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The grit crust is a recently discovered, novel type of biocrust made of

prokaryotic cyanobacteria, eukaryotic green algae, fungi, lichens and other

microbes that grow around and within granitoid stone pebbles of about 6 mm

diameter in the Coastal Range of the Atacama Desert, Chile. The microbial

community is very well adapted towards the extreme conditions of the Atacama

Desert, such as the highest irradiation of the planet, strong temperature

amplitudes and steep wet-dry cycles. It also has several other striking

features making this biocrust unique compared to biocrusts known from

other arid biomes on Earth. It has already been shown that the grit crust

mediates various bio-weathering activities in its natural habitat. These

activities prime soil for higher organisms in a way that can be envisioned as

a proxy for general processes shaping even extra-terrestrial landscapes. This

mini-review highlights the potential of the grit crust as a model for astrobiology

in terms of extra-terrestrial microbial colonization and biotechnological

applications that support human colonization of planets.
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Introduction

Terrestrial extremophile microorganisms have ever since

inspired hypotheses about life strategies in extra-terrestrial

environments, e.g., on Mars, and about their applications in

biotechnology-driven space activities. Such extremophiles

usually include several hetero- and chemoautotrophic bacteria,

archaea and fungi as well as photoautotrophic cyanobacteria and

eukaryotic algae (Liu et al., 2008; Beblo-Vranesevic et al., 2018;

Sundarasami et al., 2019; Coleine and Delgado-Baquerizo, 2022).

A specific aspect of extreme environments has frequently been

overlooked in this context: the symbiotic lifestyle, which is

perfectly exemplified by biological soil crusts (hereafter:

biocrusts). Moreover, the close coexistence and interacting of

the biocenosis in a confined space also supports the response to

sudden abiotic environmental fluctuations or changes and gives

the community overall better resilience through different

physiological use and response to change. These symbiotic

associations of microorganisms are mainly found in hot and

cold deserts across the globe, where they are often the main

biological component colonizing the soil’s surface (Weber et al.,

2022). Soil particles are aggregated through the presence and

activity of this often extremo-tolerant biota that desiccates

regularly. The resulting living crust mantels the ground’s

surface as a coherent layer. It was estimated that biocrusts

cover about 12% of the Earth’s terrestrial surface and about

30% of all dryland soils (Rodriguez-Caballero et al., 2018). In

these extreme environments, the microbial consortium regularly

faces long periods of desiccation, intense UV radiation, and

severe nutrient and resource limitations (Belnap et al., 2008;

Munzi et al., 2019).

To overcome environmental limitations biocrust organisms

have developed several strategies such as extracellular polymeric

substances (EPS) that help them to retain water (Mugnai et al.,

2018), UV-protecting pigments such as scytonemin (Miralles

et al., 2017) or specific compounds including sucrose and

trehalose (Xin et al., 2015; Baubin et al., 2021) that minimize

metabolic desiccation stress. Most of these strategies have not yet

been fully explored, and a plethora of novel genes and

metabolites is expected from biocrust-forming microorganisms

from extreme environments which can be used to obtain a wide

variety of products using biotechnological processes (Lakatos and

Strieht, 2017). Cyanobacteria and green algae are already optimal

candidates for present biotechnological application on Earth due

to low needs for maintenance (Schweiger et al., 2022). Therefore,

this micro-algal-based technology could also be part of

regenerative life support systems in space.

Beside such applications, biocrust-forming microorganisms

as early terrestrial microbial associations on Earth can also help

to address ancient humanity’s questions, such as whether we are

alone or how and where did life appear and evolve? This again

has to do with their extremo-tolerant character, and the early

time of their origins or their ability to interact with each other.

Cyanobacteria, for example, which evolved during the late

Archaean (Sánchez-Baracaldo and Cardona, 2020), can be

found in virtually any environment on Earth and in symbiosis

with fungi (Rikkinen, 2015) and plants (Chang et al., 2019).

These microorganisms evolved at a time where the atmospheric

composition of our planet and radiation income of the Sun were

different. The Archaean Earth was devoid of oxygen and

enriched by greenhouse gases (Hessler et al., 2004) including

an increased exposition to higher fluxes of UV-B (280–320 nm)

and UV-C (200–280 nm) radiation (Cockell, 2002). However,

cyanobacteria could not only cope with these conditions (Shih,

2015), they also supposedly led to the Great Oxygenation Event

during which they changed Earth’s atmosphere and became

ancestral to all other eukaryotic photosynthetic organisms

such as algae and plants (Sánchez-Baracaldo and Cardona,

2020). This implies that cyanobacteria (and other

microorganisms) resemble concepts of simple life forms that

have a high adaptation potential to extreme conditions. Thus, we

imagine that relatable life forms might be expected beyond Earth

even if the abiotic conditions differ. Whether they are alive or

extinct, they have and they still left their footprints on Earth, and

we can learn to interpret the pattern they left as biosignatures to

support the search for life on other planets at least in the Solar

System and particular on planets such as Mars. Cyanobacteria,

for example, are well known for their ability to form stromatolites

on shores and lakes ranging in height from millimeters to tens of

meters and extending laterally from small lenses to aggregates of

hundreds of kilometers wide as mineralized domes (Neilan et al.,

2002). If cyanobacteria alone leave such landscape-dominating

traces behind in aquatic environments over millennia, how

pronounced must then their traces be when they are an

integral part of biocrusts together with lichens, green algae

and other microorganisms that cover 12% of the Earth’s

terrestrial surface?

Recently, a novel type of biocrust was discovered in the

Atacama Desert, one of the world’s oldest and driest deserts,

covering most of its floor: the grit crust (Jung et al., 2020a). The

grit crust’s microbial community is unique amongst biocrusts

found in all other arid parts of the world because cyanobacteria,

eukaryotic green algae, lichens and specific fungi grow on, in, and

around small granitoid quartz pebbles called grits (locally called

“maicillo”) of about 6 mm in diameter. These structures can be

seen with naked eyes and cause a blackish, landscape filling

pattern, on the otherwise bare ground. The Atacama Desert is

extremely interesting in that sense as it resembles an

environment close to what is expected to be found on other

planetary bodies, such as Mars, in terms of bio-geochemistry,

nutrient composition or topological similarities - or at least

mimics particular characters (Navarro-González, et al., 2003;

Schmidt, et al., 2018). This can be explained by the unique

combination of its environmental extremes such as its long

lasting history of hyper-aridity, the highest UV radiation

levels on Earth, oxidizing soils and other factors that can be
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compared with the conditions present on Mars (Azua-Bustos

et al., 2022). For these reasons, an increasing number of

experiments spanning from testing technologies over to

experiments in the life sciences have been conducted at the

Atacama Desert (Sobron et al., 2012; Abarca et al., 2013;

Gunes-Lasnet et al., 2014; Schulze-Makuch et al., 2018). Thus,

studying the survival and microbial diversity of the grit crust of

the Atacama Desert during future studies will provide valuable

insights into understanding the evolution of life, the habitability

beyond Earth, and biotechnological applications of these

microorganisms that could support space exploration missions.

Currently, the research project “Grit Life” funded by the

German Research Foundation, aims to untangle the microbiota

of the grit crust based on metabarcoding data applied to a

recovery experiment over several years. This will not only give

detailed insights into the diversity of bacteria, eukaryotes, and

fungi but also tracks their re-colonization potential. The DNA-

based approach is accompanied by monitoring climate and

micro-climate data of the grit crust environment so that the

extremophile character of the microbiota can be determined. In

addition, fungi, eukaryotic green algae, and cyanobacteria of the

grit crust will successively be isolated and curated in the context

of a microbial archive in order to guarantee future investigations,

e.g., on the microbe’s biotechnological potential. As such, this

project is the first of its kind that will generate a microbial archive

of biocrusts where the extremophile properties of the

microorganisms are characterized, allowing for transfer into

biotechnological approaches. Exploiting this unique biocenosis

will be discussed in the following in terms of the search for life

beyond Earth based on novel potential fossilization structures

known from the grit crust (Figure 1), and the utilization of the

biocenosis’ microorganisms for biotechnological approaches in

space (Figure 2).

Suitability of the grit crust’s ecology
for the colonization of other planets

The grit crust covers a roughly 40 km broad strip, 2.5 km off

the Coastal Range of the southern Atacama Desert (~26°S),

spanning over 1.500 km to the northern Atacama Desert. In

these areas, it forms blackish patterns on the desert’s ground

FIGURE 1
Potential fossilization traces of the grit crust depicted by various techniques. (A–C)micrographs of single grit stones in their hydrated state with
lichens and fungi creating a vein-like network of micro-structures on the grit’s surface. (D–F) scanning electron microscopy showing fungal trench
lines in (D), lichen squamules covered by mineral particles on grit stones in (E) and lichen pro-thallus in (F). (G–I) photographs of the grit crust with
glowing lichens in G caused by reflectance of secondary lichen substances under UV light, erosion rifts in (H) and a grit crust overview image
with grits overgrown by various concatenating microorganisms in (I).
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caused by a high degree of microbial colonization of the

otherwise whitish granitoid quartz pebbles of approximately

6 mm diameter. These blackish patterns are so rich in organic

material that they are well visible by the naked eye in the

landscape. The reason for this is the cyclic appearance of fog

and dew water input that leads to biomass growth equivalent to

about 140 mg chlorophylla+b m
−2 and more (Jung et al., 2020a).

These high biomass stocks are reached in a xeric environment

where soil temperature can exceed 60 °C during summer days

and falls below 3 °C during winter times. Average water input

from dew is only 0.025–0.088 mm per day, water input from fog

is 0.38–1.25 mm per day, and intense irradiation, with maxima of

more than 1,500 μmol photons m2 s−1 is frequent (Jung et al.,

2020a). In general, the Atacama Desert is considered as a

radiation hotspot where the highest irradiation on the planet

was reported (Rondanelli et al., 2015). Constituents of the

microbial community are diverse micro-lichens (Buellia spp.,

Pleopsidium chlorophanum, Tetramelas pulverulentus, Aspicilia

spp., Diploschistes spp.), with green algal photobionts (Trebouxia

spp., Myrmecia spp.), free living eukaryotic green algae

(Stichococcus spp., Pseudostichococcus spp., Chlorella spp.,

Klebsormidium spp.) and cyanobacteria (Nostoc spp.,

Microcoleus vaginatus, Kastovskya adunca, Myxacorys

chilensis, Pleurocapsa spp.), as well as melanized micro-

colonial fungi (Constantinomyces spp., Lichenothelia spp.)

(Jung et al., 2020a). These harsh conditions under which they

thrive may indicate that the microbial community building the

grit crust - or at least individual strains contained therein - might

be suitable candidates for testing (their) vitality in outer Space or

under Martian conditions (Coleine and Delgado-Baquerizo,

2022). Here, it is also worth to mention that unicellular life

forms evolved early in the Earth’s history. On the other hand, the

climate of the Atacama Desert is considered to be stable for at

least 150 million years (Hartley at al., 2005), which leads to the

FIGURE 2
Ecology, extremophile character and possible applications of the grit crust in the context of astrobiology. The bottom picture shows the
landscape of the coastal Atacama Desert with blackish patterns on the ground formed by a highmicrobial colonization degree. The bottom circle on
the left shows a close-up photography of the groundwith the grits colonized by diversemicrobes such as lichens. The top circle shows a thin section
of a single grit under themicroscope using autofluorescencewhere fungalmycelium (lichens) appearwhitish while algae appear red, which also
colonize inner structures of the stone.
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idea that the microbial life forms that jointly build the grit crust of

the Atacama Desert are well adapted to extreme environments.

Although other microbial consortia are known from hyper-arid

regions of the Atacama Desert (e.g. Schulze-Makuch et al., 2018),

the grit crust is exposed to low amounts of fog in areas devoid of

any higher vegetation (Jung et al., 2020a) and it is the only

microbial assemblage which fills entire landscapes of hundreds of

square kilometers (Jung et al., 2020a). This demonstrates the

ecophysiological adaptation potential of the grit crust on the large

scale environment which might be beneficial for microbial

colonization of other planets with relatable conditions.

Surviving prolonged desiccation is a common feature of all

organisms mentioned here, but in addition, it has been shown

that the photosynthetic activity of the grit crust is strongly

inhibited when more than the equivalent of 0.25 mm water is

present in the organisms (Jung et al., 2020a). This amount also

marks the range in which the net photosynthesis of the microbial

community is at its optimum. At the same time, this is the lowest

amount of water for optimum photosynthesis detected for

biocrusts on Earth (Jung et al., 2020a). Amongst biocrusts, the

grit crust from the Atacama Desert is also unique in its

adaptation to wet-dry cycles caused by several fog events

during a single day because these cyclic conditions have been

shown to be harmful for other biocrusts (Belnap et al., 2004; Reed

et al., 2012). This implies that the grit crust’s microbial

community could be ideal for biotechnological applications

outside its natural environment, such as humanly induced

microbial colonization of other planets, where cyclic artificial

wetting will for sure be essential, but in the case of the grit crust -

compared to other biocrusts - not lethal due to their specialized

desiccation tolerance.

One of the biggest challenges during human colonization of

other planets has been the formation of soil as a weathering

product of mainly unweathered rocks found on other planets.

Access to nutrient rich soil would subsequently allow the growth

of microorganisms and/or plants in order to support human life.

The grit crust is the first biocrust detected on a pure mineral,

coarse substrate, while most other biocrust types are established

on soil, a product of a later stage in the weathering of minerals

(Weber et al., 2022). This resembles another benefit of the grit

crust compared with other biocrusts because coarse minerals are

the predominant substrate found on, e.g., Mars and the Earth’s

moon. Mars’ surface consists mostly of coarse regolith of largely

weathered basalt (McSween et al., 2009), which contains the basic

macro elements (C, H, O, N, P, S, K, Mg, Na, and Ca) and minor

elements (Mn, Cr, Ni, Mo, Cu, Fe, and Zn) essential for life

(Greenwood et al., 2007; Stern et al., 2015; Verseux et al., 2016).

However, due to the lack of organic carbon, the basaltic regolith

substrate has a poor water-holding capacity and limited

nutritional bioavailability (Wamelink et al., 2014).

Despite colonization of the quartz pebbles’ surface, the grit

crust microorganisms also inhabit the undersurface and naturally

occurring cracks where they are protected from harsh UV

radiation but can still perform photosynthesis due to the

transparent to translucent character of the stones. It has also

been shown that these microorganisms actively mediate bio-

weathering activities regarding nutrient acquisition, which can

lead to the formation of a terrestrial protopedon as initial

pedogenesis (Jung et al., 2020b). This terrestrial protopedon is

a fine substrate enriched in nitrogen from cyanobacterial

nitrogen fixation and carbon from photosynthesis that primes

the substrate for the establishment of other organisms and

leaches into deeper layers (Dojani et al., 2007; Young et al.,

2022). Triggering this succession is a well-known feature of

biocrusts worldwide (Belnap and Weber, 2013; Barger et al.,

2016; Bao et al., 2019), but the grit crust is the only biocrust type

on Earth where minerals are the starting material and not (the

more weathered) sand or soil. At the same time, the leaked or

extracellular polymeric substances (EPS) of cyanobacteria, for

example, together with the filamentous nature of some algae, the

lichens and fungi concatenate the first millimeters of the

substrate that protects it from erosion by, e.g., wind (Chamizo

et al., 2017). This leads to the idea that the grit crust might have

the potential to enrich mineral substrates of other planets over

the long term and protects it from strong wind erosion, which is

crucial on some Solar System bodies, e.g. Mars, where wind

speeds can be immense (White, 1979; Viúdez-Moreiras et al.,

2019). However, such strong winds could also be beneficial for

colonizing great landscapes on other planets by the grit crust

organisms, as these winds produce a lot of dust that can be

transported over wide distances (e.g., Ferri et al., 2003), on which

microbes can hitchhike. The Martian atmosphere is full of dust,

with loads that greatly fluctuate with the year’s season (Toigo and

Richardson, 2000), so aeolian transport, including microbes, is a

likely scenario that could support the microbial colonization of

other planets that support human life. In the Atacama Desert, for

example, it has been shown that certain soil-borne

microorganisms were transported more than 100 km off the

coast towards the hyper-arid core of the Atacama (Azua-

Bustos et al., 2019).

Microalgae, lichens and fungi of the
grit crust as models for astrobiology

On Earth, phototrophic extremophiles have been found in

hostile environments, such as hot and cold deserts, hot, acidic, or

alkaline springs, caves, or Antarctic sub-glacial lakes considered

as Earth analogs of Mars and the icy moons of Jupiter and Saturn

(Martins et al., 2017; Coleine and Delgado-Baquerizo, 2022). One

of the most interesting microalgae occupying various ecological

niches of such extreme habitats is the prokaryotic cyanobacterial

order Chroococcidiopsidales, which has been a focal point for

astrobiology research. For specific strains of the genus

Chroococcidiopsis sensu lato, for example, it has been shown

that they tolerate at least 4 years of air-drying (Billi, 2009;
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Fagliarone et al., 2017), up to 13 kJ m−2 of UV C radiation (Baqué

et al., 2013), 15 kGy of X-rays (Billi et al., 2000) and 12 kGy of γ-
radiation (Verseux et al., 2016; Verseux et al., 2017). They even

have an enhanced radiation resistance, coping with 30 kJ m−2 of a

simulated Martian UV flux (Cockell et al., 2005), 24 kGy of γ-
radiation and 2 kGy of Fe ions (Verseux et al., 2016). In their

dried state, these strains also survived 2.5 years of exposure to

Mars and Space-like conditions (Billi, 2019). Also a comparative

analysis of whole-genome sequences showed no increased

variant numbers in the space-derivate compared to triplicates

of the reference strain maintained on the ground (Napoli et al.,

2022). Closely related species that also belong to the order

Chroococcidiopsidales, such as Aliterella chasmolithica (Jung

et al., 2020c) and Gloeocapsopsis diffluens (Jung et al., 2021)

were found in the grit crust environment, and a relative of the

latter has been shown to produce great amounts of trehalose

(145 µg per mg dry weight) and sucrose (64 µg per mg dry

weight) as desiccation protection along with copious amounts

of EPS (Azua-Bustos et al., 2019). This implies that these

organisms have strong capabilities to protect themselves from

damage during prolonged desiccation periods, a great

characteristic for exposure to Space-like conditions during

travel or terraformation approaches. Although these results

were achieved for several strains of the order

Chroococcidiopsidales, they likely also apply to other

cyanobacteria—especially if they were isolated from desert

environments such as the grit crust, where most of these

extreme conditions come together. In addition to

Chroococcidiopsidales, other cyanobacteria such as

Pleurocapsa spp., the endemic Kastovskya adunca, Myxacorys

chilensis and several Nostoc species have been found to be part of

the biocenosis of the grit crust (Jung et al., 2019) and are expected

to possess similar desiccation resistance functions.

In contrast to the great insights on the survivability of

prokaryotic cyanobacteria exposed to Space- or Mars-like

conditions, little is known about these capabilities for

eukaryotic green algae. One of the most notorious green

algae is the spherical and highly abundant genus Chlorella

which can adapt to a range of extreme and harsh terrestrial

conditions (Krienitz et al., 2015). Members of this genus

isolated from desert sand crusts can resist intense UV

radiation and γ-rays (Treves et al., 2013). In contrast to

cyanobacteria, experiments, where Chlorella from desert

environments was exposed to a Mars-like near-space

environment showed that they survived but got significantly

damaged on a sub-cellular and physiological level (Wang et al.,

2021). We already detected several Chlorella and Chlorella-like

types as frequent constituents of the grit crust, including

Pseudochlorella spp. or Pseudostichococcus spp. which share

similar characteristics. However, Chlorella is already used in

large-scale bioreactors on Earth for commercial interests due to

its ability to quickly adapt to cultivation conditions, because of

the significant amounts of biomass generated in a short time, its

CO2 capturing ability and role as a food source (Coronado-

Reyes et al., 2020). For these reasons, there are various ideas and

concepts that suggest such green algae to be an integral part of

lunar bases (Detrel, 2021) or on space stations (Helisch et al.,

2016; Niederwieser et al., 2018), where a photobioreactor

volume of 482 L has been shown to be suitable to ensure a

daily CO2 reprocessing for one crew member (Helisch et al.,

2020).

Another component of the grit crust from the Coastal

Range of the Atacama Desert are lichens, which -in general-

represent a micro-ecosystem built by a fungus and an algal

photobiont partner, including a vast microbiome

(Hawksworth and Grube, 2020). Several lichen species have

already been detected in the grit crust belonging to the genera

Aspicilia, Buellia and Pleopsidium (Jung et al., 2020a),

including some micro-colonial fungi of the genera

Lichenothelia and Constantinomyces that are poly-

extremotolerant (Gostinčar et al., 2012; Grube et al., 2013)

and can facultatively be in symbiotic relationship with free-

living eukaryotic green algae (Muggia et al., 2013). The lichen

Pleopsidium chlorophanum, also present in the grit crust, was

exposed uninterruptedly to simulated conditions of protected

Martian surface niche conditions (269 kJ m−2) for 34 days. The

lichen not only survived and remained photosynthetically

active but even adapted physiologically by increasing its

photosynthetic activity over 34 days (de Vera et al., 2014).

Similar results have been achieved for numerous other lichens

(de Vera, 2012; Meeßen et al., 2013; Brandt et al., 2015; De la

Torre Noetzel et al., 2017). In addition, black micro-colonial

fungi (MCF), also referred to as rock-inhabiting fungi (RIF)

(Sterflinger, 1998; Gorbushina, 2003), can cope with extremes

of temperatures, acidity, osmotic stress and salinity,

dehydration, solar and UV radiation and even radioactivity

(Sterflinger 1998; Gorbushina, 2003; Onofri et al., 2007), with

some of them being able to survive even real space exposure

and simulated Martian conditions (Onofri et al., 2007). This

indicates that lichens, their photobionts and RIFs as

extremophile organisms, in general, can be great indicators

to determine and prime the habitability of a planet and for the

search of possible life-supporting surroundings on planets like

Mars (Armstrong, 2019; Joseph et al., 2020).

Not only the singular microbes of the grit crust represent

promising candidates for astrobiology but also their ecology as

a community can give new impulses: the grit crust creates

unique micro- and macroscopic patterns that can potentially

get fossilized over time and that have until now not been

included in the search for life on other planets. Paying

attention to these structures is crucial and can complement

investigations of fossilized microbial structures on other

bodies of the Solar System or exoplanets. The structures of

the grit crust microbes such as lichen thalli and fungal- or algal

filaments, for example, can trap mineral particles rich in

calcium carbonate that can fossilize as a venous network
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(Figures 1A–C). A similar pattern might be created by trench

lines generated by fungi that etch the quartz surface

(Figure 1D). The later is a consequence of bio-weathering

activity which has already been shown for the grit crust (Jung

et al., 2020b). In addition, water erosion based on occasional

heavy rain events play a crucial role in the Atacama Desert

(Alcayaga et al., 2022). As the organisms concatenate the

mineral substrate, the grits can create small gutters where

excess water runs off, forming a slightly wavy micro-

topography (Figure 1H). These “waves” are quite stable due

to high contents of calcium carbonate that concatenates the

waves which can later be fossilized over time. These and other

structures can be visualized by various techniques such as

simple photography using the full light spectrum or UV-

radiation, scanning electron microscopy or stereoscopic

micrographs (Figure 1), all of which are common for space

missions (Joseph et al., 2020).

Concluding remarks

The Coastal Range of the Atacama Desert has recently been

identified as the home to an outstanding biocenosis called grit

crust, with a tremendous potential for various aspects of

astrobiology. The ecology of the grit crust, including its

extremophile microbial constituents, are unique amongst

biocrusts on Earth that can be beneficial for human

colonization of other planets or rock bodies such as the Earth’s

Moon orMars. The new research project Grit Life aims to untangle

the full microbial biodiversity of this grit environment, including

isolating prominent microorganisms that will support future

research in the context of astrobiology and space sciences.

During these studies, the grit crust’s extremophiles can be used

to test their suitability during mass cultivation in photobioreactors

(food-, oxygen source for crewed missions), screenings for

Chlorophyll f (allows photosynthesis of cyanobacteria in low

light environments such as on other planets) and symbiotic

interactions (expands the knowledge on ancient life forms). For

these reasons, the grit crust as a consortium of various

microorganisms on a mineral substrate opens up a new

opportunity to test hypotheses and ideas in the context of

astrobiology that surpasses other biocrusts known on Earth.
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