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Ionospheric anomalies through satellites can provide useful information about

forthcoming earthquakes (EQs) over the epicentral regions. In this paper, we

investigated seismo-ionospheric anomalies associated with the Mw 6.5 Sumatra

earthquake that occurred in Indonesia on 06 December 2016 at 22:03 UT. We

analyzed the total electron content (TEC) from Global Positioning System (GPS)

signals received at the nearby stations around the epicenter. Furthermore, we also

studied the TEC in local daytime andnighttime fromSwarmsatellites to confirm the

EQ-induced ionospheric perturbations. The TEC showed significant perturbation

within 5–10 days before the main shock in the form of positive anomalies beyond

the upper bound. Similarly, Swarm satellites also validated the anomalies observed

in theGPS TEC fromnearby operating stationswithin 5–10 days over the epicentral

region. The geomagnetic indiceswere quiet for the observed TEC anomalieswithin

5–10 days before themain shock, havingDst≤−40 nt and Kp≤ 3. This study reveals

the legitimate anomaliesmainly associatedwith the EQand suggests using the TEC

from GPS and other satellites to look for possible future precursors with a more

equipped satellite cluster.
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Introduction

The study of ionospheric anomalies for EQ monitoring

and disturbances can provide useful information about the

impending main shock over the epicentral region (Fujiwara

et al., 2004; Liu et al., 2004). Recently, the GPS is becoming an

important technique for monitoring ionospheric anomalies at

different temporal and spatial variations. GPS satellites

broadcast two signals at high frequencies (f1 =

1575.42 MHZ and f2 = 1227.6 MHZ) that can measure the

variation in the ionospheric state. The ionosphere, as a

dispersive medium, causes GPS signals’ group velocity to

increase the phase velocity. The ionospheric EQ anomalies

from GPS ground stations operating around the vicinity of the

epicentral area can possibly be observed within a time window

of 5–10 days before and after the main shock day (Jin et al.,

2014; Shah and Jin, 2018; Hussain and Shah, 2020). However,

the ratio of positive anomalies is more than that of negative

TEC disturbances associated with large magnitude and

shallow hypocentral depth events (Shah et al., 2018). The

best magnitude of EQ for the association of seismo-

ionospheric anomalies from GPS is Mw ≥ 6.0, and the best

hypocentral depth is less than 20 km (Shah et al., 2019a). In

addition to GPS TEC, the EQ associated-ionospheric

anomalies can also be prominently observed in the analysis

of various satellites, such as DEMETER, Swarm, and CSES

(Shah et al., 2019b; De Santis et al., 2019; Tariq et al., 2019;

Kiyani et al., 2020). For example, Abbasi et al. (2021) showed

significant GPS TEC anomalies around the epicenter of future

EQs, and the same variations were also found in the daily

variations of DEMETER satellite data for the same event over

the epicentral region and associated fault lineament regions.

Moreover, Marchetti et al. (2019) analyzed the long-term data

on Swarm satellites for establishing a statistical relationship

between EQ and ionospheric anomalies in the epicentral

regions. All these studies provided some clues about EQ-

associated ionospheric precursors, but no one has yet

forecast an EQ from the ionospheric perturbations with the

current satellite cluster (Du et al., 2021; Huang et al., 2021;

Zhang et al., 2021; Xu et al., 2022; Zhang et al., 2022). The

satellite data can provide more insight into EQ forecasting

with a more enhanced cluster (Khan et al., 2022).

Ionospheric anomalies before an EQ can be discussed on

the basis of two distinguished hypotheses during the main

shock preparation period. For example, Freund (2009)

explained the physical process of stressed rocks to generate

the electric charge carriers in the form of p-holes (positive

holes) that further rise to the atmosphere and cause delays in

radio signal propagation. These p-holes are highly mobile to

flow out of the stressed rock at hypocentral depth to the nearby

unstressed rock volume, followed by its interaction with air

molecules at the Earth–atmosphere interface. This situation is

similar to that of a battery; if the Earth’s crust is considered as a

battery, the applied stress along the fault line produces

electromagnetic radiations and pulses toward the atmosphere

(Freund, 2002; Tian et al., 2020). As soon as these radiations

reach the Earth’s surface and interact with air molecules, they

ionize the atmosphere over the EQ preparation zone.

Ultimately, this whole process destabilizes the lower edge of

the ionosphere from the epicenter, which leads to seismo-

ionospheric anomalies (Sekertekin et al., 2020; Chenge and

Fu, 2022; Qu et al., 2022; Shah, 2022). Pulinets and Ouzounov

(2011) proposed the lithosphere–atmosphere–ionosphere-

coupling (LAIC) model to show the precursory nature of the

ionosphere and atmosphere caused by radon emanation before

a large EQ. The rising up of gases including radon and other

particles toward the Earth’s surface produces atmospheric

thermal anomalies within the EQ preparation zone. The

emission of gases from the EQ preparation zone creates a

chain of processes: an increase in the surface temperatures

and humidity due to cooling of the hot gases and radon,

ionization of alpha particles, formation of the aerosol

particles, changes in the atmosphere electric conductivity,

and electric coupling (Pulinets and Davidenko, 2014 ; Li et

al., 2022). On the basis of p-holes and radon-generated EQ

ionosphere anomalies, the observation window of EQ

anomalies is 1–10 days before the EQ and after the main

shock day (Shah et al., 2021). In this paper, we aim at

studying the EQ-induced ionospheric anomalies from GPS

TEC measurement and Swarm satellite data to examine a

time window for the EQ anomalies before and after the

main shock of the large magnitude (Mw 6.5) Sumatra,

Indonesia, event. Another objective is to distinguish the

seismic anomalies from the anomalies during disturbed

storm conditions (Kp > 3).

Data and methods

In this paper, we study the seismo-ionospheric anomalies for

the EQ of Mw 6.5 in December 2016 in Sumatra, Indonesia, at a

geographical latitude of 5.283°N and geographical longitude of

96.186°E. The hypocentral depth of this EQ was 8.2 km, and it

occurred in northern Sumatra at UT = 22:03 h in the Aceh

province of Indonesia (Figure 1). More details of this EQ can be

retrieved from the USGS website through the following link:

https://earthquake.usgs.gov/earthquakes/search/.

To distinguish the ionospheric anomalies of EQs from those

of the geomagnetic storms, it is very important to analyze the

geomagnetic storm conditions from different storm indices. In

this study, the geomagnetic storm has been analyzed from Dst,

Kp, and F10.7 indices for 20 days before and 10 days after the

main shock day. For this purpose, the geomagnetic indices are

obtained from the ISGI via the web page (http://isgi.unistra.fr/

index.php). If the EQ occurs during quiet storm days, then TEC

data from GPS can be analyzed to study the different
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characteristics of the seismo-ionospheric anomalies (Yu et al.,

2021; Li et al., 2022; Ren et al., 2022; Wang et al., 2022).

Furthermore, the TEC is analyzed from the three available

GPS stations in the seismogenic zone of the EQ, as

determined by Dobrovolsky et al. (1979), as follows:

R � 100.43M (1)

In the aforementioned equation, R indicates the radius in km

of the EQ affected area, and M is the EQ magnitude. The TEC

along the line of sight from the satellite to the receiver in a square

meter area can be calculated in the form of the slant total electron

content (STEC) by the following equations (Hernández-Pajares

et al., 2009):

STEC � f2
1f

2
2

40.28 f2
1 − f2

2( ) L1 − L2 + λ1 N1 + b1( ) − λ2 N2 + b2( ) + ϵ( ) (2)

STEC � f2
1f

2
2

40.28 f2
1 − f2

2( ) P1 − P2 − d1 − d2( ) + ϵ( ) (3)

The carrier phase frequency of GPS signals at the two ends is

represented by f1 and f2, respectively. Other important

parameters are L and P, which represent the pseudo-range

and carrier phase observation of the delay path of GPS

signals, respectively. λ is the wavelength of the GPS signals.

The ambiguity of the ray path is N, while b and d are the

instrumental biases of the carrier phase and pseudo-range of

the derived signal, and ϵ is the random residual of the signal. The

STEC can be converted into a vertical total electron content

(VTEC) over the epicenter of the EQ by the following equations

(Heki, 2011):

VTEC � STEC × cos arcsine
RsinZ

R +H
( )( ) (4)

The R, H, and Z are the Earth’s radius, height of the

ionospheric top layer altitude, and satellite elevation angle for

the point of observation, respectively. Both the STEC and VTEC

are represented in the TEC unit (where one TECU = 106 el/m2).

FIGURE 1
Geographical location of the Sumatra EQ that occurred on 06December 2016 and theGPS stations around the epicenter. The station name and
geomagnetic equator are shown at their respective position.
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FIGURE 2
Complete flow chart for the observation of seismo-ionospheric anomalies. It is only applicable to EQs during quiet storm conditions.

Frontiers in Astronomy and Space Sciences frontiersin.org04

Khan et al. 10.3389/fspas.2022.1065453

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1065453


The diurnal time series of GPS TEC from the stations are

bounded by a confidence interval of the median and

interquartile range (IQR). The bounds for an observed day are

calculated by the median and IQR of 10 days before and 10 days

after the study day by the following equations (Shah et al., 2020):

Xupper bound � μ + 1.6 × IQR (5)
Xlower bound � μ − 1.6 × IQR (6)

In the aforementioned equations, µ and IQR are the median

and interquartile ranges, respectively. In this paper, we also study

Swarm satellite data to further confirm the abnormal seismo-

ionospheric anomalies of GPS time series. The Swarm mission

was launched by the European Space Agency (ESA) on

22 November 2013 in order to study the Earth’s

electromagnetic field (Shang et al., 2021; Zhang and Ali, 2021;

Yin et al., 2022). The Swarm constellation consists of three

identical satellites (Alpha, Bravo, and Charlie) in a polar orbit

(Marchetti et al., 2019). Moreover, the initial altitude of the two

satellites (Alpha and Charlie), which almost fly side-by-side, is

about 480 km. The orbit of the third satellite is 580 km, and it

descended slowly as compared to the other two satellites. To

measure the Earth’s magnetic field, each Swarm satellite has a

vector field magnetometer, absolute scalar magnetometer, and

VTEC observation instrument. The orbits of Swarm satellites at

various altitudes make the Earth observation clearer than that of

other satellites; thus, precise data can be obtained to detect the

EQ anomalies within an EQ preparation area. We obtained the

daytime and nighttime data during the local time before and after

the main shock day over the epicenter in the Dobrovolsky region

for the same period as the GPS stations. There are different

methods for the analysis of variations of daily time series data

(e.g., Huang et al., 2021b; Chen et al., 2021;Wang et al., 2022b; Lu

et al., 2022). However, we studied the TEC data from Swarm

satellites by bounding statistically with the limits of mean and

standard deviation, where the bounds are calculated from all the

data (20 days before and 10 days after the main shock day) by the

following equations (Shah et al., 2020):

Upper Bound � �x + 2σ (7)
Lower Bound � �x − 2σ (8)

where �x and σ are the mean and standard deviation of the

daytime and nighttime values, respectively. The flow chart for the

implementation of the method for finding the EQ and storm

anomalies is shown in Figure 2. The flow chart has clearly

mentioned that in the case of Kp > 3 storm, no more

calculation of GPS TEC is required. On the other hand, the

anomalous pattern under Kp < 3 can be proceeded further.

Results and discussion

In this paper, we analyzed the seismo-ionospheric anomalies

before and after the EQ of Sumatra, Indonesia, in December

2016, within a time period of 20 days before and 10 days after the

main shock day. This EQ is very important for the studying of

seismo-ionospheric anomalies due to its occurrence during quiet

storm time (Kp < 3) 10 days before the main shock (Figure 3).

The GPS TEC is retrieved from three GPS stations: two GPS

stations operate within the Dobrovolsky region around the

epicenter, and one station operates outside the preparation

zone far from the epicenter (Figure 1). The details of the

stations in geographical and geomagnetic coordinates are

mentioned in Table 1.

It is interesting that TEC shows abnormal variation before

the main shock day from the two GPS stations operating within

the seismic preparation zone (Figure 4). Moreover, the station

outside the Dobrovolsky region shows no TEC variations

associated with the main shock (Figure 4C). It confirms that

TEC anomalies can only be seen from a GPS station operating

within the Dobrovolsky region. On the other hand, we also found

significant TEC anomalies before the main shock as pre-seismic

ionospheric perturbations than post-seismic anomalies. To

examine the suspected TEC anomaly of EQs, we calculated

the dTEC and applied confidence bounds in the form of

upper and lower bounds on the diurnal time series. Both the

stations showed more than five TECU anomalies associated with

the main shock within 5–10 days prior to the main shock. The

TEC values of all three GPS stations showed deviation from

normal distributed mean values within 5 days prior to the main

shock (Figure 4). When studying EQ anomalies, the solar activity

must be monitored in order to distinguish the EQ anomalies

from geomagnetic storms, and the geomagnetic indices were

quiet (Dst ≤ −40 nT, Kp ≤ 3) in this case during 5–10 days before

the main shock. By comparing Figures 3 and 4, we observed no

clear storm-induced ionospheric anomalies. Only the Bako

station, depicted in Figure 4, showed small ionospheric

perturbations 12 days before the main shock.

To further validate the EQ anomalies in GPS TEC, we

analyzed the three Swarm satellite data in the form of daytime

TABLE 1 Geographical and geomagnetic coordinates of the GPS stations.

S. No Station name Geographical lat. (°) Geographical long. (°) Geomagnetic lat. (°) Geomagnetic long. (°)

1 COCO −12.188 96.834 −21.39 168.98

2 BAKO −6.490 106.850 −16.09 178.17

3 DARW −12.844 131.133 −22.40 203.06
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FIGURE 3
Geomagnetic storm conditions before and after the main shock day.

FIGURE 4
TEC from GPS stations (A) Bako, (B) Coco, and (C) Darw with their differential TECs before and after the Mw 6.5 Sumatra earthquake. The bold
black line represents TEC, whereas the red and pink lines represent the confidence bounds.
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and nighttime observations. The Swarm satellite data were

further analyzed under the confidence bounds of mean and

standard deviation to clear the abnormal variations before and

after the main shock (Figure 5). The left and right panels show

daytime and nighttime Swarm observations, respectively.

Moreover, the Swarm-A satellite daytime TEC shows no

anomaly, and a clear nighttime TEC anomaly can be seen

before the main shock of the Mw 6.5 Sumatra earthquake,

Indonesia. This TEC anomaly from Swarm-A satellite is three

TECUs beyond the upper bound. Therefore, we can clearly say

positive ionospheric anomalies before the EQ on the fifth day

before the main shock. On the other hand, the daytime TEC

data from Swarm-B satellites have a clear EQ anomaly

(Figure 5C) and the nighttime data from Swarm-B satellites

remained between the confidence bounds of mean and

standard deviation (Figure 5D). Additionally, the TEC

anomaly obtained through Swarm-B satellite is also positive

as it crossed the upper confidence bound. The seismo-

ionospheric anomaly from Swarm-B satellites is scaled up

to four TECU. Similarly, both the daytime and nighttime TEC

data from Swarm-C satellites show clear ionospheric

perturbations beyond the upper confidence interval of

mean and standard deviation before the main shock day

(Figures 5E,F). The Swarm-C anomalies are of low scale

(i.e., two TECU) but endorse the finding of GPS station

anomalies.

The wavelet correlation confirms a strong correlation

between the TEC of GPS stations and Swarm satellites

(Figure 6). For this, the Swarm daytime and nighttime data

from all three satellites are averaged and then correlated with

the TEC of the GPS stations. Interestingly, this analysis also

shows no variations in the Darw station, which operates outside

the seismogenic zone of the main shock. It correlates with the

previous findings of correlation of satellite data (Tian et al.,

2019; Zhou et al., 2021; Tian et al., 2021; Zhou et al., 2021b;

Jianbo et al., 2022). The correlation of several factors can

provide useful information (Zhang et al., 2019; Sun et al.,

2021; Wang et al., 2021; Mao et al., 2022; Zhong et al.,

FIGURE 5
TEC from Swarm (A–C) satellites along with the upper and lower confidence bounds. The left and right panels are TEC observations during
daytime and nighttime periods, respectively. The red dashed line is the representation of EQ day.
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2022). Moreover, the anomalous pattern from Swarm satellites

within a 5–10-day window before the main shock also confirms

the existence of ionospheric anomalies. All these analyses

confirm the previous findings of ionospheric anomalies due

to p-hole emission from squeezed rocks (Freund, 2009) or

radon emanation from the seismogenic regions in the form

of LAIC coupling (Pulinets et al., 1997). Furthermore, these

abnormalities in TEC within 5–10 days before the main shock

for the Sumatra EQ also endorse the previous reports on

ionospheric perturbation from different other satellites

within the same time window. Additionally, EQ-induced

anomalies were found in different reports on the basis of

radon gas and p-hole hypotheses (Shah and Jin, 2015; Liu

et al., 2017; Ahmed et al., 2018; Arslan et al., 2019; Shah

et al., 2020a; Shah et al., 2020b; Timocin et al., 2020; Shah

et al., 2021a; Shah et al., 2021b; Jose et al., 2022a; Jose et al.,

2022; Shah et al., 2022).

Conclusion

In this paper, we carried out statistical analysis on the TEC

data from GPS stations and Swarm satellites looking for

seismo-ionospheric anomalies associated with the Mw

6.5 Sumatra earthquake that occurred in Indonesia on

6 December 2016. During the investigation of the three

GPS stations (Bako, Coco, and Darw), a variation of less

than 10 TECU was observed in Bako and Coco stations,

and no clear anomaly was observed in Darw station data.

The reason is that the two GPS stations (Bako and Coco)

operate around the EQ epicenter area, while the Darw station

is outside the epicentral region. The variation in TEC in all

three GPS stations can be observed clearly beyond the

confidence bounds prior to the EQ of Mw 6.5 Sumatra,

Indonesia (6 December 2016). Furthermore, the

geomagnetic storm indices show no evidence of an active

FIGURE 6
Wavelet correlation between the TEC from Swarm satellites and GPS stations associated with the Sumatra EQ.
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storm within 5–10 days before the main shock day due to the

presence of Kp < 3 and Dst < −40 nT. It is very necessary to

monitor space weather conditions during studies on seismo-

ionospheric anomalies.

The statistical analysis of Swarm satellites in the form of

daytime and nighttime data also validated the ionospheric

anomalies prior to the main shock of the Sumatra EQ in

Indonesia. Moreover, the Swarm satellites also showed clear

anomalies within the same time window of GPS stations over

the epicentral regions. The observed results of the present

study agree with previous investigations of possible seismo-

ionospheric anomalies. The ground and satellite data showed

positive anomalies associated with the EQ in the form of

seismo-ionospheric anomalies during quiet storm

conditions. This study also confirms the validation of the

implemented statistical analysis of mean, median, standard

deviation, and IQR and proposes to implement more

methods of using more satellite data to forecast the

forthcoming EQs.
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