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Scalar–tensor theories allow for a rich spectrum of quasinormal modes of

neutron stars. The presence of the scalar field allows for polar monopole and

dipole radiation, as well as for additional higher multipole modes led by the

scalar field. Herein, we present one family of themodeswhich are dominated by

the scalar fields, the scalar-led ϕ-modes computed numerically with a shooting

method, for the lowest multipoles, that is, l = 0, 1, and 2 for a massless

scalar–tensor theory of the Brans–Dicke type, motivated by the R2 theory,

and compare with those of a minimally coupled scalar field in general relativity.

We consider a set of six realistic equations of state and extract universal relations

for the modes.

KEYWORDS

neutron stars, gravitational waves, quasinormalmodes, scalar–tensor theory, equation
of state, universal relations

1 Introduction

Currently, astrophysical observations are being well described by Einstein’s general

relativity not only in the Solar System but also in the realm of strong gravity, where

neutron stars and black holes reside (Will, 2018). Still, the quest for a more fundamental

theory of gravity compatible with quantum mechanics and the enigmatic presence of the

dark sector in cosmology are motivating studies of alternative theories of gravity

(Saridakis et al., 2021). Compact objects such as black holes and neutron stars then

constitute excellent astrophysical laboratories to provide constraints on such alternative

theories of gravity (Faraoni and Capozziello, 2010; Berti et al., 2015; Saridakis et al., 2021;

Arun et al., 2022).

With the advent of gravitational wave observations, here, a new window to the

Universe was opened (Abbott, 2016; Abbott, 2017; Abbott et al., 2017; Abbott et al., 2020;

Abbott, 2021). In particular, in connection with multi-messenger astronomy, new insights

into the properties of neutron stars have been gained. Like the collision of black holes, the

collision of neutron stars is governed by three phases: inspiral, merger, and ringdown. The

gravitational radiation emitted during the ringdown is associated with the quasinormal

modes of the newly created compact object (Andersson and Kokkotas, 1996; Andersson

and Kokkotas, 1998; Kokkotas and Schmidt, 1999). Therefore, investigation of the

spectrum of quasinormal modes of black holes and neutron stars represents an

important step for our understanding.
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For neutron stars, a crucial open question is the composition

of their inner core. Herein, numerous equations of state have

been put forward since experiments on Earth cannot reach the

extreme conditions of matter present in the interior of these stars

(Lattimer, 2021). Although observations of high-mass pulsars

have put strong constraints on the maximum mass of a neutron

star obtained by a given equation of state (Demorest et al., 2010;

Antoniadis et al., 2013; Cromartie, 2019), additional constraints

are due to the observation and analysis of merger events (Abbott

et al., 2017).

Although current gravitational wave observations do not yet

constrain the quasinormal modes of neutron stars, future

gravitational wave observatories should be sufficiently sensitive to

do so in combination with further observations of neutron star

properties (Berti et al., 2015). However, another all-important

property of neutron stars will be introduced here, namely, their

universal relations (Yagi and Yunes, 2017; Doneva and Pappas,

2018). Such universal relations represent relations between properly

scaled neutron star properties that show a large degree of

independence of the equation of state. They exist not only for

intrinsic neutron star properties like their moment of inertia,

quadrupole moment, or Love number but also for their

quasinormal modes, where they were noticed early on

(Andersson and Kokkotas, 1996; Andersson and Kokkotas, 1998;

Benhar et al., 1999). By now, many studies of universal relations of

quasinormal modes of the neutron stars in general relativity have

been carried out (Andersson and Kokkotas, 1996; Andersson and

Kokkotas, 1998; Benhar et al., 1999; Benhar et al., 2004; Tsui and

Leung, 2005; Lau et al., 2010; Blazquez-Salcedo et al., 2013; Blázquez-

Salcedo et al., 2014; Chirenti et al., 2015; Lioutas et al., 2021; Sotani,

2021; Sotani and Kumar, 2021; Zhao and Lattimer, 2022).

The universal relations for quasinormal modes of neutron stars

are not only of relevance with respect to our current lack of

knowledge of the proper equation of state but are also valuable

to learn about alternative theories of gravity whenever these relations

differ distinctly from those of general relativity (Berti et al., 2015;

Doneva and Pappas, 2018). Axial quasinormal modes and their

universal relations have already been considered for a variety of

alternative theories of gravity (Blázquez-Salcedo et al., 2016; Altaha

Motahar et al., 2018; Blázquez-Salcedo and Eickhoff, 2018; Blázquez-

Salcedo et al., 2018; Altaha Motahar et al., 2019; Blázquez-Salcedo

et al., 2019). Axialmodes do not involve perturbations of the neutron

star fluid and neither of the scalar field when, for instance,

scalar–tensor theories of gravity are considered (Brans and Dicke,

1961; Damour and Esposito-Farese, 1992; Fujii and Maeda, 2007).

They are pure gravitational modes.

Polar quasinormal modes, on the other hand, involve besides the

metric also the fluid and the scalar field, when present. Therefore,

early studies of polar modes in such alternative gravity theories have

used the Cowling approximation, where only fluid perturbations are

taken into account (Sotani and Kokkotas, 2004; Staykov et al., 2015).

However, by now also the full set of perturbations has been

considered when determining polar quasinormal modes of several

alternative theories of gravity with a scalar degree of freedom (Sotani,

2014; Mendes and Ortiz, 2018; Blázquez-Salcedo et al., 2020;

Blázquez-Salcedo et al., 2021; Dima et al., 2021; Krüger and

Doneva, 2021; Blázquez-Salcedo et al., 2022a; Blázquez-Salcedo

et al., 2022b).

Recently, we have determined polar modes for a family of

quadratic gravity theories where the Einstein–Hilbert action is

supplemented by an R2 term. This type of action represents an

interesting class of f(R) theories (De Felice and Tsujikawa,

2010; Sotiriou and Faraoni, 2010; Capozziello and De Laurentis,

2011). Transformation yields a Brans–Dicke-type scalar–tensor

theory with a particular coupling function and potential for the

scalar field, where the coupling constant of the R2 theory

determines the mass of the scalar field (Staykov et al., 2014;

Yazadjiev et al., 2014). In the limit of infinite scalar mass, general

relativity with a minimally coupled scalar field is recovered,

whereas in the limit of vanishing scalar mass, a massless

Brans–Dicke-type scalar–tensor theory is obtained. To

summarize, this theory extends GR to include a scalar field

with a kinetic term, a potential, and a coupling to the matter fluid.

Although we have previously determined polar quasinormal

modes of neutron stars for this family of alternative gravity

theories with finite values of the scalar mass (Blázquez-Salcedo

et al., 2020; Blázquez-Salcedo et al., 2021; Blázquez-Salcedo et al.,

2022a; Blázquez-Salcedo et al., 2022b), we here focus on these

two limiting cases and construct their scalar-led modes, that is,

their ϕ-modes. ϕ-modes are present in the radial (l = 0) and

dipole (l = 1) cases besides the previously studied fluid F- and

pressure Hn-modes. They also arise in the quadrupole (l = 2) case

(as well as for l > 2), where the fundamental fluid f mode has

previously been investigated. We then determine the universal

relations for these ϕ-modes and compare them to general

relativity. In contrast to our previous work, the scalar field is

massless in this study, and universal relations for the ϕ-modes of

neutron stars are investigated for the first time ever.

The article is structured as follows: in Section 2, we present the

theoretical setting, the massless Brans–Dicke-type scalar–tensor

theory, the equations for the background neutron star solution,

and the metric, fluid, and scalar perturbations. Subsequently, we

present our results on the ϕ-modes and their universal relations

and the quadrupole modes in Section 3, the dipole modes in

Section 4, and the radial modes in Section 5. We conclude in

Section 6. In the appendices (Supplementary material), we present

tables for the universal relations.

2 Theoretical setting

2.1 Massless Brans–Dicke-type
scalar–tensor theory

We here consider neutron stars that are governed in the

Einstein frame by the action (G = c = 1):

Frontiers in Astronomy and Space Sciences frontiersin.org02

Blázquez-Salcedo et al. 10.3389/fspas.2022.1005108

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005108


S gμ], ϕ[ ] � 1
16π

∫ d4x
���−g√ R − 2zμϕ z

μϕ + LM A2 ϕ( )gμ], χ( )( ) ,

(1)
whereR is the curvature scalar and ϕ denotes the massless scalar

field. We used the Brans–Dicke coupling function

A ϕ( ) � e−
1�
3

√ ϕ (2)

in the matter action LM. This action is obtained in the massless

limit of the R2 theory, when transformed to a scalar–tensor

theory in the Einstein frame, and in general features the potential

term (Staykov et al., 2014; Yazadjiev et al., 2014) as follows:

V � 3m2
ϕ

2
1 − e−

2ϕ�
3

√( )2

. (3)

The presently considered massless theory and general

relativity represent limiting cases for this type of theory. To

realize the relation between R2 gravity and scalar field, we recall

the equivalent Jordan frame action:

S gp
μ][ ] � 1

16π
∫ d4x

����−gp
√ Rp + aRp2 + LM gp

μ], χ( )( ) , (4)

with a positive constant a controlling the deviation from GR,

which can be re-written into

S gp
μ],ψ[ ] � 1

16π
∫ d4x

����−gp
√

ψRp − U ψ( ) + LM gp
μ], χ( )( ) , (5)

with potential

U ψ( ) � Rpψ − f Rp( ) � 1
4a

ψ − 1( )2 (6)

and scalar field

ψ � df

dRp . (7)

The Jordan and Einstein frame fields are related by the

following:

gp
μ] � A2gμ] , Rp � A−2R − 6A−3∇μ zμA( ) , (8)

where A−2 � ψ � e
2�
3

√ ϕ.

Variation of the action (Eq. 1) leads to the following Einstein

equations:

Gμ] � T S( )
μ] + 8πT M( )

μ] , (9)

with the Einstein tensor Gμ] � Rμ] − 1
2Rgμ], the stress–energy

tensor for the scalar field

T S( )
μ] � 2zμϕz]ϕ − gμ]z

σϕzσϕ, (10)

and stress–energy tensor for the neutron star matter

T M( )
μ] � ρ + p( )uμu] + pgμ] , (11)

with pressure p and density ρ defined in terms of the physical

pressure p̂ and physical density ρ̂ via the coupling function A,

p � A4p̂ , ρ � A4ρ̂ , (12)
and with the equation of state p̂(ρ̂). Variation of the action with

respect to the scalar field leads to the following scalar field

equation:

∇μ∇
μϕ � −4π 1

A

dA

dϕ
T M( ) . (13)

2.2 Neutron star properties

For the background metric of the neutron star, we used a

static and spherically symmetric line element.

ds2 � g 0( )
μ] dx

μdx] � −e2] r( )dt2 + e2λ r( )dr2 + r2 dθ2 + sin2 θ dφ2( ) .
(14)

Accordingly, the scalar field and the pressure and the energy

density of the fluid are parameterized by

ϕ � ϕ0 r( ) , p̂ � p̂0 r( ) , ρ̂ � ρ̂0 r( ) , (15)
while the fluid four-velocity is given by

u 0( ) � −e]dt . (16)

The superscript (0) and subscript (0) will always be used to

indicate the background quantities.

Insertion of the ansatz into the set of field equations leads to

the following set of background equations inside the star:

1
r2

d

dr
r 1 − e−2λ( )[ ] � 8πA4

0ρ̂0 + e−2λ
dϕ0

dr
( )2

, (17)

2
r
e−2λ

d]
dr

− 1
r2

1 − e−2λ( ) � 8πA4
0p̂0 + e−2λ

dϕ0

dr
( )2

V0 , (18)

dp̂0

dr
� − ρ̂0 + p̂0( ) d]

dr
+ 1
A0

dA0

dϕ0

dϕ0

dr
( ) , (19)

d2ϕ0

dr2
+ d]

dr
− dλ

dr
+ 2
r

( ) dϕ0

dr
� 4π

1
A0

dA0

dϕ0

A4
0 ρ̂0 − 3p̂0( )e2λ , (20)

where A0 = A(ϕ0).

In order to obtain the moment of inertia in the first-order

perturbation theory for slow rotation, we now introduce the

angular velocity of the star Ω, which enters the line element via

the inertial dragging ω(r) =Ω − w(r) (Hartle, 1967; Sotani, 2012),

ds2 � −e2] r( )dt2 + e2λ r( )dr2 + r2 dθ2 + sin2 θ dφ2( )
−2 Ω − w( )r2 sin2 θ dt dφ .

(21)

The fluid four-velocity changes to

u � −e] dt + r2 sin2 θwdφ( ) , (22)
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while the pressure and the energy density do not change to the

lowest order. The resulting equation for w is then

e]−λ

r4
d

dr
e− ]+λ( )r4

dw

dr
[ ] � 16πA4

0 ρ̂0 + p̂0( )w. (23)

From the asymptotic behavior of the metric functions, the

massM and the angular momentum J of the star are obtained as

follows:

e2] � e−2λ ~ 1 − 2M/r , (24)

w ~
2J
r3

, (25)

and the moment of inertia is given by I = J/Ω. The massless scalar

field is long ranged

ϕ0 ~
1
r
. (26)

We require the star to be regular at the center, and thus, it

possesses the following finite central values of the pressure, the

density, and the scalar field:

] 0( ) � ]c , λ 0( ) � 0 , ϕ0 0( ) � ϕc , (27)
p̂ 0( ) � p̂c , ρ̂ 0( ) � ρ̂c , (28)

w 0( ) � 0 . (29)

The boundary of the star r = R is determined by the condition

of vanishing pressure p̂(R) � 0.

2.3 Polar perturbations

Dominated by the scalar field, the ϕ-modes are polar

perturbations. To study such ϕ-modes, we therefore briefly

recall the polar perturbations for neutron stars in

scalar–tensor theories. (For further details on the derivation,

see Regge and Wheeler, 1957; Thorne and Campolattaro, 1967;

Price and Thorne, 1969; Thorne, 1969; Campolattoro and

Thorne, 1970; Zerilli, 1970; Thorne, 1980; Detweiler and

Lindblom, 1985; Chandrasekhar and Ferrari, 1991a;

Chandrasekhar et al., 1991; Chandrasekhar and Ferrari, 1991b;

Ipser and Price, 1991; Kojima, 1992).

The static and spherically symmetric solutions constitute the

zeroth-order background functions. We now introduce the

perturbation parameter ϵ ≪ 1, in order to keep track of the

order of the perturbations, when we perturb the background

metric, the neutron star fluid, and the scalar field. The general set

of perturbations reads

gμ] � g 0( )
μ] r( ) + ϵhμ] t, r, θ,φ( ) , (30)

p � p0 r( ) + ϵδp t, r, θ,φ( ) , (31)
ρ � ρ0 r( ) + ϵδρ t, r, θ,φ( ) , (32)

uμ � u 0( )
μ r( ) + ϵδuμ t, r, θ,φ( ) , (33)

ϕ � ϕ0 r( ) + ϵδϕ t, r, θ,φ( ) . (34)

Focusing now on polar perturbations, the metric

perturbations are specified as

h polar( )
μ] � ∑

l,m

∫
rle2]H0Ylm −iωrl+1H1Ylm 0 0

−iωrl+1H1Ylm rle2λH2Ylm 0 0
0 0 rl+2KYlm 0
0 0 0 rl+2 sin2 θKYlm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦e−iωtdω ,

(35)

with the spherical harmonics Ylm, where l and m denote the

multipolar indices (and m will be set to zero in accordance with

the spherically symmetric background). The fluid perturbations

read

δp � ∑
l,m

∫ rlΠ1Ylme
−iωtdω , δρ � ∑

l,m

∫ rlE1Ylme
−iωtdω ,

(36)

δuμ � ∑
l,m

∫
1
2
rle]H0Ylm

rliωe−] eλW/r − rH1( )Ylm

−iωrle−]VzθYlm

−iωrle−]VzφYlm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e−iωtdω , (37)

and the perturbation of the scalar field is given by

δϕ � ∑
l,m

∫ rlϕ1 Ylme
−iωtdω . (38)

The perturbations have been decomposed not only with

respect to the scalar, vector, and tensor spherical harmonics

but also with respect to the complex frequency ω = ωR + iωI.

Herein, the real part ωR corresponds to the characteristic

frequency of the quasinormal modes, and the imaginary part

ωI represents their decay rate. Outside the star, the perturbations

simplify substantially since the fluid is confined to the star, that is,

Π1 = E1 = 0.

Substitution of this ansatz into the general set of field

equations leads to a set of ordinary differential equations to

be solved subject to adequate boundary conditions (Blázquez-

Salcedo et al., 2020; Blázquez-Salcedo et al., 2021; Blázquez-

Salcedo et al., 2022a). In particular, to obtain the quasinormal

modes, we follow the same procedure as before (Blázquez-

Salcedo et al., 2020; Blázquez-Salcedo et al., 2021; Blázquez-

Salcedo et al., 2022a). For r → ∞, we impose outgoing wave

conditions, and for the center r = 0 and the surface r = R of the

star, we assume that the perturbation functions are regular. These

physically motivated conditions then yield the necessary set of

boundary conditions for the perturbation functions that are

implemented in the numerical procedure (see (Blázquez-

Salcedo et al., 2019), for more details on the used numerical

method).

In the following, we will discuss the results of our calculations

and analysis of the l = 0 (radial or monopole) ϕ-modes, the l = 1
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(dipole) ϕ-modes, and the l = 2 (quadrupole) ϕ-modes for a set of

six realistic equations of state describing

• plain nuclear matter: SLy (Douchin and Haensel, 2001)

and APR4 (Akmal et al., 1998),

• a nucleon–hyperon fluid: GNH3 (Glendenning, 1985) and

H4 (Lackey et al., 2006), and

• hybrid nuclear–quark matter: ALF2 (Alford et al., 2005)

and WSPHS3 (Weissenborn et al., 2011).

As the matter in the star is not completely known, we consider

the previous competing equations of state with different proposals of

matter compositions that all satisfy the current observational

constraints. Expressions for the fits of the equations of state can

be obtained from the study by Read et al. (2009).

3 Quadrupole ϕ-modes

3.1 Spectrum

Figure 1 presents the quadrupole ϕ-modes for the six selected

equations of state. On the left, the frequency ωR is shown in kHz

versus the neutron star mass M in M⊙, and on the right, the

damping time is shown in milliseconds versus M in M⊙. In each

subfigure, the left panels show the modes for the nuclear matter

equations of state, APR4 and SLy, the middle panels for the

nucleon–hyperon fluids, H4 and GNH3, and the right panels for

the hybrid nuclear–quark matter, ALF2 and WSPHS3. The red

curves exhibit the modes for the massless Brans–Dicke-type

scalar–tensor theory, while the black curves represent the

modes for general relativity with a minimally coupled

massless scalar field.

In this massless scalar–tensor theory, the frequency is always

around 200 Hz or slightly below, whereas in the general relativistic

case, the frequency is typically much larger, often by up to a factor

of three. Also, the frequency increases toward the maximum mass

in general relativity, while it mostly decreases in the scalar–tensor

case. The damping time is very close in both theories for small

neutron star masses, with deviations getting larger toward the

maximum neutron star mass. However, the damping time rises

with increasing mass for both theories, and this increase becomes

slower in the scalar–tensor case. Overall, the damping time is

mostly in the range of 0.3–0.4 ms for both theories. It should be

noted that these are not the only ϕ-modes in the spectrum of

quadrupolar perturbations; many other modes can be found, but

these are the ones for which the damping times are larger.

3.2 Universal relations for the quadrupole
ϕ-modes

We now turn to the universal relations for these quadrupole

ϕ-modes. To this end, we consider dimensionless quantities (in

geometric units) that are formed from the frequency ωR and the

damping time τ. In the simplest case, these dimensionless

quantities are formed with the mass of the star M or the

radius of the star R, but they can also involve the radius of

gyration R̂ � ����
I/M

√
, the reference frequencies ωo �

����
3Mc2
4R3

√
�

c
M

���
3
4C

3
√

with the compactness C = M/R, or ω̂o �
����
3Mc2

4R̂
3

√
�

c
M

���
3
4η

3
√

with the generalized compactness η � M/R̂ � �����
M3/I

√
.

We then consider these quantities as functions of the

compactness C and the generalized compactness η. When the

dimensionless modes lie to a good approximation on a single

curve for the full set of equations of state, a universal relation is

FIGURE 1
Frequency ωR in kHz (A) and damping time τ in milliseconds (B) versus the neutron star massM inM⊙ for the quadrupole ϕ-mode. The six panels
represent six equations of state, and the color red indicates the massless case, with the general relativistic case in black.
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obtained representing the best fit. We studied a large set of

combinations of dimensionless quantities and present in the

following a set of interesting examples for the universal relations

for the quadrupole ϕ-modes. Herein, for the quadrupole ϕ-

modes and also later for the dipole and radial ϕ-modes, we

used a fourth-order polynomial as the fit function.

We exhibit in Figure 2 a simple set of universal relations for

the frequency ωR of the modes. The upper panel of the left figure

exhibits the dimensionless frequency MωR/c versus the

compactness C = M/R of the star. The symbols identify the

respective equation of state, while the colors green and black

show the results for the massless scalar–tensor theory and general

relativity, respectively. For both theories, rather linear universal

relations for the frequency are obtained that lie far apart and thus

are quite distinct. The lower panel of the figure shows the

deviations from the best fit for all of the modes. As already

clear from the upper figure, these universal relations are very

good, exhibiting a mean error of 0.1% for general relativity and

0.5% for the massless scalar–tensor theory.

The right figure in Figure 2 uses the radius R instead of the

mass for the scaling of the frequency. Thus, it shows in the upper

panel the dimensionless frequency RωR/c but now versus

generalized compactness η, which yields slightly better

universal relations (with mean errors of 0.1% and 0.4% for

general relativity and massless scalar–tensor theory,

respectively) than the ordinary compactness C (with respective

mean errors of 0.1% and 0.5%). Again, the relations are almost

linear, well separated, and very good.

Figure 3 shows the corresponding results for the damping

time. Thus, the left figure exhibits the universal relations for the

dimensionless inverse damping time M/(cτ) versus the

compactness C = M/R, while the right figure presents the

universal relations for the dimensionless inverse damping time

R/(cτ) versus the generalized compactness η. We note that these

universal relations for the damping time are not as good as those

for the frequency, as seen in the lower panels, where again the

deviations from the best fits are shown. Interestingly, they are

now better for the massless scalar–tensor case than for general

relativity. However, both theories lead to rather close relations at

least in certain ranges of the (effective) compactness, thus making

these relations less useful to distinguish between the theories.

Among the numerous combinations of scaled frequencies

and damping times tested, with mean errors displayed in the

tables in the Appendix A in the Supplementary material, we here

show another set of very good relations that are found. Figure 4

exhibits on the left the universal relations for the dimensionless

frequency ωR/ωo versus the compactness C = M/R with mean

errors of 0.1% and 0.6% for general relativity and the massless

scalar–tensor theory, respectively. Herein, both relations display

a monotonic decrease with increasing C, and they differ by a

factor of 2–3, thus leading to good discernability of the theories.

For the dimensionless scaled damping time τωo shown in the

right figure versus the generalized compactness η, on the other

hand, both relations are mostly very close for general relativity

and the massless scalar–tensor theory. Thus, although very good

(with mean errors of 0.5% for both), they are not useful to

distinguish between the theories. Up until this point, the use of

solely the dimensionless frequency in the relations is able to

discriminate between theories better than that of solely the

dimensionless damping time in the relations.

The last set of universal relations selected here concerns

relations involving both the frequency and damping time. We

thus show in Figure 5 on the left the dimensionless inverse

damping timeM/(cτ) versus the dimensionless frequencyMωR/c

FIGURE 2
Quadrupole ϕ-mode universal relations: dimensionless frequency MωR/c versus compactness C = M/R (A) and fit errors (C); dimensionless
frequency RωR/c versus generalized compactness η (B) and fit errors (D). The symbols indicate the respective equation of state. The massless
scalar–tensor case is shown in green, and the general relativistic case is shown in black.
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and on the right, the dimensionless product ωRτ of the frequency

and the damping time versus the generalized compactness η. As

seen in the figures, the universal relations for general relativity

and massless scalar–tensor theory differ considerably as desired,

while their mean errors range from very good for the massless

scalar–tensor theory (0.6% mean error in the left figure and 0.3%

right figure) to average for general relativity (1.6% left and 1.0%

right).

4 Dipole ϕ-modes

4.1 Spectrum

We now turn to the dipole ϕ-modes of the neutron stars. We

exhibit these ϕ-modes for the chosen set of equations of state in

Figure 6, with frequency ωR in kHz versus the neutron star mass

in M⊙ on the left and the damping time in milliseconds on the

FIGURE 3
Quadrupole ϕ-mode universal relations: dimensionless inverse damping time M/(cτ) versus compactness C = M/R (A) and fit errors (C);
dimensionless inverse damping time R/(cτ) versus generalized compactness η (B) and fit errors (D). The symbols indicate the respective equation of
state. The massless scalar–tensor case is shown in green, and the general relativistic case is shown in black.

FIGURE 4
Quadrupole ϕ-mode universal relations: dimensionless frequency ωR/ωo versus compactness C = M/R (A) and fit errors (C); dimensionless
damping time τωo versus generalized compactness η (B) and fit errors (D). The symbols indicate the respective equation of state. The massless
scalar–tensor case is shown in green, and the general relativistic case is shown in black.
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right. The black curves present the results for general relativity

with a minimally coupled massless scalar field, and the red curves

show the results for the massless scalar–tensor theory. The

frequency of the dipole ϕ-modes is always below 300 Hz,

which is significantly lower than that for the dipole F-modes

obtained previously (Blázquez-Salcedo et al., 2022a). For the

dipole ϕ-modes, general relativity leads to larger frequencies than

the massless scalar–tensor theory. In general, the frequency tends

to increase for configurations close to the maximum mass. The

damping time τ is typically less than 2 milliseconds for the

general relativistic case, and the introduction of the massless

scalar–tensor theory has the overall effect of increasing the

damping time of the ϕ-mode. In general, the damping time

tends to decrease for configurations close to the maximum mass.

4.2 Universal relations for the dipole ϕ-
modes

We now address the universal relations for the dipole ϕ-

modes for the two considered theories, the massless scalar–tensor

theory and general relativity with a minimally coupled scalar

field. We proceed as for the quadrupole ϕ-mode discussed in the

previous section.

FIGURE 5
Quadrupole ϕ-mode universal relations: dimensionless inverse damping time M/(cτ) versus dimensionless frequency MωR/c (A) and fit errors
(C); dimensionless product ωRτ of frequency and damping time versus generalized compactness η (B) and fit errors (D). The symbols indicate the
respective equation of state. The massless scalar–tensor case is shown in green, and the general relativistic case is shown in black.

FIGURE 6
Frequency ωR in kHz (A) and damping time τ inmilliseconds (B) versus neutron starmassM inM⊙ for the dipole ϕ-mode. The six panels represent
six equations of state, and the color red indicates the massless case, with the general relativistic case in black.
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In Figure 7, we show the dimensionless frequency MωR/c

scaled with the neutron star massM versus the compactness C

on the left andMωR/c versus the generalized compactness η on

the right. The color green indicates the massless theory, and

the results for general relativity are shown in black. The lower

panels contain the associated fit errors as before. This simple

scaling with the mass works very well for the dimensionless

frequency MωR/c − compactness C relations, with low mean

errors of 0.4% and 0.3% for general relativity and the massless

theories, respectively. These relations are far better than the

relations involving generalized compactness with respective

mean errors of 1.8% and 1.6%. Moreover, in the case of

generalized compactness, the curves for the massless theory

and general relativity are very close.

Figure 8 represents the corresponding figure for the

damping time τ, that is, the dimensionless inverse

damping time M/cτ is shown versus the compactness C

(left) and generalized compactness η (right). The fit reveals

that the errors are larger for the damping time than for the

frequency, with mean errors of 1.0% and 1.1% in the case of

compactness and 1.8% and 1.6% in the case of generalized

compactness.

FIGURE 7
Dipole ϕ-mode universal relations: dimensionless frequency MωR/c (A,B) and fit errors (C,D) versus compactness C = M/R (A, C) and versus
generalized compactness η (B,D). The symbols indicate the respective equation of state, and the color green indicates the massless case, with the
general relativistic case in black.

FIGURE 8
Dipole ϕ-mode universal relations: dimensionless inverse damping timeM/(cτ) (A,B) and fit errors (C,D) versus compactness C =M/R (A,C) and
versus generalized compactness η (B,D). The symbols indicate the respective equation of state, and the color green indicates themassless case, with
the general relativistic case in black.
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Figures 9A, C show the universal relations for the

dimensionless frequency ωR/ωo versus the compactness C.

These relations are very good and also distinct, showing mean

errors of 0.4% for GR and 0.3% for the massless theory. Another

set of very good universal relations for the frequency ωR is shown

in Figures 9B, D, where the dimensionless RωR/c is considered as

a function of the compactness C. Again, the mean errors are very

small with 0.4% and 0.3% for general relativity and the massless

scalar-tensor theory, respectively.

When considering the damping time τ, the quality of the

universal relations decreases again. We exhibit in Figures 10A,

C the dimensionless damping time τωo versus the compactness

C. Scaling with ω̂0 results in a worse fit. In Figures 10B, D, the

dimensionless quantity R/(cτ) is shown versus the generalized

compactness η. For this dimensionless quantity, the

generalized compactness yields a better relationship than it

does against the compactness. The relations shown for τ are all

equally meaningful, with Figures 10B, D showing a slightly

better fit.

Further dimensionless quantities that have been tested are R/

(cCτ), R/(cC3τ), RωR/(cC), RωR/(cC
3), and ωRτ versus the

compactness and the generalized compactness. Those versus

FIGURE 9
Dipole ϕ-mode universal relations: dimensionless frequencies ωR/ωo (A) and RωR/c (B) and their fit errors (C,D) versus compactness C = M/R.
The symbols indicate the respective equation of state, and the color green indicates the massless case, with the general relativistic case in black.

FIGURE 10
Dipole ϕ-mode universal relations: dimensionless damping time τωo versus compactness C = M/R (A) and fit errors (C) and dimensionless
inverse damping time R/(cτ) versus generalized compactness η (B) and fit errors (D). The symbols indicate the respective equation of state, and the
color green indicates the massless case, with the general relativistic case in black.
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compactness always lead to improvement. Relations for the

dimensionless damping time M/(cτ) versus the dimensionless

frequency MωR/c have also been tested. In addition, we have also

examined the relations for R̂ωR/c and R̂/cτ with respect to the

generalized compactness η separately, but none of them provides

further improvements in the errors of the relations or in the

discernability between the theories. In fact, similar to what is

observed in Figure 8, when the proposed quantities are

considered versus the generalized compactness η, the splitting of

these relations with respect to the theories tends to diminish.

5 Radial ϕ-modes

5.1 Spectrum

We exhibit the sets of radial ϕ-modes for general relativity

and the massless scalar–tensor theory in Figure 11. The

frequency ωR of the modes is shown in the left figure and is

located mostly in the range of 100–200 Hz. The damping time τ

of the modes is on the order of 0.2–0.3 milliseconds, as seen in the

right figure. Although these are not the only scalar-led modes in

the spectrum of spherical perturbations, these are the modes with

the highest damping time and best numerical precision in the

shooting method we use.

For the less-massive neutron stars, the frequency and the

damping time are very similar for both theories but deviate

sizably toward the maximum mass of the stars, with the general

relativistic frequency being larger and the damping time being

smaller than their counterparts in the massless scalar–tensor

theory.

In Figure 12A we show the scaled frequency RωR/c and the

scaled inverse damping time R/(cτ) versus the compactness C for

the massless scalar–tensor theory. The figure highlights that the

scaled quantities are very close to each other for the different

equations of state, except in a region close to the respective

FIGURE 11
Frequency ωR in kHz (A) and damping time τ in milliseconds (B) versus the neutron star mass M in M⊙ for the radial ϕ-mode. The six panels
represent six equations of state, and the color red indicates the massless case, with the general relativistic case in black.

FIGURE 12
Scaled radial ϕ-modes for the massless scalar–tensor theory: dimensionless frequency RωR/c versus compactness C = M/R (A) and
dimensionless inverse damping time R/(cτ) versus compactness C (B). The colors indicate the different equations of state.
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maximum mass. At the maximum mass, the instability sets in,

found in the l = 0 sector of the theory, in the fundamental fluid

F-mode (Blázquez-Salcedo et al., 2020). This results in an

increased sensitivity of the l = 0 ϕ-modes with respect to the

properties of the equations of state and, thus, a splitting of the

associated curves close to the maximum mass.

Although the differences with respect to the mean values are

small, this splitting becomes clearly recognizable on the scales of

the figure. When evaluating the universal relations for these

cases, this splitting together with the decreased density of points

in this region leads to rather wiggly universal relations. To avoid

giving this region toomuch weight, we have, therefore, decided to

fit the universal relations only in the interval where there is a

good agreement between the curves, as well as a high density of

points, that is, before the splitting of the curves arises (aroundM/

R = 0.24), as highlighted in the figure. Meanwhile, for the general

relativistic case, we fitted the data over the entire range.

5.2 Universal relations for the radial ϕ-
modes

Analogously to the higher l-modes, we now address the

universal relations for the radial ϕ-modes. Figure 13 shows on

FIGURE 13
Radial ϕ-mode universal relations: dimensionless frequencyMωR/c versus compactness C =M/R (A) and fit errors (C); dimensionless frequency
RωR/c versus compactnessC (B) and fit errors (D). The symbols indicate the respective equation of state. Themassless scalar–tensor case is shown in
green, and the general relativistic case is shown in black.

FIGURE 14
Radial ϕ-mode universal relations: dimensionless inverse damping timeM/(cτ) versus compactnessC =M/R (A) and fit errors (C); dimensionless
inverse damping time R/(cτ) versus compactness C (B) and fit errors (D). The symbols indicate the respective equation of state. The massless
scalar–tensor case is shown in green, and the general relativistic case is shown in black.
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the left the universal relations for the dimensionless frequency

MωR/c versus the compactness C = M/R and on the right the

dimensionless frequency RωR/c versus the compactness C =

M/R. In both cases, the universal relations for general

relativity are excellent, yielding mean errors of only 0.04%.

The corresponding universal relations for the massless

scalar–tensor theory are by far not as good. Scaling with

the mass yields a mean error of 0.9%, and scaling with the

radius yields a mean error of 0.7% when we fit over the entire

range. A fit up to the compactness of C = 0.24 yields a mean

error of 0.03%, which is comparable to the GR case.

Similar universal relations for the damping time τ are shown in

Figure 14. Again, general relativity yields excellent relations withmean

errors of 0.02%. But here, the relations of the massless scalar–tensor

theory produce mean errors of 0.4%. Here as well, a fit up toM/R =

0.24 improves the universal relations of the massless case. The mean

errors become 0.01%, which is of the order of the errors in GR.

Figure 15 exhibits the dimensionless frequency ωR/ωo versus the

compactnessC=M/R on the left and the dimensionless damping time

τωo versus the compactnessC on the right. As before, general relativity

gives excellent universal relations. Similarly, a fit for the massless case

in the lower compactness range provides excellent universal relations,

FIGURE 15
Radial ϕ-mode universal relations: dimensionless frequency ωR/ωo versus compactness C = M/R (A) and fit errors (C); dimensionless damping
time τωo versus compactnessC (B) and fit errors (D). The symbols indicate the respective equation of state. Themassless scalar–tensor case is shown
in green, and the general relativistic case is shown in black.

FIGURE 16
Radial ϕ-mode universal relations: dimensionless inverse damping time M/(cτ) versus dimensionless frequency MωR/c (A) and fit errors (C);
dimensionless product ωRτ of frequency and damping time versus compactnessC (B) and fit errors (D). The symbols indicate the respective equation
of state. The massless scalar–tensor case is shown in green, and the general relativistic case is shown in black.
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but the discernability of the theories is not too good. When

considering the dimensionless inverse damping time M/(cτ) versus

the dimensionless frequency MωR/c, the universal relations for both

theories are almost identical except for the largermasses of the stars, as

seen in Figures 16A, C. This also holds for the dimensionless product

ωRτ of the frequency and the damping time versus the compactnessC,

shown in Figures 16B, D. As observed in all these cases, the universal

relations for general relativity are excellent, whereas the universal

relations for the massless scalar–tensor theory are less good, in

particular for the larger neutron star masses.

Thus, the quality of the universal relations in themassless theory

is comparable to theGR case only in the lower range of compactness.

6 Conclusion

The universal relations of neutron stars represent valuable

tools to test the viability of alternative gravity theories, as well as

in the future, to put bounds on them with high precision

gravitational wave observatories. Herein, we have studied a

particular set of such universal relations that arise in a

Brans–Dicke-type massless scalar–tensor theory and compared

them with their counterparts in general relativity. This type of

theory is obtained as a particular limit of an f(R) theory, where
general relativity provides the other limit, endowing the present

study with theoretical interest.

The presence of a scalar degree of freedom leads to a rich

spectrum of neutron stars. The scalar field allows for the emission of

monopole and dipole radiation of the stars, which would be

prohibited otherwise. Moreover, the now propagating fluid

monopole and dipole modes but also all higher multipole modes

are supplemented with a new set of quasinormal modes that are

dominated by the scalar field, dubbed ϕ-modes. It is these ϕ-modes

on which we have focused the present study, highlighting their

presence in the spectra and calculating their properties that may find

application in future observations of gravitational waves.

In order to be able to extract universal relations for the modes

and thus demonstrate (almost) independence of the equation of state

used, we have considered a set of six realistic equations of state,

covering different possible star compositions, namely, plain nuclear

matter, nucleon–hyperon fluids, and hybrid nuclear–quark matter.

We have then tested a large variety of ways of scaling the frequency

ωR and the damping time τ to obtain dimensionless quantities (in

geometric units) and considering these as functions of other

dimensionless variables such as the compactness or the

generalized compactness. A best fit to all the resulting points has

then yielded the sought-after respective universal relations, provided

the error is sufficiently small.

We have presented sets of universal relations for the quadrupole ϕ-

modes, the dipole ϕ-modes, and the radial ϕ-modes, both in themassless

scalar–tensor theory and in general relativity with a minimally coupled

scalar field. In all cases, we have found very good universal relations with

only small deviations from the best fits, but we have also obtained a

number of rather unconvincing relations with large errors. Interestingly,

the simple scaling with the mass works quite well for these ϕ-modes,

when they are considered versus the compactness. For the potential use of

such universal relations besides the required smallness of the errors, it is,

however, also relevant that the universal relations for different theories

differ sufficiently as to discern them.

Having now provided the ϕ-modes and their universal

relations for the limiting theories of general relativity and the

massless scalar–tensor theory, we should, as our next step,

calculate the ϕ-modes for finite values of the scalar field mass

and extract the corresponding universal relations, as previously

carried out for the fluid modes (Blázquez-Salcedo et al., 2020;

Blázquez-Salcedo et al., 2021; Blázquez-Salcedo et al., 2022a;

Blázquez-Salcedo et al., 2022b), and the current investigations

could serve as a guide in this endeavor. Moreover, the study of the

polar modes of neutron stars and their universal relations in

alternative theories of gravity has just begun, and numerous

interesting alternative gravities are waiting to be explored.
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