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Introduction

Difficulties associated with receiving telemetry from satellites severely limit the volume of

scientific data that can be downlinked to the ground. Currentmissions employ techniques such

as compressing and pruning datasets to reduce the data volume they transmit. While existing

mission designs are already restricted by limited telemetry budgets, future Heliophysics System

Observatorymissions will produce ever larger data volumes with higher resolution and cadence

observations from constellations of satellites spread throughout the heliosphere1. In addition,

heliophysics missions often produce data for the operational Space Weather community that

requires a low latency between observation and downlink. In light of current limitations, the

infrastructure to receiveNASA satellite telemetrymust be expanded andmodernized to support

the science needs of future data-rich heliophysics missions.

The current communications landscape

CommunicationswithNASA sciencemissions are primarily routed through theDeep Space

Network (DSN) (Fearey and Renzetti, 1969) and the Near Space Network (NSN) (Monaghan

andDunbar, 2021) using S, X, K, and Ka band radio transmissions. TheDSN, primarily used for

communicating with missions in or beyond lunar orbit, consists of three ground stations, each

with four or six large antennas, separated by~120° in longitude. TheNSN, used to communicate

with satellites near Earth from launch out to cis-Lunar orbits, encompases a number of ground

stations with smaller antennas over a wide range of longitudes and latitudes. The NSN also
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1 See for example the recently selected Medium-Class Explorer missions (Science Office for Mission
Assessments, 2022).
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includes the Tracking Data Relay Satellite constellation in

geosynchronous orbit, along with its two ground stations.

The different capabilities of these networks lead to unique

communication difficulties. A Low Earth Orbit satellite may only

have a line of sight connection to an NSN ground station once

per day for a 10 min pass, necessitating rapid data transfer. A

mission far from the Earth nearly always has a line of sight to at

least one DSN station when the Earth is in view, but must

compete with other satellites for downlink time2. These

communication restrictions limit the volume of data that can

be downlinked and delay when those data reach the ground.

It is this relative sparsity of downlink time, utilizing any network,

that causes science data to be pruned and compressed before they are

transmitted to the ground. Scientists must select for transmission only

the data that are most likely to satisfy their science goals. This slows

discovery by taking time and resources away fromscience investigations

and creating unintended biases towards preferred phenomena. To

further our understanding of underlying physics requires complete in

situ and remote sensing data sets to be delivered in larger volumes than

ever before. Additionally, to further our capability to predict space

weather impacts requires these data to be delivered with low latency.

Mission case studies

The Magnetospheric Multiscale (MMS) Mission (Burch et al.,

2016) measures the plasma, particle, and electromagnetic field

conditions throughout the Earth’s magnetosphere. Due to its

relatively close proximity to Earth, MMS communicates through

both NASA networks, but only downlinks data using the DSN. Over

the life of the mission, only about 4% of the high resolution burst

mode data has been downloaded, while the rest are deleted to make

room for new data. The selection of which data to downlink is often

performed by volunteers and takes valuable time that could be better

used studying those same data.

The Parker Solar Probe (PSP) (Fox et al., 2016) studies the young

solarwind and inner heliosphere in ahighly eccentric heliocentric orbit.

Because of its large distance from the Earth, PSP communicates with

Earth exclusively through the DSN. Telemetry contacts occur near

aphelion, outside of the prime observing windows and when PSP is at

maximum elongation from the Sun. Subsets of data are downlinked

and used to choose what full-resolution data will be transmitted. For

example, the SWEAP instrument onboard PSP records data at ~0.2 s

temporal resolution but only initially downlinks survey-mode data

with 7 s resolution. It is then up to operators to determine which high

resolution data to downlink. Due to the nature of PSP’s orbit, the

decisions about which burst-mode data to downlink from a months

long orbit must be made quickly, occasionally within only a few days.

One strategy used to avoid limitations with data retrieval was

the construction of a dedicated downlink station for the Solar

Dynamics Observatory (SDO) (Pesnell et al., 2012). This design

choice enables SDO to collect and downlink well over a terabyte

of compressed science data daily from its geosynchronous orbit.

The price for this capability was ~2.5% of the mission cost and

~5–10% of its annual operating budget. While this may not be

feasible for every heliophysics mission, it demonstrates the

possibility of designing missions with 100% science data

retrieval, even with extreme data volumes, at a modest expense.

Heliophysics and the DSN

While originally built to enable thePioneer lunarmissions andused

prominently to communicate with NASA planetary science satellites,

the DSN has been an important resource for NASA Heliophysics

missions since the 1974 launch of the Helios-1 mission (Goodwin,

1976). Today, a significant fraction of DSN time is allocated to

Heliophysics missions. Between 2010 and 2018, ~35% of the DSN

capacitywas used to communicatewithHeliophysicsmissions,with the

largest users being Voyagers 1 and 2 (~10% of all DSN time), STEREO

A and B (~6%) and SOHO (~6%). During this period, ~58% of

the DSN capacity was allocated to planetary science missions while the

remaining ~7% was split between astrophysics missions and other

occasional incidental contacts (Omo, 2018).

Accommodating the data requirements of future missions while

maintaining the strong science output from current missions will

require deliberate attention and support toward improving existing

data transfer capabilities (Giovannoni et al., 2021). In particular, as there

is an increasing need for heliophysics observatories tomove throughout

the heliosphere, e.g., PSP, Solar Orbiter (Müller et al., 2020), Vigil

(Pulkkinen, 2019), and future 4π-constellation observations of the solar
surface, they will increasingly rely on theDSN for their communication

needs. The heliophysics community should coordinate with otherDSN

users to support DSN operations and advocate for the necessary

upgrades to expand current downlink capabilities that would

accommodate future solar and heliospheric missions.

Heliophysics missions should also take advantage of every

opportunity to increase their data downlink capacity within the

existing DSN constraints. This could include designing satellites

with improved communication systems that use higher-power

transmitters and/or larger, higher gain antennas. Another option

without significant design changes is to utilize Ka-rather than X-band

communications (such as is done by PSP) where the factor of four

increase in frequency enables proportional increases in data rates.

State of the DSN

The DSN Aperture Enhancement Project proposed in 2009 is

nearing completion. This upgrade planned to add six new 34-m

receivers and 80 kW high power transmitters, combined with

2 In addition, as the distance to a spacecraft increases the downlink rate
decreases, increasing the time necessary to transmit the same data for
satellites at larger distances
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scheduled decommissioning, to yield an increased capacity of at

least 30% by 2025. This enhancement was designed with a budget

of $362.4 million (NASA Office of Inspector General Office of

Audits, 2015), less than the cost of two Medium-Class Explorer

missions.

However, this recent upgrade is not enough to meet the

current, let alone future deep space communication demands. In

a 2021 presentation to the planetary science decadal survey

steering committee Brad Arnold, manager of the DSN at the

Jet Propulsion Laboratory, warned that “we’re trying to add

capacity and more antennas, but we can’t keep up with the

demand that’s currently out there, so missions should expect to

be getting less availability.” (Foust, 2021) And this will get worse,

with oversubscription increasing from 20% today to 40% over the

next decade. He also noted that the upcoming return to theMoon

with the Artemis program is “the gorilla in the room” since

communication supporting human spaceflight rightly has

priority over uncrewed satellites. Additionally, a 2020 NASA

Office of Inspector General audit of NASA’s planetary science

portfolio concluded that “NASA has not adequately funded Deep

Space Network (DSN) repair, maintenance, and modernization

efforts.” (NASA Office of Inspector Gneral Office of Audits,

2020) But the DSN is not important only for the NASA Planetary

Science Division, the future success of the Heliophysics System

Observatory requires a fully-funded and expanded DSN.

Embracing new technologies

In the longer term, the DSN must accelerate its capacity

growth. Between 1980 and 2010 the DSN capacity increased by

about two orders of magnitude, driven largely by the adoption of

Ka-band communication and the development of techniques to

combine antennas into arrays. But the expectation is that

demand willl continue to grow by about an order of

magnitude per decade through 2065 (Leslie, 2016). Meeting

this exponential growth in demand without commensurate

costs will require technological innovation and coordination

with stakeholders, including the heliophysics science

community.

Future heliophysics missions should also explore alternate

communication modalities and technologies to increase data

return capacity. One way in which this could be accomplished

is through networked communications architectures, such as the

Mars Relay Network (Edwards, 2007) and the proposed LunaNet

(Israel et al., 2020), facilitating indirect ground communication.

This could enable heliophysics science from unique perspectives,

such as the L3 point behind the Sun from the Earth’s perspective,

and with improved reliability, latency, and bandwidth by

providing alternate data transmission pathways. These

missions should also explore novel technology to increase

bandwidths for data transmission. One promising example is

optical laser communications. This technology has successfully

been demonstrated numerous times for both up- and down-link

in near-Earth and cis-lunar environments and will fly in deep

space on the upcoming Psyche (Hart, 2018) mission, where it is

expected to provide 10 to 100 times increased bandwidth

(Leonard, 2017) over traditional radio communications.

Within the Heliophysics Systems Observatory, the SETH

(Shelton et al., 2019) mission to investigate energetic neutral

atoms in the solar wind that was funded for a 9 month concept

study in 2019 showed how Heliophysics missions can utilize a

commercially available 2U laser communication module to

enable 10 Mbps downlinks over distances greater than 0.1 AU.

Discussion

Every piece of data measured by a satellite has scientific value.

Expanding our ability to receive those data increases the scientific

output of missions at a marginal cost. To enable continuing and

expanding Heliophysics science, it is essential that NASA ensures the

accessibility of future science data returned fromHeliophysics System

Observatorymissions by advocating for and investing in theDSN and

embracing the communications technologies of the future.
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