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The near three decades of continuousMars’ exploration has opened the door to

the understanding of the Martian space environment, which includes the solar

wind, magnetosphere, ionosphere and atmosphere, and is a complex structure

with simultaneous downward and upward couplings. However, we do not yet

understand many of the physical processes that drive matter and energy flow

between these couplings and within the various atmospheric reservoirs

(including temporal and spatial changes on short time scales). Although each

coupling plays an essential role for the system, understanding the fate of the

ionosphere, as a natural sink of both internal (i.e., atmospheric cycles) and

external (i.e., solar wind) energy inputs, is the key for a successful future

systematic exploration of Mars.
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1 Introduction

The Martian space environment, which includes the solar wind, magnetosphere,

ionosphere and atmosphere, is a complex system with simultaneous downward and

upward couplings (e.g., Lillis et al., 2021; Sanchez-Cano et al., 2022), all of which induce

large dynamics in the entire system. In the absence of a global intrinsic field at Mars

(Acuna, 1999), the solar wind interaction with the planet mainly occurs at high altitude

with its upper atmosphere, where the interplanetary magnetic field bends about the planet

inducing a magnetosphere (e.g., Vaisberg et al., 2018). The ultimate region where the

energy of the solar wind is dissipated is the ionosphere, which is the solar photoionized

part of the thermosphere (upper atmosphere) at ~100–500 km altitude. As an ionized

medium, the ionosphere is sensitive to electrodynamics and magnetic fields. As a reactive

medium, the ionosphere strongly interacts with the chemistry of the neutral atmosphere.

This is known as the magnetosphere-ionosphere-thermosphere (M-I-T) coupled system.

The solar wind is the major energy input to the M-I-T system at any of the terrestrial

planets, and therefore, the major source of upper atmospheric variability. Thus,

understanding how the M-I-T system evolve along the long-term variation of the

solar wind with the solar cycle of activity (typically ~11 years) is an essential factor

that determines the background variability of the space environment of each planet, and

in particular for Mars (e.g., Sanchez-Cano et al., 2022).
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A particular feature of Mars is that the ionosphere-solar wind

interaction is more complex over a region of the southern

hemisphere where highly non-uniform crustal magnetic fields

are located. These fields, which are of the order of a few tends to

hundreds nT at ~400 km (e.g., Langlais et al., 2019), can interact

directly with the solar wind producing a “hybrid

magnetosphere”, i.e., with features of both induced and

intrinsic magnetospheres, which affect the whole planet

because it changes as the crustal magnetic fields rotate with

the planet (Fang et al., 2015). This is a unique aspect of Mars in

our Solar System and means that parts of the Martian M-I-T

system may behave differently and in shorter time-scales than

expected. Moreover, these crustal fields play an important role in

guiding plasma motion, producing hemispheric asymmetry in

the magnetosphere, ionosphere, and ion escape (Vaisberg et al.,

2018).

Although each region of the M-I-T coupling plays an

essential role for the system, the continued exploration of

Mars for almost three decades has shown that the ionosphere

is a natural sink of both internal and external energy inputs. For

example, as internal energy sources, the ionosphere is seasonally

affected by lower atmospheric cycles such as the water or CO2

cycles during spring (e.g., Sánchez-Cano et al., 2018), as well as by

regional and even sometimes global dust storms (e.g., Fang et al.,

2015; Montabone, 2015), and gravity waves (e.g., England et al.,

2017). As an external energy source, solar wind energetic

particles precipitate into the ionosphere and ionize the middle

atmosphere (a region typically not ionized) causing absorption of

signals and, therefore, major radio propagation issues (e.g.,

Sánchez-Cano et al., 2015; Lester et al., 2022), as well as a

myriad of different types of auroras (Schneider et al., 2015;

Schneider et al., 2021), and gives us an estimation of the level

of shielding of the surface from harmful radiations (Guo et al.,

2017). Moreover, the presence of different magnetic field features

within the ionosphere (either from crustal fields or from the solar

wind) significantly changes the thermal balance of the

ionosphere, which becomes magnetized, and ion distributions

critically depend on the balance of both the thermal and

magnetic pressures (e.g., Sanchez-Cano et al., 2020). All these

processes are entangled between several regions of the system.

Understanding their temporal and spatial variability in order to

assess the differences of the processes that control the long-term

dynamics of an ionosphere, including the role of the

electrodynamics induced by the solar wind at Mars along the

solar cycle and the motion and dynamics of the neutral

atmosphere, which in turn can also create currents in the

ionosphere (Riousset et al., 2014; Collinson et al., 2019), is a

critical aspect for exploration of the red planet that we must

resolve (Lillis et al., 2021; Sanchez-Cano et al., 2022).

The ionosphere of Mars is the layer of the upper atmosphere

that plays a critical role in balancing the energy of the Martian

system by coupling the neutral atmosphere with space, and can

be considered as a tracer for atmospheric dynamics and also, for

the solar wind-lower atmosphere coupling. The future of Mars

exploration, either manned or robotic, will critically depend on a

good understanding of ionospheric variability, thus the M-I-T

coupling, as it determines the properties of the near-planet

environment, and in turn its habitability.

2 Our gained knowledge of Mars’
ionosphere thanks to the continuous
exploration of Mars

For the last almost 3 decades there has always been an active

mission at Mars taking different types of ionospheric

observations. This is illustrated in Figure 1, where the lifetime

of different missions as well as planned and proposed missions at

Mars with respect to the latest solar cycles is plotted. Before the

arrival of Mars Global Surveyor (MGS) at Mars, the knowledge of

Mars ionosphere was very limited and only basic information

was gathered thanks to a few flybys and short-life missions. A

critical discovery by MGS was the presence of crustal magnetic

fields at Mars (Acuna, 1999) that changed the entire vision that

we had of the planet, as well as it showed for the first time the

FIGURE 1
Time life of missions at Mars since 1986 with respect to solar
cycles 22–26. Missions with ionospheric instrumentation are
shown with filled boxes and over the grey band at the top of the
Figure. Missions with complementary atmospheric or particle
observations are shown with white boxes. ESCAPADE (awaiting for
launch window period) and M-MATISSE (under current ESA study)
are also shown as potential future missions. The sunspot numbers
are plotted in black and with a running average in purple. The red
line shows the current prediction for solar cycle 25. The multiple
green lines show some potential possibilities for solar cycle 26with
the intention of showing the expected period of maximum solar
activity. There has been an active ionospheric mission at Mars
since 1996. MGS, Mars Global Surveyor; TGO, ExoMars Trace Gas
Orbiter; MSL, Mars Science Laboratory; MRO, Mars
Reconnaissance Orbiter; MAVEN, Mars Atmospheric and Volatile
EvolutioN; EMM, Emirates Mars Mission; ESCAPADE, The Escape
and Plasma Acceleration and Dynamics Explorers; M-MATISSE,
Mars Magnetosphere ATmosphere Ionosphere and Space-
weather SciencE. This Figure has been modified from the National
Oceanic and Atmospheric Administration (NOAA) Space Weather
Prediction Centre (https://www.swpc.noaa.gov/products/solar-
cycle-progression).

Frontiers in Astronomy and Space Sciences frontiersin.org02

Sánchez-Cano 10.3389/fspas.2022.1101945

https://www.swpc.noaa.gov/products/solar-cycle-progression
https://www.swpc.noaa.gov/products/solar-cycle-progression
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1101945


effect of non-migrating waves in the ionosphere, a clear sign of

coupling between the lower and upper atmospheres (Bougher,

2001). This, together with its long duration covering the

maximum and moderate levels of solar activity in solar cycle

23 opened a new door for planetary plasma physics research.

Since then, the continued exploration of Mars by several

missions, but in particular, thanks first to Mars Express, and

later to the Mars Atmosphere and Volatile EvolutioN (MAVEN)

missions, has allowed us to start to appreciate how the

ionosphere intertwine with the atmospheric layers and with

the solar wind. It has also allowed us to start characterizing

the basic properties of the various plasma boundaries and regions

that exist in the Martian induced magnetosphere (e.g., the bow

shock, magnetic pileup boundary, ionopause (e.g., Hall et al.,

2019; Edberg, 2009; Mazelle, 2004; Sanchez-Cano et al., 2020), as

well as processes that control the current Martian climate, from

the general atmospheric circulation, to the role of

photochemistry, clouds, development of dust storms (both

local and global), channels of atmospheric escape (e.g.,

England et al., 2017; Hartwick, 2019; Farahat et al., 2021).

Some remarkable findings are the characterization of the

vertical structure of the dayside ionosphere and how it varies with

altitude, solar zenith angle, solar flux, Sun-Mars distance,

seasons, solar cycle, crustal magnetic fields, dust seasons, and

water/CO2 cycles (Duru et al., 2006; Sanchez-Cano et al., 2013;

Sanchez-Cano et al., 2015; Sanchez-Cano et al., 2016; Sanchez-

Cano et al., 2018; Mendillo et al., 2013). These missions also

found density fluctuations in the topside Martian ionosphere

(Gurnett, 2010; Fowler et al., 2017), as well as large ionization

layers that last for several days at the bottomside of the

ionosphere after cometary dust is deposited, as seen after the

flyby of comet Siding-Spring (Gurnett et al., 2015), or even highly

sporadic lower magnitude layers found in the bottomside at other

times less actives than during this cometary flyby (Peter et al.,

2021).

We also have gained significant knowledge of the nightside

ionosphere, including terminator transport (e.g., Withers et al.,

2012), electron impact ionization down to 90 km (e.g., Lillis et al.,

2018), as well as some insights into how the ionosphere is

strongly controlled by the inclination of crustal magnetic

fields (Němec et al., 2011). Moreover, we now know that the

Martian induced tail is highly twisted (DiBraccio et al., 2018),

mostly as a result of the complex interaction of the interplanetary

magnetic field with the crustal magnetic fields and with the

draped fields about the planet (e.g., Fang et al., 2015). The twisted

tail may be potentially related to the large levels of electron

precipitation observed in the nightside ionosphere, most of

which lead to the generation of a myriad of auroras that have

been observed at Mars (Schneider et al., 2015, 2021), such as: 1)

“discrete auroras”, which occur typically over regions of strong

vertical crustal magnetic fields (Bertaux, 2005); 2) “diffuse

aurora”, which are caused by global precipitation of solar

energetic particles on the nightside of Mars (e.g., Gerard et al.,

2017); 3) “proton aurora”, which occurs on the dayside upper

atmosphere and it is caused by solar wind proton precipitation

(Deighan et al., 2018); 4) and the recently discovered “sinuous

aurora” by the Emirates Mars Mission (EMM), which is

characterized by elongated serpentine structures of thousands

of kilometers in the nightside northern hemisphere, far from

intense crustal fields (Lillis et al., 2022), and which origin is still

unknown.

An important step forward in our knowledge of Mars as an

integrate system has been the synergistic opportunities to use

observations from different missions to investigate the variability

of the ionosphere, and of the M-I-T coupling. This cooperation,

mainly performed from researcher-based efforts, has opened a

new door for global investigations of Mars, for the first time at

other planet than earth.

3 What do we do not know about
Mars’ ionosphere?

Despite the great progress in our understanding of the M-I-T

coupling at Mars, there are major open questions that still need

an answer, especially on the eve of Mars’ systematic robotic and

human exploration. For example, a few highlights are, the

fundamental nature of the plasma boundaries, as formed by

systems of currents coupling the solar wind, magnetosphere, and

ionosphere, is not well understood. Currents are a natural

connection between different regions of a planet (Ramstad

et al., 2020), and a quantitative description of their role, on

both global and local scales, together with crustal fields,

ionosphere, magnetosphere and particle and energy exchanges

between regions is still missing (e.g., Sanchez-Cano et al., 2022).

Martian atmospheric losses to space are largely the result of

thermal escape of neutral hydrogen and photochemical escape of

neutral oxygen. This, together with sputtering, ion outflow, and

pickup ion escape, are thought to have controlled the loss of

liquid water on Mars over time (Jakosky, 2015), a critical aspect

for understanding Martian habitability. However, the main

atmospheric loss channels at Mars today cannot be observed

because the rates of the escaping neutral hydrogen and oxygen

atoms cannot be directly measured with current technology due

to their low density and energy (several eV), although significant

efforts have been done via different routes, such as on water

vapour and hydrogen abundance observations, to get a better

understanding of this escape mechanism (Holmes et al., 2021).

As mentioned before, aurora formation within the

ionosphere on the nightside of Mars thanks to electron

precipitation far from crustal fields is still a mystery. Energy

deposition from particle precipitation can drive ionospheric

structure through ionization. At earth, auroras are explained

by direct cusp entry of the solar energetic particles, and by

magnetospheric tail reconnection. However at Mars, this has

not been confirmed, and could be related to both magnetotail
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field topology and poorly understood tail and cusp processes

related to the localized crustal magnetic field regions.

Moving down into the lower altitudes, the bottom-side

ionosphere is scarcely sampled; with practically no

observations of the ionosphere below ~70 km (only indirect

observations and modelling efforts are available). Thus, a

significant gap in our knowledge is present as it is believed

this region to play a major role in the controls the amount of

energy from the solar wind that is deposited into the atmosphere

and eventually into the surface (e.g., Sanchez-Cano et al., 2021;

Nakamura et al., 2022). This is particularly important when

considering the radio propagation issues that low ionization

creates, and therefore, being highly relevant to ground

operations and future Mars exploration.

This is only a small sample of the Mars’ ionosphere

unknowns, which may be essential knowledge for the future

of Mars science and exploration, but also, to understand other

worlds thought comparative planetology. Having good

knowledge of Mars, which is relatively close to earth, easy

accessible and has is near-unmagnetised in contrast with

earth, is fundamental to extrapolate and compare knowledge

to other worlds which may not be that accessible and limited

observations can be taken.

4 Discussion: The ionosphere as key
to unravel the way forward of Mars’
exploration

There are still many aspects that we do not yet understand

from Mars environment, including many of the physical

processes that drive matter and energy flow between and

within the various atmospheric reservoirs (including temporal

and spatial changes on short time scales, see Section 3), and

although single-spacecraft missions provide a wealth of

observations, synergetic and simultaneous multi-point

measurements of the system are still missing. Simultaneous

multi-point and coordinated measurements are required to

determine how energy flows through the induced

magnetosphere and into the ionosphere-atmosphere, causing

important dynamics and energization (Sanchez-Cano et al.,

2021).

From the near 60 years of space exploration at earth, we can

draw the need for multi-point missions that have revolutionized

our understanding of the terrestrial solar wind-magnetosphere-

ionosphere coupling particularly during the last 20 years. At

Mars, “ad-hoc” multi-spacecraft studies between existing

individual assets have been undertaken and have

demonstrated the huge potential that a coordinated mission

has, but the instrument suites of existing assets are not

designed for multi-point observations and opportunities for

such analyses are rare. Thus, dedicated missions with multiple

spacecraft having fully coordinated and simultaneous

observations at different parts of the Martian system is critical

to unravel the key mechanisms that strongly couple its surface

with the M-I-T system and the solar wind, which requires at least

two well-separated spacecraft with one in the solar wind and the

other inside the system, and this is not available at the moment.

Following earth example, several multi-spacecraft missions

have been proposed to fulfil this requirement, which will bring us

to the next-generation of exploration at Mars where for the first

time we will be able to disentangle spatial from temporal

variability, and capture variations on short spatial/temporal

scales that cannot be resolved from a single spacecraft. The

first one of this missions is ESCAPADE (Lillis, 2020), which

is a small-class NASA twin-spacecraft Mars orbiter mission

which launch is still to be decided, that will provide a global

picture of how solar wind energy flows through Mars’ unique

hybrid magnetosphere to drive ion and sputtering escape. With

views to future robotic and manned exploration of Mars, the

Mars Magnetosphere Atmosphere Ionosphere and Space-

weather Science (M-MATISSE) mission is currently being

evaluated by ESA for the next Medium-size mission of

opportunity to be launched not earlier than 2037.

M-MATISSE is a two-spacecraft orbiting Mars to investigate

the dynamic response of the M-I-T coupling to space weather

activity (Sanchez-Cano et al., 2022). Moreover, the most

ambitious of the missions concepts is the Mars Orbiters for

Surface, Atmosphere, and Ionosphere Connections (MOSAIC)

(Lillis et al., 2021), which is a Planetary Mission Concept Study

mission from the NASA Science Decadal Survey, composed of

10 spacecraft to cover and investigate the system as a whole, with

the most detailed ever coordination, covering all regions of the

M-I-T coupling, including the surface and subsurface of Mars,

and with a permanent monitoring of the Sun and solar wind.

All these missions have in common that the ionosphere is key

in their observations. This is because Mars ionosphere is the

“sponge” or “porous layer” in between the lower-middle

atmosphere and space that facilitates the connection between

different regions, where ultimately energy is dissipated, where the

strongest dynamics occur, it is the reservoir for atmosphere

escape, and it is where the larger part of the radiation filtering

for the surface occurs. Moreover, the state of the ionosphere

strongly controls communications with the surface and

instrument operations in HF and UHF frequencies, as well as

ionospheric irregularities can potentially produce scintillation in

signal propagation. Therefore, the future of Mars exploration is

strongly linked to the fate of the ionosphere, being the key for its

future systematic exploration.
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