Bojowald (2005); Ashtekar et al. (2006a);
Ashtekar and Singh (2011) for reviews on LQC.

Just like in any quantization procedure of a classical theory, different regularization schemes also
exist in LQC as well as in LQG (Ashtekar and Lewandowski, 2004; Thiemann, 2007; Assanioussi
et al., 2015). In particular, for the LQC model of flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) Universe, alternative Hamiltonian constraint operators were proposed (Ashtekar et al.,
2006b; Yang et al., 2009). In the recently proposed model, different from the Ashtekar-Pawlowski-
Singh (APS) model (Ashtekar et al., 2006b), one treats the so-called Euclidean term and
Lorentzianian term of the Hamiltonian constraint independently (Yang et al., 2009; Assanioussi
et al., 2018). It was shown in the study by Assanioussi et al. (2018); Assanioussi et al. (2019) that this
model can lead to a new de Sitter epoch evolution scenario where the prebounce geometry could be
described at the effective level. Then a natural question which arises is that apart from these two
existing LQC models, are there any other possible Hamiltonian operators which can lead to an
evolution different from the existing LQC model? Therefore, this article is aimed to explore such
possibility.
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Note that in standard LQC, particularly in the homogeneous and
spatially flat k� 0models, the Euclidean term and the Lorentzian term
are proportional to each other. Hence, in the famous APS model of
LQC, one only quantizes the Euclidean term, resulting in a symmetric
bounce (Ashtekar et al., 2006b). However, this quantization scheme is
not the only option although it is popular in the current literature. An
alternative option different from the existing model is to let the
classical theory only contain the purely Lorentzian term and then
quantize it. It is well known that the classically equivalent expressions
would generally be nonequivalent after quantization. In particular,
given the fact that the quantization expression evolved with the
Euclidean term and the Lorentzian term looks quite different, it is
hard to believe the resulted quantum evolutionwill be exactly the same
as the APS model. And this article is devoted to the detailed
investigation of the LQC model with the purely Lorentzian term,
and it is compared with the well-known APS model.

This article is organized as follows: After the short
introduction, we give the Hamiltonian constraint we used in
this article and derive the classical evolution equations of the
Universe in Section 2. Then we construct the corresponding
cosmological kinematics in Section 3, where the dynamical
difference equation which represents evolution of the Universe
is also derived. In Section 4, the bounce behavior is studied, and
effective equations are derived in Section 5. Conclusion and some
outlook are also presented in the last section.

2 AN ALTERNATIVE HAMILTONIAN
CONSTRAINT IN LOOP QUANTUM
GRAVITY
The Hamiltonian formulation of GR is defined on the space-time
manifoldM which could be foliated asM � R ×Σ, where Σ is being a
three-dimensional spatialmanifold andR is a real linewhich represents
the time variable. The classical phase space of LQG consists of the so-
called Ashtekar-Barbero variables (Aa

i ,E
i
a) (Thiemann, 2007), where

Aa
i is an SU(2) connection and Ei

a is an orthonormal triad with
densityweight one. The nonvanishing Poisson bracket is given by

Aa
i x( ), Ej

b y( ){ } � 8πGγδabδ
j
i δ x, y( ), (1)

where G is the gravitational constant and γ is the Barbero-
Immirzi parameter (Thiemann, 2007).

The classical dynamics of GR is encoded to the three
constraints on this phase space, including the Gaussian, the
diffeomorphism, and the Hamiltonian constraint. In
homogeneous k � 0 models of cosmology, the Gaussian and
the diffeomorphism constraints are automatically satisfied. Then
we only need to consider the remaining Hamiltonian constraint.

The Hamiltonian constraint in the full theory of LQG reads
(Thiemann, 2007; Assanioussi et al., 2015)

Hg � 1
16πG
∫
Σ

d3xN Fj
ab − γ2 + 1( )εjmnK

m
a K

n
b[ ] εjklEa

kE
b
l	

q
√ , (2)

where N is the lapse function, q denotes the determinant of the
spatial metric, Fi

ab � zaA
i
b − zbA

i
a − 2εijkA

j
aA

k
b , and Ki

a represents

the extrinsic curvature of the spatial manifold Σ. The so-called
Euclidean term HE and the Lorentzian term HL in Eq. 2 are
denoted, respectively, as

HE � 1
16πG
∫
Σ

d3xNFj
ab

εjklE
a
kE

b
l	

q
√ , (3)

and

HL � 1
16πG
∫
Σ

d3xN εjmnK
m
a K

n
b( ) εjklEa

kE
b
l	

q
√ . (4)

Note that the famous ADM Hamiltonian reads

HADM � 1
16πG
∫
M

d3x
	
q

√
KabKab −K2−3R( ) (5)

withKab and 3R being the extrinsic curvature and curvature scalar
of spatial sliceM. Inspired by the ADMHamiltonian, by using the
relationKi

a � Kabebi with q
ab � δijeai e

b
j . A direct calculation shows

HADM � − 1
2κ
∫ d3x εjmnK

m
a K

n
b

εjklE
a
kE

b
l	

q
√ + 	q√

R[ ]. (6)

Here the relation between qab and the variable Ei
a is given by

qab � Ei
aE

i
b/|detE|. Moreover, κ � 8πG, and the lapse function is

fixed as N � 1 for homogeneous Universe in the current article.
Note that the APS model of LQC only evolves the Euclidean
term as

HAPS � − 1
2κγ2
∫ d3xFj

ab

εjklE
a
kE

b
l	

q
√ . (7)

While the Hamiltonian constraint (Eq. 5) does not contain the
Euclidean term, we call this form of Hamiltonian constraint as
purely Lorentzian. We start from this form.

Now, we consider the homogeneous and isotropic k � 0model.
According to the cosmological principle, the metric Friedman-
Robertson-Walker (FRW) Universe reads

ds2 � −dt2 + a2 t( ) dr2 + r2 dθ2 + sin2 θdϕ2( )( ),
where a(t) is the scale factor. At the classical level, one assumes
that the Universe be filled by some perfect fluid with matter
density ρ and pressure P.

Moreover, we introduce a massless scalar field ϕ as the matter
content of the Universe; we denote the conjugate momenta of the
scalar field as π, and the commutator between them reads

ϕ x( ), π y( ){ } � δ x, y( ). (8)

In order to mimic the full theory of LQG, we do the following
symmetric reduction procedures of the connection formalism as
in standard LQC. First, we introduce an “elemental cell” V on the
spatial manifold R3 and restrict all integrals to this elemental cell.
Then we choose a fiducial Euclidean metric oqab on R3 which is
equipped with the orthonormal triad and co-triad (oeai ; oωi

a),
such that oqab � oωi

a
oωi

b. For simplicity, the volume of the
elemental cell V is measured by oqab and denoted as Vo. For
the k � 0 FRW model, we also have Ai

a � γ ~K
i
a, where γ is a
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nonzero real number and ~K
i
a is defined in the study by Zhang and

Ma (2011c). By fixing the local gauge and diffeomorphism
degrees of freedom, the reduced connection and densitized
triad can be obtained as (Ashtekar et al., 2003)

Ai
a � ~cV

−1
3

0
oωi

a, Eb
j � pV

−2
3

0

						
det 0q( )√

oebj ,

where |p| � a2V
2
3
0 and ~c � γ _aV

1
3
0 (Ashtekar et al., 2003). Hence, the

phase space of the cosmological model consists of conjugate pairs
(~c, p) and (ϕ, π). The nonvanishing Poisson brackets between
them read

~c, p{ } � κ

3
γ,

ϕ, π{ } � 1.
(9)

The Gaussian and diffeomorphism constraints are vanished in
the k � 0 model. Hence, the remaining Hamiltonian constraint
(Eq. 6) reduces to

HG � HADM +Hmatter � −
3~c2
			
p
∣∣∣∣ ∣∣∣∣√

γ2κ
+ p2

ϕ

2 p
∣∣∣∣ ∣∣∣∣32 � 0. (10)

The equation of motion of geometrical variable p reads

_p � p,HG{ } � 2
~c
			
p
∣∣∣∣ ∣∣∣∣√
γ

. (11)

Then the classical Friedmann equation is

H2 � _a

a
( )2 � _p

2p
( )2

� ~c2

γ2p
,

(12)

where H is the Hubble parameter. By using the Hamiltonian
constraint (Eq. 10), we found that

H2 �� κ

3

p2
ϕ

2 p
∣∣∣∣ ∣∣∣∣3 � κ

3
ρ, (13)

where the matter density ρ � p2
ϕ

2V2 � p2
ϕ

2|p|3.

3 KINEMATIC STRUCTURE OF LOOP
QUANTIZATION COSMOLOGY

To quantize the cosmological model, we first need to construct
the corresponding quantum kinematics of cosmology by the so-
called polymer-like quantization. The kinematical Hilbert space
for the geometry part can be defined as Hgr

kin ≔ L2(RBohr, dμH),
where RBohr and dμH are the Bohr compactification of the real line
and Haar measure on it, respectively (Ashtekar et al., 2003).
Moreover, we choose the standard Schrodinger representation for
the scalar field (Ashtekar and Singh, 2011). Thus, the kinematical
Hilbert space for the scalar field part is defined as in usual
quantum mechanics, Hsc

kin ≔ L2(R, dμ). Hence, the whole
Hilbert space of the LQC model is a direct product,

Hkin � Hgr
kin ⊗ Hsc

kin. Now let |μ〉 be the eigenstates of p̂
operator in the kinematical Hilbert space Hgr

kin such that

p̂|μ〉 � 8πGγZ
6

μ|μ〉.

Then those eigenstates satisfy the orthonormal condition:

〈μi|μj〉 � δμi ,μj, (14)

where δμi ,μj is the Kronecker delta function. For the convenience
of studying quantum dynamics, we introdue new variables

v ≔ 2
	
3

√
sgn p( )�μ−3, b ≔ �μ~c,

where �μ �
		
Δ
|p|
√

with Δ � 4
	
3

√
πγℓ2p is a minimum nonzero area of

LQG (Ashtekar, 2009). They also form a pair of conjugate
variables as

b, v{ } � 2
Z

..

It turns out that the eigenstates of v̂ also contribute an
orthonormal basis in Hgr

kin. We denote |ϕ, v〉 as the
generalized orthonormal basis for the whole Hilbert
space Hkin.

3.1 Hamiltonian Constraint of LQC With the
Purely Lorentzian Term
Notice that the spatial curvature R is vanished in the k � 0
homogenous cosmology, and the Hamiltonian constraint (Eq. 6)
reduces to

HADM � 1
2κ
∫ d3x εjmnK

m
a K

n
b[ ] εjklEa

kE
b
l	

q
√ (15)

which is the purely Lorentzian term. Note that there is no
operator existing corresponding to the connection variable
Ai
a(x) in LQG. Hence, the curvature Fj

ab in Eq. 6 should be
expressed through holonomies. This can be accomplished by
using Thiemann’s tricks as

Fk
ab � −2 lim

μ→0
Tr

h
μ( )

ij τk

μ2
⎛⎜⎝ ⎞⎟⎠oωi

a
oωj

b, (16)

where h(μ)ij � h(μ)i h(μ)j (h(μ)i )−1h(μ)j
−1 is the holonomy around the

loop formed by the two edges of V that are tangent to eai and ebj
with length μ. Moreover, we also have

εjklEa
kE

b
l	

q
√ � lim

μ→0

2sgn p( )Tr h
μ( )

i h
μ( )

i( )−1, V{ }τj( )
κγλ

oωi
aε

abc. (17)

Next, to deal with the Lorentzian term, we also need the
following identities:

~K � ∫
Σ

d3x ~K
i

aE
a
i �

1
γ2

HE 1( ), V{ }, (18)

and
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~K
m

a � 1
2κ2γ3

Am
a , HE 1( ), V{ }{ }, (19)

where HE(1) is the Euclidean term and V denotes the volume
(Thiemann, 2007).

With these ingredients, the Hamiltonian constraint can be
written as

HADM � lim
μ→0

Hμ (20)

with

Hμ � −sgn p( )
κ5γ7μ3

εijkTr

h
μ( )

i h
μ( )

i( )−1, V{ }h μ( )
j h

μ( )
j( )−1, V{ } h

μ( )
k( )−1, V{ }( ).

(21)

The action of this operator on a quantum state Ψ(v, ϕ) is
already known in the literature (Yang et al., 2009). The result is a
difference equation. Hence, the final result is

ĤADMΨ v, ϕ( ) � g+ v( )Ψ v + 8, ϕ( ) + g0 v( )Ψ v, ϕ( )
+ g− v( )Ψ v − 8, ϕ( ), (22)

where

g+ v( ) � −
	
6

√
28 × 33

γ3/2

κ3/2Z1/2

1
L

Mv 1, 5( )f+ v + 1( ) −Mv −1, 3( )f+ v − 1( )[ ]
× v + 4( )Mv 3, 5( ) × Mv 5, 9( )f+ v + 5( ) −Mv 3, 7( )f+ v + 3( )[ ],
g− v( ) � −

	
6

√
28 × 33

γ3/2

κ3/2Z1/2
1
L

Mv 1,−3( )f− v + 1( )[
−Mv −1,−5( )f− v − 1( )] × v − 4( )Mv −5,−3( )
× Mv −3,−7( )f− v − 3( ) −Mv −5,−9( )f− v − 5( )[ ],

go v( ) � −
	
6

√
28 × 33

γ3/2

κ3/2Z1/2
1
L

Mv 1, 5( )f+ v + 1( ) −Mv −1, 3( )f+ v − 1( )[ ]
× v + 4( )Mv 3, 5( )
× Mv 5, 1( )f− v + 5( ) −Mv 3,−1( )f− v + 3( )[ ]
+ Mv 1,−3( )f− v + 1( ) −Mv −1,−5( )f− v − 1( )[ ]
× v − 4( )Mv −5,−3( )
× Mv −3, 1( )f+ v − 3( ) −Mv −5,−1( )f+ v − 5( )[ ],

(23)

where

Mv a, b( ) ≔|v + a| − |v + b|. (24)

Thus, the Hamiltonian constraint (Eq. 21) has been
successfully quantized in the cosmological setting.
The resulting Hamiltonian constraint equation of LQC turns
out to be

ĤADM +
	
3

√
p̂2
φ

Δ( )32 v̂| |−1⎛⎝ ⎞⎠Ψ ϕ, v( ) � 0. (25)
.

Note that in the quantum theory, the whole Hilbert space
consists of a direct product of two parts as
Htotal

kin � Hgr
kin ⊗ Hmatter

kin . Then the action of the matter field on
a quantum state Ψ(v, ϕ) ∈ Htotal

kin reads	
3

√
p̂2
φ

Δ( )32 v̂| |−1Ψ v, ϕ( ) � −
	
3

√

Δ( )32Z
2B v( ) z

2Ψ v,ϕ( )
zϕ2 . (26)

where |̂v|−1Ψ(v, ϕ) � B(v)Ψ(v, ϕ), and the detailed expression of
B(v) can be found in the study by Ashtekar et al. (2006b).

4 EFFECTIVE HAMILTONIAN OF LQC

Now, we come to study the effective theory of this new LQC since
we also want to know the effect of matter fields on the dynamic
evolution. Hence, we include a scalar matter field φ into LQC.
Note that the cosmological expectation value for the Lorentzian
term has already been obtained in the literature as (Yang et al.,
2009; Dapor and Liegener, 2018)

〈ĤL〉 � 3β
4γ2κΔsin

2 2b( ). (27)

Then the effective total Hamiltonian constraint (Eq. 15) reads

HF � 〈ĤG〉 � − 3β
γ2 κΔ|v|sin

2 b 1 − sin2 b( )( ) + β|v|ρ, (28)

where β � κZγ
	
Δ

√
4 .

5 EFFECTIVE EQUATIONS AND THE
QUANTUM BOUNCE

Now, we discuss the effective dynamics. By employing the
effective Hamiltonian (Eq. 28), the equation of motion for v reads

_v � v,HF{ } � 6
Zγ2 κΔ|v| sin 2b( ) 1 − 2 sin2 b( )( ). (29)

Note the bounce takes place at the minimum of volume v, and
therefore happened at the point of sin2(b) � 1

2.
So, the density can be expressed as

ρ � 3
γ2 κΔsin

2 b 1 − sin2 b( )( )≤ 3
4γ2 κΔ � 1

4
ρc � ρcL, (30)

where ρc � 3
γ2κΔ is the critical matter density in the standard LQC.

By using the expression of _v, the modified Friedman equation can
be obtained.

H2 � _v

3v
( )2 � 8πG

3
ρ 1 − ρ

ρcL
( ). (31)

Now, in order to calculate the evolution of the physical
quantity such as matter density and volume of the Universe,
we first introduce x � sin2(b). Consider (x′)2 with prime be a
derivative with respect to ϕ. From the definition of x, we have
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x′( )2 � 2 sin b( )cos b( )b′( )2 � 4x 1 − x( )b′2, (32)

and

b′ � db

dt

dt

dϕ
� b,HF{ } V

pϕ
� − 												12πGx 1 − x( )√

. (33)

Plugging the above expression into Eq. 32, we find the
equation

x′ � 2
					
12πG

√
x 1 − x( ). (34)

Solution to this equation reads

x � 1

1 + e−2
			
12πG

√
ϕ

(35)

and hence from Eq. 30

ρ ϕ( ) � 3
κγ2Δ

1

4 cosh2
					
12πG

√
ϕ( ), (36)

so the volume is

V ϕ( ) � pϕ		
2ρ
√ �

										
16πGγ2Δp2

ϕ

3

√
cosh
					
12πG

√
ϕ( ). (37)

The plot of V(ϕ) and ϕ can be found in Figure 1. Now let us
study the asymptotic behavior of the above LQC model in the
classical region, namely, the large v region. For v → ∞ limit, the
matter density ρ in Eq. 30 goes to zero, which leads to

b → 0 or b → arcsin 1( ) � π

2
(38)

in situation b10, and the asymptotic Hamiltonian constraint
reads

HF � − 3β
γ2 κΔ|v|b

2 + β|v|ρ. (39)

while b1π
4, and the asymptotic Hamiltonian constraint

approaches to

HF � − 3β
γ2κΔ|v| b − π

2
( )2( ) + β|v|ρ. (40)

Then the resulted Friedman equations read

H2 � κ

3
ρ, b → 0( ) (41)

H2 � κ

3
ρ, b → π

2
( ) (42)

which is also a symmetric bounce.

6 CONCLUDING REMARKS

To summarize, the loop quantum cosmological model which
consists of the purely Lorentzian term is studied in this article.We
consider the spatially flat homogeneous FRW model. It turns out
that the modified Friedmann equation keeps the same form as the
APS LQC model. However, the critical matter density for the
bounce point is only a quarter of the previous APS model, that is,
ρcL � ρc

4 . This is interesting because from Eq. 31, we can see that
the strength of quantum gravity becomes significant when ρ

ρcL
∼ 1,

since ρcL < ρc, in this sense, the lower critical bounce density
means the quantum gravity effects will get involved earlier
than the previous LQC model. Besides, the lower critical
density also means the detection of quantum gravity effects
is easier than the previous model. It should be note that in this
article, we only consider the cosmological implication of LQC
from ADM Hamiltonian which only contains the purely
Lorentzian term. However, since the Lorentzian term and
the Euclidean term lead to different results at the quantum
mechanical level, one can also naturally consider the mixture
of these two terms. This of course possible; Assanioussi et al.
(2018); Assanioussi et al. (2019); Zhang et al. (2021) show that
when we consider the Lorentzian term and the Euclidean term
appearing in the Hamiltonian constraint simultaneously, an
effective cosmological constant could emerge at the large
volume limit.

It should be noted that there are many aspects of the new LQC
which deserve further investigating. For example, it is still
desirable to the perturbation theory of the new LQC; in this
case, the spatial curvature will not be zero. And thus could be
inherent more features from the full theory of LQG. Moreover,
Yang et al. (2019) adapt an alternative regularization procedure
via the Chern–Simons theory which is quite different from the
usual regularization method in LQG, and the resulting
cosmological evolution is different from the APS LQC model.
Hence, it is also interesting to study this regularization under our
framework of new LQC. We leave all these interesting topics for
future study.
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FIGURE 1 | V/Δ as a function of ϕ. The γ � 0.237 5 and 8πG � 1 are
adapted in the calculation.
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