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Solar coronal seismology is based on the remote diagnostics of physical conditions in the
corona of the Sun by comparison between model predictions and observations of
magnetohydrodynamic wave activity. Our lack of direct access to the physical systems
of interest makes information incomplete and uncertain so our conclusions are at best
probabilities. Bayesian inference is increasingly being employed in the area, following a
general trend in the space sciences. In this paper, we first justify the use of a Bayesian
probabilistic approach to seismology diagnostics of solar coronal plasmas. Then, we
report on recent results that demonstrate its feasibility and advantage in applications to
coronal loops, prominences and extended regions of the corona.

Keywords: Sun: corona, Sun: magnetic fields, magnetohydrodynamics (MHD), waves, solar coronal seismology,
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1 INTRODUCTION

The aim of this paper is to give a rationale for the use of Bayesian methods in the study of the solar
corona and to show recent applications in the area of solar coronal seismology. Coronal seismology
aims to infer difficult to measure physical parameters in magnetic and plasma structures, such as
coronal loops and prominence plasmas, by a combination of observations of wave activity and
theoretical models, usually under the MHD approximation (Uchida, 1970; Roberts et al., 1984).
Because of our lack of direct access to the physical systems of interest information is incomplete and
uncertain. As a consequence, solar atmospheric seismology deals with inversion problems that are
probabilistic in nature and our conclusions can only be probabilities at best. A prototypical example
is the determination of the magnetic field strength in coronal loops from the observational
measurement of the kink speed of transverse oscillations (Nakariakov and Ofman, 2001). Only
after assumptions about the loop plasma density and the density contrast one can derive the magnetic
field. Since the values of the density and density contrast have probabilistic distributions, the derived
magnetic field has a probabilistic distribution.

Bayesian analysis is increasingly being used in astrophysics. Figure 1 shows the number of
Bayesian astrophysics papers as a function of year. The first studies (already 50 years ago) dealt with
both technical problems, such as the construction of image restoration algorithms (Richardson,
1972), as well as with procedures for formalising the evaluation of astrophysical hypotheses by
comparison between theoretical predictions and observational data (Sturrock, 1973). It took two
more decades for the Bayesian approach to be adopted in solar physics. Initial solar applications were
focused on statistical analyses of solar neutrino data (Gates et al., 1995), followed by studies on solar
flare prediction (Wheatland, 2004), the analysis of solar global oscillations (Marsh et al., 2008), and
the inversion of magnetic and thermodynamic properties of the solar atmosphere from the analysis
of spectro-polarimetric data (Asensio Ramos et al., 2007). The first study that made use of Bayesian
analysis in coronal seismology was by Arregui and Asensio Ramos (2011), who inferred coronal loop
physical parameters from observed periods and damping times of their transverse oscillations. In the
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FIGURE 1 | Bar plots representing the yearly number of referred articles
employing Bayesian analysis techniques in the field of astrophysics, the
branch of solar physics, and the research area of coronal seismology. At the
time of writing (November 2021), the total number of articles amounts to
4678 in astrophysics, 114 in solar physics, and 25 in coronal seismology.
Source: NASA Astrophysics Data System (ADS), digital library operated by the
Smithsonian Astrophysical Observatory (SAO).

last decade, about 25 studies in coronal seismology have made use
of Bayesian techniques. They deal with parameter inference,
model comparison, and model averaging applications to gain
information on the magnetic field and the plasma conditions in
structures in the solar corona and in solar prominences. Here, we
discuss some recent developments in the area.

The layout of the article is the following. Section 2 describes
the basic principles and the tools used to perform parameter
inference and model comparison in the Bayesian framework. In
Section 3, first, results on the inference of physical parameters in
coronal loops and prominence plasmas are described. Then,
examples are shown on the application of model comparison
to the assessment of the damping mechanism(s) of coronal waves.
A summary is presented in Section 4.

2 BASIC PRINCIPLES OF BAYESIAN
INFERENCE AND MODEL COMPARISON

Bayesian analysis considers any inversion problem, in terms of
probabilistic inference, as the task of estimating the degree of
belief on statements about parameter values or model evidence,
conditional on observed data. It uses Bayes’ rule (Bayes and Price,
1763),

(01, ) — 16 MDP@MD) "

[ p(d16, M)p (81M)db
which says that our state of knowledge about a set of parameters 0
of a given model M, conditional on the observed data d, is a
combination of what we know independently of the data, the
prior p(6|M), and the likelihood of obtaining a given data
realisation as a function of the parameter vector, the
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likelihood function p(d|6, M). Their combination gives the
posterior distribution, p(0|d, M), that encloses all the
information about the set of parameters conditional on the
observed data and the assumed model. The prior and the
likelihood function need to be directly assigned in order to
compute the posterior. Bayes’ rule offers a tool to perform
rational inference based on the combination of conditional
probability distributions. The tool can be applied at three
different levels.

In parameter inference the global posterior is computed for the
full set of N parameters, 6 = {0, ..., 0, ..., Ox}, and is then
marginalised to obtain information about the one of interest. This
is achieved by integration of the full posterior with respect to the
remaining parameters,

p(6id) = Jp(@ld)dé)l 0By dOy. ()

This is the so-called marginal posterior for model parameter
0;, which contains all the information available in the priors and
the data. The uncertainty of the rest of parameters to the one of
interest is correctly propagated by this procedure. To summarise
the result one can then provide the mean, the mode, the median,
etc. It is common to provide the maximum a posteriori estimate
of the inferred parameter, 6}"*", the value of 6; that makes the
posterior the largest together with credible regions containing a
particular fraction of the mass of the distribution. A simple way of
computing such credible region is to sort the probability values
p(6id) in descending order. Then, starting with the largest one,
add successively smaller values of p(6;|d) until the next value
would exceed the desired value of e.g., 68%. At each step, one
needs to keep track of the corresponding 0; values. The credible
region is then the range in parameter space that includes all the 6;
values corresponding to the p(6;|d) values that were added. The
boundaries of the credible region give the lower and upper errors.
They are the smallest and largest values of 0; obtained by this
procedure. The process of marginalisation can also be applied to
the so-called nuisance parameters, those that must be
incorporated in the modelling but are not of immediate interest.

The denominator in Eq. 1 is the so-called marginal likelihood
or evidence,

p(d) = | p(@.divdo = [ p(io. M poM Ao, 3)

an integral of the joint distribution of parameters and data over
the full parameter space that normalises the likelihood function to
turn the result into a probability. It plays a crucial role in model
comparison because it is a measure of relational evidence. The
measure of evidence is relational because it examines a relation
between the predictions by model M and the observed data d. The
marginal likelihood quantifies the evidence for a model in relation
to the data that it predicts. The general aim of model comparison
is to assess the relative evidence between alternative models in
explaining the same data. Given two models, M; and M,, this is
achieved with the calculation of the posterior ratio p(M,|d)/p(M,|
d). If the two models are equally probable a priori, p(M;) = p(M5),
and the posterior ratio is equal to the ratio of marginal likelihoods
of the two models
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p(M,1d)

M)
& p(dIM,)

B, =2log —By1, (4)
where the logarithmic scale is used to translate Bayes factors into
levels of evidence. The Bayes factors B;, and B,; defined in Eq. 4
measure relative evidence. They quantify the relative plausibility
of each of the two models to explain the same data. To evaluate
the levels of evidence an empirical table, such as the one by Kass
and Raftery (1995), is employed. For values of By, from 0 to 2, the
evidence in favour of model M, in front of model M, is
inconclusive; for values from 2 to 6, positive; for values from 6
to 10, strong; and for values above 10, very strong. A similar
tabulation applies to B,;.

After a model comparison procedure has been performed, it
may be the case that the evidence in favour of any of the models
under consideration is not large enough to deem positive
evidence. A convenient solution is then to consider the third
level of Bayesian inference, model averaging. This is a procedure
that combines the posteriors inferred with each model to calculate
a model-averaged posterior,

p(Bild) =Y p(Bild, My) p(Mild), )
k

weighted with the evidence for each model. In this manner,
parameter constraints that account for the uncertainty about
the models are obtained. Such a calculation makes use of all the
available information in the data and models in a fully consistent
manner. The resulting marginal posteriors are the best inference
one can obtain with the available information.

3 RECENT APPLICATIONS TO THE SOLAR
CORONA

After the first application of Bayesian methods to coronal
seismology by Arregui and Asensio Ramos (2011), most of the
initial studies made use of simple forward models for the
prediction of oscillation properties of magnetic structures,
such as periods and damping times, and integration over a
grid of points in low-dimensional parameter and data spaces
(see e.g., Arregui et al.,, 2013a,b; Asensio Ramos and Arregui,
2013; Arregui and Asensio Ramos, 2014; Arregui and Soler, 2015;
Arregui et al., 2015; Arregui and Goossens, 2019). Other studies
considered the analysis of the time series of displacement
amplitude of oscillations to infer equilibrium properties of
coronal loops (see e.g., Pascoe et al., 2017a,b; Pascoe et al,
2018; Goddard et al., 2018). A review summarising those
initial applications can be found in Arregui (2018). Additional
developments were possible by the creation and application of
data analysis tools based on Markov Chain Monte Carlo sampling
of posterior distributions (see e.g., Goddard et al., 2017; Pascoe
etal., 2017c, 2019; Duckenfield et al., 2019; Pascoe et al., 2020b,a).
Details about these methods and their use as diagnostic tools for
coronal seismology can be found in Anfinogentov et al. (2021b,a).
In the following, we discuss some recent results, focusing on the
inference of physical parameters in coronal loops and
prominence plasmas and on the damping of transverse
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oscillations in coronal loops and extended regions of the solar
corona.

3.1 Inferring the Magnetic Field Strength

and Plasma Density in Coronal Loops

The first modern application of coronal seismology was presented
by Nakariakov and Ofman (2001). By interpreting the transverse
coronal loop oscillations observed with the Transition Region and
Coronal Explorer (TRACE) as the fundamental kink mode of a
magnetic flux tube in the long wavelength limit, they showed how
the combination of observed period (P) and loop length (L) can
enable to constrain the magnetic field strength. The procedure
starts with the assumption of a simple expression, model M, for
the phase speed of the kink mode as a function of the Alfvén speed
in the interior of the loop, va; = Bo/\/lipp;, and the density

contrast, { = pi/pe,
1/2
2
Vph = VA1<1+C<,) 5 (6)

with o the magnetic permeability and p; . the internal and
external densities. This expression is valid assuming coronal
loops can be modelled as one-dimensional density
enhancements in cylindrical coordinates with the magnetic
field pointing along the axis of the tube and under the long
wavelength approximation. Adopting a given value for the
density contrast, {, the observationally estimated phase speed
(Voh ~ 2L/P) enables to obtain the Alfvén speed v,;. By further
assuming values of loop density on a given range, a range of
magnetic field strength values is obtained.

In their Bayesian analysis, Arregui et al. (2019) showed that the
problem can be formulated in terms of the inference of a three-
dimensional posterior from one observable with the use of Bayes’
rule as the product of likelihood and prior,

P({pi € Bodvam Mi} ~ p(vanl{pi> € Bo} M) p ({3 € Bo}1M1).

Considering a particular observed event, a Gaussian likelihood
function and uniform prior distributions for the three unknown
parameters, 6 = {p;, {, By}, over plausible ranges leads to the
marginal posterior distribution for the magnetic field strength
shown in Figure 2A. The result shows that not all values in the
range found by Nakariakov and Ofman (2001) are equally
probable. A well constrained marginal posterior is obtained
which specifies the particular plausibility for each value of the
magnetic field strength in the range. From this, estimates with
asymmetric error bars can be obtained. Regarding the other two
parameters, the density contrast and the loop density, their
distribution does not permit to obtain constrained information
on their most probable values. The marginal posterior for the
magnetic field strength incorporates the uncertainty on these two
parameters and can still be properly inferred, even if the values of
plasma density inside and outside the coronal loops are highly
uncertain.

One advantage of the Bayesian approach is that it offers a self-
consistent way to update the posteriors when additional
information is available. Spectroscopic measurements enable
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FIGURE 2 | (A) Posterior probability distribution for the magnetic field strength for a loop oscillation event with observed phase speed v, = 1,030 £ 410 km s~
under model M, given by Eq. 6. The inferred median value for the magnetic field strength is By = 21 ’j;f G, with uncertainties given at the 68% credible interval. (B) Joint
two-dimensional posterior distribution for the internal density of the waveguide and the magnetic field strength obtained for the inference with a Gaussian prior for the
internal density centred at p/, = 1.9 x 10712 kg m~® and with 0p,=0.50, . The inference with the more informative prior on density leads to By = 13ﬁg G and

pi= (2.2f8;g) x 10712 kg m™3. The outer boundaries of the light grey and dark grey shaded regions indicate the 95% and 68% credible regions, respectively. From

1

us to obtain information about physical properties of the coronal
plasma, such as the density. Consider we have some estimate for
the density inside the oscillating loop. This additional
information can be added to the inference in the form of a
Gaussian prior for the density, centred in the measured value.
Figure 2B shows the joint posterior for plasma density and
magnetic field strength for such an inference, with grey-
shaded areas indicating the 68% and 95% credible regions,
respectively. This example shows that the inclusion of
additional information enables us to better constrain our
estimates for the magnetic field strength and plasma density.
Observations show that transverse coronal loop oscillations
are quickly damped, with characteristic damping times of a few
oscillatory periods. Arregui et al. (2019) evaluated the influence of
this observable on the inference of the magnetic field strength.
The simplest available and more commonly accepted model is
damping by resonant absorption due to the inhomogeneity of the
plasma in the cross-field direction (Goossens et al, 2002;
Ruderman and Roberts, 2002). Under the thin tube and thin
boundary approximations, with a non-uniform layer of width [
much shorter than the tube radius R (I « R), the damping time is

given by
2 1 1 2L
74 (p;» ¢, Bo, I/R) = p (%) <l/_R> <V—ph> (7)

The forward predictions of this new model M,, given by Eqs 6,
7, are coupled, hence some degree of influence is expected in the
inference of the magnetic field, due to the consideration of wave
damping. Now the problem can be formulated in terms of the
inference of a four-dimensional posterior from three observables
with the use of Bayes’ rule as the product of likelihood and prior,

p({p ¢ Bo, 1/ R} {vpn, 7o, L}, M) ~
P ({von 70 L}y € Bos I/RY, M2) p ({py € Boy 1/ R}IMS).
Considering the same observed event as before, a Gaussian

likelihood function and uniform prior distributions for the four
unknown parameters, 0 = {p;, {, By.L}, over plausible ranges leads

to the results displayed in Figure 3. The resulting marginal
posteriors for the magnetic field strength for different
damping times show little differences. The advantage of
including the damping into the inference is that it enables to
infer information on the transverse inhomogeneity length scale of
the density at the boundary of the waveguide. This parameter is
relevant in the context of wave dissipation processes (Arregui,
2015).

3.2 Inferring the Magnetic Field Strength

and Thread Length in Prominences

Bayesian methods are also being applied in prominence
seismology. Estimates of periods and phase speeds of
propagating waves were obtained by Lin et al. (2009) for a
number of threads in a prominence. A fundamental difference
in the solution to the inverse problem, in comparison to the case
with coronal loops, is that the internal prominence density is two
orders of magnitude larger than the external coronal density. This
makes the kink speed independent of the density contrast and
simplifies Eq. 6 to the approximate expression vy, ~ V2vs;. By
using this fact, Lin et al. (2009) were able to provide estimates for
the magnetic field strength in the threads, upon assuming a given
value for their plasma density.

Figure 4A gives ranges of variation for the magnetic field
strength in 10 selected threads as a function of the prominence
density computed by Montes-Solis and Arregui (2019) from data
in Table 1 of Lin et al. (2009). From the Bayesian perspective, as in
the case of coronal loops, all those values within the obtained
ranges are not equally probable. The Bayesian solutions
computed by Montes-Solis and Arregui (2019) in the form of
marginal posteriors for each of the 10 threads are shown in
Figure 4B. For each thread, the magnetic field strength can be
properly inferred (see Table 2 in Montes-Solis and Arregui 2019).
The distributions spread over a range of values from 1 to 20 G and
seem to point to a highly inhomogeneous nature of the studied
prominence area. Montes-Solis and Arregui (2019) continue their
analysis with the computation of the joint two-dimensional
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FIGURE 3| Marginal posterior distributions for magnetic field strength, density contrast, and transverse inhomogeneity length scale for the inversion of the problem
with forward model given by Eqs 6, 7, a transverse oscillation with vy, = 1,080 £ 410 km s~ and different values for the damping time: no damping (solid line), 74 = 500 s
(dotted line), 74 = 800 s (dashed line), and 74 = 1,200 s (dash-dotted line) with an associated uncertainty of 50 s in all cases. The inferred medians with errors at the 68%
credible interval are By = 21*3? G for the undamped case, By = 201" Gfor 74 =500 s, By = 193" Gfor 74 =800 s, and By = 18*}' G for 4= 1,200 s. A fixed value
for the loop length L = 1.9 x 10'° cm was considered in all computations. Adapted from Arregui et al. (2019).

posterior for magnetic field strength and prominence density
which, in the case of a Gaussian prior for the density, is well
constrained (see Figure 4C).

In contrast to the case of coronal loops, prominence threads do
not occupy the entire length of the magnetic flux tube. We only
observe the cold and dense plasma occupying a fraction of a longer
but unobservable structure. Soler et al. (2010) constructed a model
that provides us with an approximate analytical expression for the
phase speed of kink modes in partially filled tubes

ar 2 0
Vih = m Vih ®)
L L

in terms of the phase speed in a totally filled tube, vgﬁ = 2V
with L, the length of the thread and L the length of the flux tube.
Figure 4D shows results for the inference of the magnetic field
strength performed for different models for the density along the
thread considering: a fully filled tube, a partially filled tube with a
uniform prior distribution for L,/L, and a partially filled tube with
a Gaussian prior distribution for L,/L. The results indicate the
importance of having an approximate idea about the ratio L,/L in
order to obtain an accurate inference.

Even in the case of a fully filled tube, L, = L, as in the case with
coronal loops, the inferred posterior for the magnetic field
strength is dependent on the amount of information we have
on the value of plasma density. Figure 5 shows marginal
posteriors for the magnetic field strength corresponding to
thread # 5 in Table 2 of Montes-Solis and Arregui (2019).

They were calculated with three different priors for the
density. One considers a uniform prior. The other two
Gaussian distributions centred at two different density values.
The results indicate that the obtained posteriors clearly differ.

One of the reasons why prominence seismology is in a less
developed stage than coronal loop seismology is because there are
fewer observations of transverse oscillations in these structures, but
also because of the complexity in their modelling. As in prominence
threads we only observe the cold and dense part of a longer but
unobservable structure, the length of the flux tube cannot be directly
estimated. However, using seismology diagnostics with multiple
periods one can obtain posterior probability distributions for the
ratio of the length of the thread to the length of the flux tube, L,/L.
Also, a number of observations show that threads oscillate and flow
simultaneously. This affects the oscillation period which changes in
time. By measuring the period at two different moments and using
theoretical developments by Soler and Goossens (2011) a number of
parameters, such as the flow speed, the length of the thread and the
length of the flux tube can be inferred. Applications of these
principles can be found in the study by Montes-Solis and
Arregui (2019).

3.3 Assessing Damping Mechanisms for
Coronal Loop Oscillations

The damping of magnetohydrodynamic waves has been a matter
of interest since the first imaging observations of transverse
coronal loop oscillations (Aschwanden et al., 1999; Nakariakov
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et al,, 1999). Of particular interest in explaining the observations
are the mechanisms based on the cross-field inhomogeneity of the
waveguides, such as phase mixing and resonant absorption
(Heyvaerts and Priest, 1983; Goossens et al., 2002; Ruderman
and Roberts, 2002; Goossens et al., 2006), or those involving
lateral or foot-point leakage of wave energy (Spruit, 1982;
Roberts, 2000; De Pontieu et al., 2001; Cally, 2003).

Attempts to discriminate between alternative mechanisms were
initially focused on the computation of the damping time scales
predicted by each mechanism for plausible values of the unknown
relevant physical parameters. This approach enables for instance to
discard viscous or resistive processes because of the too long timescales
they predict. Ofman and Aschwanden (2002) proposed a method
based on the comparison between theoretically predicted and fitted
power-law indexes between periods and damping times to assess the
plausibility of alternative damping mechanisms. This suggestion is
based on the assumption that each mechanism is characterised by a
particular power-law index, a premise that was shown to be
questionable by Arregui et al. (2008). For instance, resonant

absorption is able to generate data realisations leading to different
scaling laws with different power-law indexes.

A Bayesian approach to comparing the relative plausibility
among several proposed damping mechanisms for coronal loop
oscillations was followed by Montes-Solis and Arregui (2017).
They considered the mechanisms of resonant absorption in the
Alfvén continuum (Goossens et al., 2002), phase mixing of Alfvén
waves (Heyvaerts and Priest, 1983), and wave leakage of the
principal leaky mode (Cally, 2003).

For resonant damping, the theoretically predicted damping
time 74 over the period P, under the thin tube and thin boundary
approximations, reads (Goossens et al., 2002; Ruderman and
Roberts, 2002)

T4

R{+1
P 7 9)

(-
with [ the thickness of the non-uniform layer at the boundary of

the loop and { = pi/p, the density contrast between the internal
and external densities. Plausible ranges of variation for the

QN
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Hp, =2 % 10719 kg m™ (blue), and a uniform prior (black dashed line).
Uncertainties in Gaussian priors are considered to be of 50%. From Montes-
Solis and Arregui (2019).

unknown parameters are { € (1, 10] and /R € (0, 2]. They are
capable of producing the observed fast damping.

For phase mixing, an analytical expression for the damping
ratio was derived by Roberts (2000).

Td _ 3\" 2/3 p-1/3
Ho(5) wern (10)

Here v = 4 x 10°km’s™" is the coronal kinematic shear
viscosity coefficient and w the transverse inhomogeneity length
scale. Considering values of the unknown parameter in the range
w € [0.5, 6], the required observed damping times scales can be
well reproduced.

The third considered mechanism, wave leakage, consist of the
presence of a wave that radiates part of its energy to the
background medium while oscillating with the kink mode
frequency. An analytical expression for the damping ratio was
derived by Cally (2003),

T4 4 (R -2
7 w(D) ()
with R and L the radius and length of the loop, respectively. A
plausible range for their ratio is R/L € [107%, 0.3], which leads to
predicted damping ratio values as low as 0.5 or as high as 10°.

In Montes-Solis and Arregui (2017), the three damping
mechanisms were compared by considering how well they are
able to reproduce the observed period and damping timescales,
taking into account the observations and their associated
uncertainty. Figure 6 shows the results from the computation
of Bayes factors for the one-to-one comparison between damping
mechanisms in the plane of observables damping time vs
oscillation period. The subscripts 0, 1, and 2, are used to
identify resonant absorption, phase mixing, and wave leakage,
respectively. The first apparent result is that the evidence
distribution in the plane of observables in favour of any of the

Bayesian Applications to the Solar Corona

models in comparison to another depends on the combination of
observed periods and damping times. For instance, in the
comparison between resonant absorption and phase mixing,
Figure 6A shows strong and very strong evidence for resonant
damping in the upper-left corner of the plane of observables. For
low damping ratios, at the lower-right corner, the evidence
supports the phase-mixing model. In the area in between,
differently coloured bands denote different levels of evidence.
Figure 6B shows the comparison between resonant absorption
and wave leakage. In most of the observable plane, there is a lack
of evidence supporting either of the two mechanisms. Only for
the lowest damping ratio values there is evidence in favour of
resonant damping. Finally, Figure 6C shows the results from the
comparison between phase mixing and wave leakage. For
combinations of period and damping time leading to large
damping ratios, the evidence in favour of wave leakage is
larger. For low damping ratios, the evidence strongly supports
the mechanism of phase mixing.

The results discussed so far were obtained by application of
Bayesian model comparison methods to synthetic hypothetical
data in the plane of observables of period and damping time.
and Arregui (2017) also considered the
computation of Bayes factors for a selection of 89 loop
oscillation events listed in the databases by Verwichte et al.
(2013) and Goddard et al. (2016). The results are displayed in
Figure 7. The colours indicate the level of evidence, based on the
magnitude of the corresponding Bayes factor. It is clear that the
events in blue colour, which correspond to evidence that is not
worth a bare mention, dominate in all three panels. In the
comparison between resonant absorption and phase mixing
(left panel), in approximately 78% of the events the evidence
is not strong enough to favour one model or the other. The
evidence is positive for resonant absorption in 8% of the events
and for phase mixing in about 14% of the events. In the middle
panel, the comparison between resonant absorption and wave
leakage is shown. The evidence is not large enough to support any
of the two mechanisms. The panel in the right shows the evidence
assessment between phase mixing and wave leakage. In this case,
the evidence is inconclusive for 79% of the events. There is
positive evidence in favour of wave leakage in 3% of the
events, those corresponding to oscillations with very strong
damping. For the remaining 18%, the evidence is positive in
favour of phase mixing.

The results presented by Montes-Solis and Arregui (2017) do
not allow us to identify a unique mechanism as responsible for the
quick damping of coronal loop oscillations. However, the method
makes use of all the available information in the models, observed
data with their uncertainty, and prior information in a consistent
manner.

Montes-Solis

3.4 Evidence for Resonant Damping of
Coronal Waves With Foot-point Wave

Power Asymmetry

Waves propagating in extended regions of the solar corona offer
another opportunity to test our models for the damping of waves
and oscillations. Their existence was first demonstrated by

Frontiers in Astronomy and Space Sciences | www.frontiersin.org

March 2022 | Volume 9 | Article 826947


https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

Arregui

Bayesian Applications to the Solar Corona

A4000

3500
3000

2500

T4(s)

2000

1500

1000

500

2InBoy

1000 1200

10

2

-6

B 4000

3500
3000

2500

T4(s)

2000

1500

1000

500

2InBoz

1000 1200

c 4000
10

-6

3500

3000

2500

T4(s)

2000

1500

1000

500

2InB12

1000 1200

FIGURE 6 | Bayes factors in the one-to-one comparison between resonant absorption, phase mixing, and wave leakage mechanisms as a function of the
observables period and damping time with uncertainties of 10% for each. The dashed lines indicate 74 = P. The different levels of evidence are indicated in the colour bars.
Not Worth a bare mention (NWM, yellow), Positive (PE, green/red), Strong (SE, blue/purple), Very strong (VSE, white/grey). Adapted from Montes-Solis and Arregui

10

respectively. Adapted from Montes-Solis and Arregui (2017).
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FIGURE 7 | Representation of the Bayes factors computed for the 89 events selected from Verwichte et al. (2013) and Goddard et al. (2016). The different panels
correspond to the three one-to-one comparisons between resonant absorption, phase mixing, and wave leakage, here represented with the subscripts O, 1, and 2

Tomczyk et al. (2007) and, although first interpreted as Alfvén
waves, theoretical arguments by Goossens et al. (2012) showed
that an interpretation in terms of kink waves damped by resonant
absorption offers a more accurate description. The observed
waves show signatures of in situ wave damping in the form of
a discrepancy between the outward and the inward wave power.
This led Verth et al. (2010) to produce a theoretical model
connecting the average power ratio for inward and outward
propagating waves with their damping rate. This expression is

<P(f)>ratio = RO eXP<V2hI% f)’
phGE

with Ry = Pou(f)/Pin(f) the ratio of powers generated at the two
foot-points. The exponential factor contains wave propagation
and damping properties: the wave travel time along the full wave
path of length L, 2L/v,, the frequency fand the damping ratio, &.
In the absence of damping, & — oo and (P(f)) a0 = Ro, thus the
average power ratio equals the ratio of powers at the two foot-
points.

The model by Verth et al. (2010) predicts an exponential
dependence of the average power ratio with frequency. A least
squares fit to a set of data from the Coronal Multi-channel
Polarimeter (CoMP) performed by these authors shows a good

(12)

qualitative agreement and enabled them to infer a value for the
damping ratio &&. However, one must bear in mind that a fitting
procedure consists of adopting a model M and obtaining the set of
so-called best fit parameters 0. As explained above, Bayesian
inference aims at obtaining a solution in terms of a probability
distribution of the parameters conditional on the model and on
the data, p(6|M, D). There is no room for absolute statements
concerning model evidence because the evidence in favour of a
model is always relative to the evidence in favour of another.
Montes-Solis and Arregui (2020) performed a Bayesian
analysis to quantify the evidence in favour of resonant
damping using CoMP. Instead of considering an alternative
damping mechanism the focus was on trying to quantify the
evidence in favour of resonant damping in front of the other
possible source of discrepancy between the inward and outward
power ratio in the corona, namely, an asymmetry in the wave
power ratio at the foot-points, i.e., Ry # 1 in Eq. 12. We note that if
Pou(f) > Pin(f), foot-point driving asymmetry will increase the
contribution of resonant damping. Conversely, for Pou(f) < Pin(f),
the asymmetry will decrease the contribution of resonant
damping to the average power ratio.
In their analysis, Montes-Solis
consider the inference of the two

and Arregui (2020) first
parameters of interest, &g
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and R, from a set of COMP data points for average power ratio as
a function of frequency in the range 0.05-4 mHz. The resulting
marginal posteriors are shown in Figure 8. The set of CoMP
observations is equally well explained by a reduced model, My,
with parameter distribution p(¢g| Mg, D) that considers resonant
damping as the sole contributor to the average power ratio and by
the larger model, My, with parameter distributions p(£g|Ma, D)
and p(Ro|Ma, D), which additionally considers foot-point
asymmetry. The full posterior for R, is within the region
below one. This means that P, < P;, and there is asymmetry
in the power generated at both foot-points. The corresponding
inference for & is shifted towards the region corresponding to
stronger damping (smaller values of &) to counterbalance the
decreasing factor due to the asymmetry at the foot-points.
Observations can therefore be equally well explained by two
models, with or without foot-point asymmetry. To quantify the
relative merit of the two explanations, Montes-Solis and Arregui
(2020) perform model comparison using the Bayes factor

_ p(DIMy)

= (DM, (13)

RA

The Bayes factor is computed in the two-dimensional plane of
synthetic data D, covering the full ranges in frequency and
average power ratio of  CoMP observations,
D = (f,{P(f)ratio)- To this end, Eq. 12 is used to generate
theoretical predictions over a grid of points in f and {P(f)) atio-

Figure 9 shows the distribution of Bayes factor values over
the two-dimensional synthetic data space. It is clear that the
evidence distribution is inhomogeneous and three different
regions, can be identified. They are delimited by the
boundaries where the marginal likelihoods are equal and
therefore the Bayes factor is zero. In the central region,
within the solid boundary lines, model My is in principle
more plausible than model M,, because the marginal
likelihood for this model is larger. The level of relative
plausibility depends on the Bayes factor value, Bra. In the
white area, the evidence in favour of My is inconclusive and
then varies from positive to very strong in the blue to green
areas. Above and below the solid lines, model M, is more
plausible, because the marginal likelihood for this model is
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FIGURE 9 | Filled contour with the distribution of Bayes factors, Bgra and

Bag, over the two-dimensional data space D. Solid lines connect points with
P (DIMR) = p(D|Ma) (Bayes factor zero). The computations are performed
over agrid of points (N = 80, N¢p#y,.., = 155) over the ranges f € [0.05, 4]

and (P())ratio € [0.25, 4.1]. The priors are p (¢g) ~ G(1.9,0.3) for Mg and

p (&) ~ G(4.3,0.6); p(Ro) ~ G(0.5,0.02) for Ma. Triangles represent CoMP
data. Following Kass and Raftery (1995), the evidence in favour of a model / in
front of an alternative / is inconclusive for values of 2log(B;) from 0 to 2; positive
from 2 to 6; strong from 6 to 10; and very strong for values above 10. Adapted
from Montes-Solis and Arregui (2020).

larger. However, based on the numerical value for the Bayes
factor By, the evidence is inconclusive in the white areas and
varies from positive to very strong as we move further towards
the upper and lower areas in the plane of observables.

Superimposed over the distribution of Bayes factors in
Figure 9 are observed CoMP data with assumed error bars.
We can see that in most of the cases, data fall over regions
where the marginal likelihood for model My, is larger. A fraction
of them are located over areas where the evidence in favour of
model My, is conclusive. Interestingly, some of them fall into the
two regions where the marginal likelihood for model M, is larger.
In some cases, they are over areas where the evidence supports
model My in front of model Mg.
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FIGURE 11 | Scatter plot of the 101 loop oscillation events in the
Nechaeva et al. (2019) catalog with information about both the oscillation
amplitude and the damping ratio. In the Bayesian evidence analysis by Arregui
(2021), colour filled circles represent cases with conclusive evidence.

Edge coloured circles represent cases with either p (D|MnL) >p (DIMga) or
vice versa, yet inconclusive evidence. Red is for My and blue for Mga.
Adapted from Arregui (2021).

These results indicate that CoMP measurements of integrated
average power ratio for propagating coronal waves cannot
exclude an explanation in terms of asymmetry in the wave
power generated at the foot-points. Some observations are
equally or even better explained by larger models with foot-
point wave power asymmetry than by the reduced models with
identical power at the two foot-points and resonant damping as
the only contributor to the observed average power ratio.

3.5 Evidence for a Nonlinear Damping

Model for Waves in the Corona
Recent observational and theoretical studies have shown that the
damping of transverse loop oscillations depends on the oscillation
amplitude (Goddard et al,, 2016; Magyar and Van Doorsselaere,
2016). The increase in the number and quality of observations has
led to the creation of catalogs with a large number of events
(Anfinogentov et al., 2015; Goddard et al,, 2016; Nechaeva et al.,
2019; Tiwari et al., 2021). When the damping time over the period is
plotted against the oscillation amplitude, the data are scattered
forming a cloud with a triangular shape (see e.g., Figure 6 in
Nechaeva et al, 2019). In general, larger amplitudes correspond
to smaller damping ratio values and vice versa. In a recent study,
Arregui (2021) considered the mechanisms of linear resonant
absorption, in the formulation given by Ruderman and Roberts
(2002) and Goossens et al. (2002) and of nonlinear damping, in the
formulation given by Van Doorsselaere et al. (2021). Their analytical
developments provide us with two analytical expressions for the
damping ratio in cylindrically symmetric waveguides.

For linear resonant absorption, model Mg,, the damping ratio
is given by

~

+1 R
-1 70

Td
FIIMRA =F (14)

~

with ¢ = pi/p. the ratio of internal to external density, I/R the
length of the non-uniform layer at the boundary of the waveguide
with radius R, and F = 2/ for a sinusoidal variation of density
over the non-uniform layer. The predictions from the damping
model Mg, given by Eq. 14 for the observable damping ratio are
determined by the parameter vector Oga = {{, I/R}.

For the nonlinear damping of standing kink waves, due to the
energy transfer to small scales in the radial and azimuthal
directions, the damping ratio is given by
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with a = #/R the ratio of the displacement # to the loop radius.
The predictions from the damping model My given by Eq. 15 for
the observable damping ratio, for known oscillation amplitude,
are determined by the parameter vector Oy, = {R, {}.

Theoretical predictions from these two models can be
confronted by computing the marginal likelihood of the data
in the plane of observables defined by the damping ratio and the
oscillation amplitude, D = {5, 74/P}. The ratio of marginal
likelihoods leads to the Bayes factor distributions over D-space
shown in Figure 10. The two panels show that there is a clear
separation between the regions over synthetic data space over
which evidence in favour of one or the other model dominates.
The evidence supports the nonlinear damping model in a
particular region corresponding to combinations with small
amplitude and large damping ratio values in the upper-left
region of the plane and extending towards the lower-right
region corresponding to combinations with smaller damping
ratio and larger oscillation amplitude values in a broader
range. On the other hand, the evidence supports resonant
damping in two regions. The first one extends towards the
right-hand side of the domain. The second consists of a small
region corresponding to combinations of very small amplitude
and strong damping. Overall, the observed data fall within the
regions with the largest Bayes factor values for the nonlinear
damping model.

The analysis using synthetic data over prescribed ranges for
the observable amplitude and damping ratio offers a birds-eye
view of the distribution of the evidence. The application to
observed data offers a better informed result on the level of
evidence for or against each damping model. The catalog by
Nechaeva et al. (2019) contains 223 loop oscillating loops
observed with SDO/AIA in the period 2010-2018. In 101
cases, they contain information about the damping and the
oscillation amplitude. Arregui (2021) applied a Bayesian
evidence analysis to these data to assess the strength of the
evidence for nonlinear damping relative to that for resonant
absorption.

Figure 11 displays the results obtained for all 101 cases,
regardless of the conclusive or inconclusive nature of the
evidence. The red colour indicates evidence in favour of
nonlinear damping. The full red dots indicate positive
evidence. The edge coloured circles are cases with marginal
likelihood for nonlinear damping larger than the marginal
likelihood for resonant damping, but inconclusive evidence
because the Bayes factor is below 2. The blue colour indicates
evidence in favour of resonant damping. The full blue dots
indicate positive evidence. The edge coloured circles are cases
with marginal likelihood for resonant damping larger than the
marginal likelihood for nonlinear damping, but inconclusive
evidence because the Bayes factor is below 2. The marginal
likelihood in favour of nonlinear damping is larger in the

1
40/ —

2na (15)

Td
F"MNL =
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majority of cases. The events with conclusive evidence for
nonlinear damping largely outnumber those in favour of linear
resonant absorption. The evidence for the nonlinear damping
model relative to linear resonant absorption is therefore
appreciable to a reasonable degree of Bayesian certainty.

4 SUMMARY

Bayesian analysis tools are increasingly being used in seismology
of the solar corona. In parameter inference, they led to the
inference of relevant information on the structure of coronal
loops or prominence plasmas, such as the magnetic field strength
or the plasma density. Model comparison techniques have been
used to assess the damping mechanism operating in coronal loop
oscillations. In a comparison between a particular linear and a
particular nonlinear damping mechanism, the latter seems to be
more plausible in explaining observations. Note that we might
have left out important alternative physical processes that could
be more plausible instead. This could be assessed by performing
additional one-to-one comparisons. Because of our inability to
directly measure the physical conditions in the structures of
interest, the Bayesian approach offers the best solution to
inference problems under uncertain and incomplete
information. It wuses principled ways to combine the
information from data, theoretical models and previous
knowledge. The grow in the number of dedicated computing
tools to sample multidimensional posterior and marginal
likelihood spaces will enable us to apply these methods to
additional phenomena related to the structure, dynamics and
heating of the solar atmosphere.
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