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In this paper I examine whether external forcing of the solar dynamo on long timescales can
produce detectable signal in the form of long term modulation of the magnetic cycle. This
task is motivated in part by some recent proposals (Abreu et al., 2012; Astron. Ap., 548,
A88; Stefani et al., 2021; Solar Phys., 296, 88), whereby modulation of the solar activity
cycle on centennial and millennial timescales, as recovered from the cosmogenic
radioisotope record, is attributed to perturbation of the tachocline driven by planetary
orbital motions. Working with a two-dimensional mean-field-like kinematic dynamo model
of the Babcock-Leighton variety, I show that such an external forcing signal may be
detectable in principle but is likely to be obliterated by other internal sources of fluctuations,
in particular stochastic perturbations of the dynamo associated with convective
turbulence, unless a very efficient amplification mechanism is at play. I also examine
the ability of external tidal forcing to synchronize an otherwise autonomous, internal
dynamo operating at a nearby frequency. Synchronization is readily achieved, and
turns out to be very robust to the introduction of stochastic noise, but requires very
high forcing amplitudes, again highlighting the critical need for a powerful amplification
mechanism.
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1 INTRODUCTION

The Sun’s 11-year magnetic cycle modulates the frequency of all geoeffective solar eruptive
phenomena, and is consequently seen as a key element of space weather research. The solar
cycle is not quite stationary, as successive cycles shows significant variations in their amplitude and
duration (Hathaway, 2015). Much efforts are going into the design of predictive schemes allowing the
forecast of the timing and peak amplitude of upcoming activity cycles (Petrovay, 2020). Variations of
the solar cycle amplitude on much longer timescales, from centuries to millenia, are also known to
take place, and their impact on planetary atmospheres and interplanetary environment define what is
now known as space climate. The coincidence of the 1645–1715 Maunder Minimum, a period of
strongly suppressed solar activity (Eddy, 1976), with the deepest part of the so-called Little Ice Age
well known in climatology, continues to fuel speculations regarding the possible influence of solar
activity on Earth’s climate. Investigating such questions on a truly physical basis clearly requires a
detailed understanding of the mechanism powering the solar magnetic activity cycle.

The general concensus view of the solar cycle as being driven by a hydromagnetic dynamo
operating in the solar interior is now seldom challenged. However the nature of the physical
mechanism(s) regulating the cycle’s amplitude and duration, as well as long timescale modulations, is
still not understood and the subject of vigorous research and modelling efforts [for a review see
Section 7 in Charbonneau (2020)]. Many plausible candidate mechanisms are known, including but
not limited to: 1) stochastic forcing associated with turbulent fluid motions pervading the solar
convection zone; 2) magnetic backreaction on the turbulent electromotive force (often dubbed α-

Edited by:
Fadil Inceoglu,

GFZ German Research Centre for
Geosciences, Germany

Reviewed by:
Robert Harold Cameron,

Max Planck Institute for Solar System
Research, Germany

Soumitra Hazra,
University of Massachusetts Lowell,

United States

*Correspondence:
Paul Charbonneau

paul.charbonneau@umontreal.ca

Specialty section:
This article was submitted to

Stellar and Solar Physics,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 12 January 2022
Accepted: 23 February 2022
Published: 14 March 2022

Citation:
Charbonneau P (2022) External
Forcing of the Solar Dynamo.

Front. Astron. Space Sci. 9:853676.
doi: 10.3389/fspas.2022.853676

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 8536761

ORIGINAL RESEARCH
published: 14 March 2022

doi: 10.3389/fspas.2022.853676

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.853676&domain=pdf&date_stamp=2022-03-14
https://www.frontiersin.org/articles/10.3389/fspas.2022.853676/full
http://creativecommons.org/licenses/by/4.0/
mailto:paul.charbonneau@umontreal.ca
https://doi.org/10.3389/fspas.2022.853676
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.853676


quenching and η-quenching); 3) magnetic backreaction on large-
scale flows taking part in dynamo action, namely differential
rotation andmeridional circulation, either through the large-scale
Lorentz force (sometimes called “Malkus-Proctor” effect) or
through magnetically-mediated alterations of the Reynolds
stresses powering these flows (Λ-quenching); 4) time delay
effects in flux transport dynamos, when the source regions for
the poloidal and toroidal magnetic components are spatially
segregated. Triggering Grand Minima of activity, such as the
Maunder Minimum, may also involve intermittency, namely a
deterministicaly- or stochastically-driven switch between two
distinct dynamical states of the solar dynamo. The statistics of
Grand Minima established on the basis of the cosmogenic
radioisotopic record (Usoskin, 2017) points towards a
stochastic trigger, although much modelling work is still
needed to properly address this issue.

All of these above physical mechanisms are internal to the Sun.
The possibility that the amplitude of the solar cycle may be
regulated by external physical effects is now seldom considered;
yet, and interestingly, history reveals that it largely predates our
contemporary dynamo-based Weltanschau.

2 THE PLANETARY HYPOTHESIS

It was a hard one to miss. Already in 1852, Rudolf Wolf
(1816–1893) took due note of the close coincidence between
the mean duration of the sunspot cycle, which he had just
recalculated at 11 year, and the 11.86 year of Jupiter’s orbital
period. Indeed, back in the second half of the nineteenth century
the notion that the gravitational pull of planets could somehow
drive the sunspot cycle formed the basis of what can legitimately
be called the first model of the solar cycle (Charbonneau, 2002).
Rudolf Wolf himself expended great efforts in trying to fit his
sunspot number time series with a combination of harmonic
signals at the planetary orbital frequencies. However, the most
detailed modeling attempts were made by Balfour Stewart
(1828–1887), the driving engine of a team formally led by
Warren De La Rue (1815–89), head of the solar photographic
monitoring program at Kew Observatory (de La Rue et al., 1872).
The favored hypothesis involved the triggering of sunspot
appearances by planetary tidal effects, even though the
associated tidal height was already suspected to be minuscule.
Queried about the possibility by De La Rue, the Utrecht
astronomer Martinus Hoek (1834–74) carried out the
calculation to arrive at the minute figure of 1 cm for the
height of planetary tides at the solar surface. In his reply to
De La Rue, he nonetheless remained cautiously open to the
possibility of a causal link:

Qu’on se représente des conditions d’équilibre instable,
et la moindre force suffit à la rompre et à produire des
phénomènes importants [. . .] Les couches extérieures
du soleil, rayonnant leur chaleur dans l’espace, doivent
par conséquent devenir plus dense. Il suffit que leur
densité surpasse celle des couches situées plus près du
centre pour avoir l’équilibre instable. Il viendra un

moment où elles iront s’engloutir dans l’intérieur du
soleil pour être remplacées par des couches moins
denses. Il est donc possible que les marées produites
par les planètes, quelque insignifiantes qu’elles soient,
suffisent à fixer ce moment.1

Picking up on a long ago quip by my colleague Peter Gilman,
the notion that minute planetary-related causes could have large
solar effects I have dubbed elsewhere “astrological homeopathy.”
I will retain here the qualifier “homeopathic” to refer to this idea.

Over the subsequent few decades, none of these early models
survived in the face of the accumulating sunspot data. Although
an early enthusiastic proponent of the idea, Wolf final’s statement
on the topic, published the year of is death in volume IV of his
Handbuch der Astronomie, is no longer so enthusiastic:

Zum Schlusse mögen noch die von mir un andern
gemachten Versuche erwähnt werde, die Coordinaten
der Fleckenkurve durch Formeln darzustellen, oder der
Verlauf der Erscheinung durch eine art Rückwirkung
der Planeten auf die Sonne zu erklären, obschon
dieselben bis jetzt noch nicht zu ganz befriedigenden
Resultaten geführt haben.2

Following the discovery of the magnetic nature of sunspot by
Georges Ellery Hale and collaborators, the search for the origin of
the sunspot cycle turned to the solar interior. This is still the near-
concensual position to this day, even though the planetary
hypothesis was and is continuing to be rediscovered and
reformulated in various guises [for a representative sample see
(Jose, 1936; Jose, 1965; Wood, 1972; Fairbridge and Shirley, 1987;
Javaraiah and Gokhale, 1995; Zaqarashvili, 1997; Abreu et al.,
2012; McCracken et al., 2014; Stefani et al., 2021)]. More often
than not the idea tends to be casually dismissed as numerology (at
best) or astrology (at worst), when not flatly ignored. Yet some of
the more recent variations on the notion of planetary forcing of
the solar cycle actually make specific physical proposal regarding
the manner in which external forcing could modulate the
solar cycle.

The scenario put forth by Abreu et al. (2012) is a good case in
point. These authors do not question the dynamo origin of the
primary 22-year magnetic cycle, but suggest that long timescale
modulations are driven by planetary gravitational torques exerted
on an aspherical tachocline. Through a mechanism such as
resonant excitation of gravity waves and the associated

1Let us imagine an unstable equilibrium, which can be broken by any force and lead
to important phenomena [. . .] The Sun’s external layers radiate their heat into
space, and in doing so must become denser. Once their density exceeds that of the
underlying layers, an unstable equilibrium is created. There will come a time where
they will sink in the interior to be replaced by layers less dense. It is therefore
possible that planetary tides, however minute, are sufficient to trigger this process
[my translation].
2Finally mention must be made of attempts, by myself as well as others, to fit the
sunspot time series with a mathematical formula, or to explain its shape through a
form of planetary influence on the Sun, even though as yet none of these attempts
has yielded truly satisfactory results [my translation].

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 8536762

Charbonneau Forcing of the Solar Dynamo

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


changes in the local flow shear flows, the subadiabaticity level
within the tachocline could be altered, leading to variations in the
buoyancy instability threshold of sunspot-forming magnetic flux
ropes formed and stored therein (Ferriz-Mas et al., 1994). Their
data analysis methodology, and in particular their adopted noise
model, has been legitimately (and vigorously) criticized
(Cameron and Schüssler, 2013; Poluianov and Usoskin, 2014).
However, and as speculative as it may be, their physical proposal
is plausible and has the merit of being testable at some level using
extant dynamomodels. The primary purpose of the present paper
is to document the results of such a test.

Even though the foregoing simulations and analyses were
motivated by the Abreu et al. proposal, the question adressed
in this paper is actually more general: to what extent can low-
amplitude, long period forcing of the solar interior—of whatever
origin—be amplified to the point of becoming detectable in the
magnetic field produced by dynamo action ? As we shall see
presently, the answer is far from obvious because, as outlined
above, the dynamo mechanism itself can generates its own
fluctuations through processes that are entirely internal to the
Sun. As the foregoing simulations will demonstrate, disentangling
these from signatures of external forcing turns out to be quite
challenging, and poses strict constraints of the magnitude of the
required external forcing. In particular, forcing amplitudes
leaving detectable spectral signatures are well outside the
homeopathic regime, even under a generous definition of the
latter. This implies that an efficient amplification mechanism
must be at play. This key issue is revisited in Section 7, after
simulations results have been presented.

3 A DYNAMO MODEL

The solar cycle model used in all experiments described further
below is the axisymetric kinematic Babcock-Leighton model
described in (Charbonneau et al., 2005), itself a slightly
modified, algorithmically distinct, and independent numerical
implementation of the dynamomodel introduced in (Dikpati and
Charbonneau, 1999). This is a spatially-extended two-
dimensional dynamo model (radius-latitude), in which the
production of the toroidal magnetic component takes place by
shearing of the poloidal component by a solar-like differential
rotation, and poloidal field production by the surface decay of
active regions. The latter process, fundamentally non-
axisymmetric, is incorporated into the dynamo equations via a
non-local surface source term S in the evolutionary equation for
the large-scale poloidal magnetic component. It is meant to
capture the contribution to the surface dipole moment
associated with the emergence of bipolar magnetic active
region exhibiting a systematic mean tilt with respect to the
East-West direction, a pattern known as Joy’s Law [see, e.g.,
McClintock and Norton (2013)]. The net dipole contribution
depends critically on this tilt, as well as other characteristics of
active regions such as magnetic flux pole separation [see Petrovay
et al. (2020) and references therein].

Motivated by thin flux tube simulations of the destabilization
and buoyant rise of magnetic flux ropes leading to sunspot

emergence (D’Silva and Choudhuri, 1993; Fan et al., 1993;
Ferriz-Mas et al., 1994; Caligari et al., 1995), the non-local
source term incorporates both a lower and upper operating
threshold on the strength of internal toroidal magnetic field
component B at the base (radius rc) of the convective envelope:

S r, θ;B( ) � s0 × f r, θ( ) × 1 + erf
|B rc, θ( )| − B1

w1
( )[ ]

× 1 − erf
|B rc, θ( )| − B2

w2
( )[ ] × B rc, θ( ), (1)

where the free parameter s0 measures the overall amplitude of the
source term, and the functional f (r, θ) has a form such as to
concentrate the source term in the subsurface layers. Scaling the
axiymmetric dynamo equations in terms of the magnetic
diffusion time τ = R2/η, where η is the magnetic diffusivity
within the convective envelope, leads to the appearance of two
dimensionless numbers measuring the strength of the poloidal
and toroidal source:

CS � s0 R

η
, CΩ � Ω0R2

η
(2)

With differential rotation well-constrained observationally, the
value of CΩ is set once a value for η is adopted, leaving CS as the
primary free model parameter setting the net dynamo number
D = CS × CΩ for the model.

In all simulations that follow we use B1 = 60kG, w1 = 20kG, B2
= 100kG, and w2 = 80kG. The form of the nonlinearity is plotted
on Figure 1. The lower operating threshold B1 reflects the fact
that toroidal flux ropes with strengths inferior to few tens of kG
do not become buoyantly unstable (Ferriz-Mas et al., 1994). The
upper threshold models the fact that flux ropes with strength in

FIGURE 1 | The non-local amplitude-limiting nonlinearity in the
(Charbonneau et al., 2005) Babcock-Leighton dynamo model. The surface
source term is nonlinearly proportional to the toroidal field strength at the core-
envelope interface rc, and subjected to both a lower (B1) and upper (B2)
operating threshold (see Eq. 1). In the simulations reported upon below,
external forcing is mimicked through (multi)periodic modulation of the
parameter B1. The thick (thin) blue and red curves illustrate the impact of
increasing (blue) or decreasing (red) B1 by ± 20% (± 10%) over its reference
value B1 = 60kG.
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excess of a hundred kG or so rise too rapidly through the
convective envelope to develop the East-West tilt essential for
the Babcock-Leighton mechanism. (Fan et al., 1993; D’Silva and
Choudhuri, 1993). Babcock-Leighton dynamos thus can only
operate in a finite range of internal field strength, and, in
particular, are not self-excited, as are the more conventional
αΩ dynamo models based on the turbulent α-effect [for more
on these various types of models, see Sections 4, 5 in
Charbonneau (2020)].

The model uses a solar-like paramatrization for internal
differential rotation, and a quadrupolar meridional flow (one
cell per meridional quadrant), poleward at the surface and the
equatorial return flow closing at the base of the convection zone
[see Figure 1 in Dikpati and Charbonneau (1999)]. Magnetic
diffusivity is assumed constant within the convection zone, but
decreases sharply upon moving into the underlying
radiative core.

This relatively simple dynamo model can be tuned to
reproduced many observed solar cycle features, including a
decadal activity cycle period for reasonable values of model
parameters, the observed phase relationship between internal
toroidal field and surface dipole, and equatorward propagation
of the deep-seated dynamo-generated magnetic field at low
latitudes. Inclusion of stochastic noise leads to a Gnevyshev-
Ohl-like pattern, namely a tendency for successive activity cycle
amplitudes to alternate between above-average and below-
average (Charbonneau et al., 2007). It also reproduces the
observed good correlation between surface dipole and
amplitude of the subsequent activity cycle (Charbonneau and
Barlet, 2011). The model can exhibit intermittency, leading to the
trigger of Maunder-minimum-like periods of strongly suppressed
activity (Charbonneau et al., 2004). For a 2D kinematic mean-
field-like dynamo model at that level of complexity, that is about
as good as it gets.

FIGURE 2 | Time series segments for magnetic energy integrated over the convection zone (black) and surface polar field (red) for the dynamo model described in
Section 3. Time is expressed in units of the magnetic diffusion time τ = R2/η (≃ 1040.7yr for η = 1.475 × 1011cm2s−1). (A) shows the reference solution, (B) is a solution
with singly periodic external forcing with parameters P1 = 0.12 and A1 = 0.1 (viz. Figure 4 below). The temporal variation of the forced parameter (B1 in Eq. 1) is plotted as
a dashed line. Panel (C) shows a solution with purely stochastic forcing of the dynamo number Cs at the 10% level, with a very short coherence time t/τ ≃ 10–4 (viz.
Section 5 and Figure 6 further below). On panels (B,C), the 2 gray horizontal lines indicate the min/max range of the reference solution plotted in panel (A). Note that the
plotting range for magnetic energy does not start at zero. On panels (B,C), and for bothmagnetic energy and polar field, cycle-to-cycle fluctuations at peak time are at the
level of a few percent as compared to the mean.
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The model parameters are chosen so as to produce a mildly
supercritical fixed-amplitude cyclic solution, without
multiperiodic or chaotic amplitude modulation: CS = 8, CΩ =
5 × 104, Rm = 840, Δη = 102 [see Charbonneau et al. (2005) for
definition of these dimensionless quantities]. This reference
solution is mildly supercritical (D/Dcrit = 1.27, where D = CS ×
CΩ), and has a primary half-cycle period of 1.058 × 10–2 diffusion
times (angular frequency ω = 1187.8rad τ−1), equivalent to
11.01 year for a turbulent diffusivity η = 1.475 × 1011cm2s−1.
Dipolar parity is enforced via the equatorial boundary conditions
on the magnetic field components.

For every very simulation reported upon below, 500 full
magnetic (Hale) cycles (1000 activity cycles) are simulated,
spanning 10 diffusion times. A time step Δt/τ = 10–4 is used,
so that the primary cycle is temporally well-resolved (214 time
steps per magnetic cycle period). A spatial mesh Nr × Nθ = 128 ×
96 is used to cover one meridional quadrant, which is sufficient to
properly capture the sharp gradients developing immediately
below the core-envelope interface, as a result of the rapid
variation of the magnetic diffusivity imposed there [see
Figure 1 in Dikpati and Charbonneau (1999)].

Unless specified otherwise, magnetic energy integrated over
the simulation domain, henceforth detoned Emag, is used as a
proxy of magnetic activity. The corresponding time series for the
reference dynamo solution is plotted on Figure 2A (black solid
line). A second proxy is also defined, namely the surface polar cap
radial magnetic field, which we compute by integrating the
surface radial component from latitude 80° to the pole and
denote by BP. The time series for this proxy is plotted in red
on Figure 2A. Note that magnetic energy (black) cycles at twice
the frequency of the underlying magnetic cycle, as sampled here
by the surface polar cap magnetic field.

Figure 3 shows power spectra constructed from the full extent
of the two time series plotted on Figure 2A, both normalized to
their peak value prior to computing the spectra. The lowest
frequency peaks correspond to the primary cycle period (for
the polar field) and half-cycle period (for magnetic energy). The
higher frequencies hamonics simply reflect the fact that the
periodic variations are not purely sinusoidal in form. These
spectra were computed via a simple Fast Fourier Transform
(FFT), which yields an appropriate spectral estimator here
given the high (and regular) sampling rate and long duration
of the time series.

4 EXTERNAL FORCING

The axisymmetric formulation of the dynamo model just
described does not allow to direcly input velocity shears
induced by non-axisymmetric torques (of whatever origin).
Nonetheless, and still inspired by the Abreu et al. proposal,
the impact of external forcing on the stability of sunspot-
forming toroidal flux ropes is modelled directly through Eq. 1,
via the lower threshold parameter B1. A simple multiperiodic
harmonic modulation function of the general form is introduced:

B1 t( ) → B0
1 1 +∑Ai sin

2πt
Pi

+ φi( )[ ] (3)

where the forcing periods Pi are typically chosen significantly
larger than the primary cycle period (10–2 τ), to ensure a good
separation of timescales, and the homeopathic hypothesis
requires all Ai ≪ 1. The colored curves on Figure 1 show the
peak variations of the nonlinearity in the dynamo model
associated with a singly-periodic forcing of (non-homeopathic)
amplitudes A1 = 0.1 (thin lines) and 0.2 (thick lines). These
variations are fairly small, and lead primarily to an horizontal
displacement of the lower threshold, in proportion to the adopted
value for A1. However, because it acts on a threshold nonlinearity
this low-amplitude forcing turns out to have a profound effect on
the magnetic cycles produced by the dynamo.

Henceforth the experimental design is straightforward.
Starting from the reference, constant amplitude solution of
Figure 2A, periodic forcing is turned on and the model
integrated until the transient caused by initiation of the
forcing has resorbed, which typically requires 0.1 τ. The model
is then integrated over a further 10 diffusion times, proxy time
series extracted and normalized in terms of the corresponding
peak amplitudes measured in the reference solution, and finally
power spectra computed again through a simple FFT. These time
series are again spectrally well resolved, with at least 40 forcing
cycles sampled by the simulations even for the longest forcing
periods considered in what follows.

First consider a singly periodic forcing of the reference
dynamo solution introduced above (viz. Figures 2A, 3) for a
high (non-homeopathic!) forcing amplitude A1 = 0.1 and period
p = 0.12 τ. Time series segments of Emag and BP for this solution
are plotted on Figure 2B. Even at this high forcing amplitude, the
impact on cycle peak amplitudes in these time series is only at the

FIGURE 3 | Power spectra for the full length time series of magnetic
energy Emag (black) and surface poloidal field BP (red) for the reference
dynamo solution of Figure 2A. The primary magnetic (Hale) cycle period is
reflected in the primary peak for BP while the “activity cycle” at twice the
magnetic cycle frequency, corresponds to the primary peak of the Emag

spectrum. Higher harmonics also appear in the spectra, reflecting the
departure of the modulated response from a pure sinusoidal shape. Note that
the spectrum for the polar field (in red) only exhibits odd-numbered higher
harmonics because that time series is symmetric about its (zero) mean.
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level of a few percents. Although hard to pick up on Figure 2B,
the internal workings of the dynamo model lead to a significant
time lag between the forcing and overall modulation of our two
proxy time series. This is best seen upon constructing a phase
space trajectory in the [B1 (tp), Emag (tp)] plane, as shown on
Figure 4. Here, times tp corresponding to peaks in the magnetic
energy time series are first identified, and the corresponding
amplitude plotted versus the value of the forcing function at that
same time. Each small black dot on Figure 4 thus corresponds to
an “activity maximum”. Successive “loops” along the phase space
trajectory do not repeat exactly, because the magnetic cycle and
forcing periods are not commensurate. Note again here the small
(~ 5%) modulation level in magnetic energy at cycle peak in the
course of a forcing cycle of relatively high amplitude (A1 = 0.1).

But how about periodic forcing in the A≪ 1 regime ? Figure 5
shows four examples of such spectra for solutions subjected to
singly periodic forcing of varying forcing periods and much lower
amplitudes (P1, going from 0.3 to 0.03 τ, andA1 from 10–3 to 10–2,
as indicated). Clear and sharp peaks at the forcing frequencies are
visible in all cases.

Based on these and other similar simulations for varying
forcing amplitudes and periods, one finds (not surprisingly)
that the peak power spectral response increases with
increasing A. The spectral response also turns out to be largely
independent of the forcing period, at least in the range explored
here. This remains the case if the polar field strength, rather than
magnetic energy, is used as a proxy.

Admittedly it is not immediately clear how small the forcing
amplitude A1 has to be to qualify as “homeopathic”; yet, for the

long duration and well-sampled time series considered here, even
a forcing amplitude of 0.1% yields a clean spectral signature. This
is a direct consequence of forcing acting on a sharp threshold in
the poloidal source term for the adopted dynamo model.
Notwithstanding the logarithmic vertical axis used in plotting
the various spectra on Figure 5, one might be tempted to
conclude that such sharp spectral features, only a few orders
of magnitude below peak power for the primary cycle even at A =
10–3, could perhaps be detectable in long records of solar activity,
as provided by cosmogenic radioisotopes for example.

One must however recall that here the reference solutions
exhibits a completely steady cycle (viz. Figure 2A), devoid of any
longer timescale modulation—of whatever origin—which could
perhaps mask the spectral signature associated with external
forcing. This possibility is now investigated by adding to the
reference solution the most basic source of fluctuation, namely
stochastic variations of the dynamo number. This choice is far
from arbitrary, as strong stochastic fluctuations are expected in
the dynamo source terms, due to the turbulent nature of the
convective envelope, where the dynamo operates.

5 ENTERS NOISE

In the context of Babcock-Leighton dynamo model, random
fluctuations of the poloidal source term are associated with
stochasticity in the physical characteristics of bipolar
magnetically active regions emerging at the solar photosphere.
One particularly important characteristic is the tilt of the line
segment joining the two magnetic poles of the emerging bipolar
structure with respect to the E-W direction. The tilt is caused by
the action of the Coriolis force on the flow developing along the
axis of the buoyantly rising magnetic flux rope, but shows a
considerable scatter about the mean due to the perturbing action
of convective turbulence on the flux ropes during their rise

FIGURE 4 | Phase space trajectory of a singly-periodically forced
dynamo solutions, with forcing parameters P1 = 0.12τ−1, A = 0.1 and φ1 = 0.
The trajectory is plotted in the [B1(t), Emag(t)] plane, where both time series are
sampled at successives maxima of the magnetic energy time series
(solid dots). The trajectory reflects the time delay in the dynamo’s response to
periodic forcing (see text).

FIGURE 5 | Power spectra for a set of dynamo solutions subjected to
singly-periodic low amplitude external forcing (color-coded with parameters
as labeled). Magnetic energy is used again as a proxy. Here and on all
subsequent similar Figures, the black curve shows the spectrum of the
reference dynamo solution, taken from Figure 3.
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through the solar convection zone. Observations and modelling
indicate that these stochastic effects have an important impact on
the dipole moment produced in the course of the cycle [see, e.g.,
Cameron et al. (2013), Nagy et al. (2017), and references therein).
Here these will be modeled simply by introducing a zero-mean
additive random contribution to the dynamo number CS

controlling the overall magnitude of the poloidal source term:

CS → CS × 1 + 2 ar r − 1
2

( )( ), r ∈ 0, 1[ ] (4)

where r ∈ [0, 1] is a uniform random deviate, reset every two time
steps, equivalent here to a coherence time of 2 month, which is
100 times smaller than the primary magnetic cycle period. The
amplitude parameter ar sets the magnitude of the random
deviation about the mean.

Figure 2C shows the proxy time series obtained with a
stochastic forcing amplitude ar = 0.1, with the corresponding
power spectrum plotted in red on Figure 6. Power spectra for ar =
0.05 and ar = 0.25 are also shown, in green and blue respectively.
The spectral peak associated with the primary dynamo frequency
broadens with increasing noise level, but the frequency at
spectrum peak itself remains rock steady. However, and even
though the stochastic forcing frequency exceeds the primary
magnetic cycle frequency by nearly two orders of magnitude,
the internal workings of the dynamo nonetheless lead to
significant power appearing at frequencies much lower than
that of the primary cycle. This low-frequency response has at
least two distinct origins within the dynamo model: 1) In general,
any magnetic field perturbation tends to relax on a time scale of
the order of the linear growth rate for the dynamo number at
which the model operates. here this time scale exceeds the

magnetic cycle period, because the dynamo is only mildly
supercritical; 2) for the dynamo model used here, an
additional long timescale response is associated with the long
diffusion time characterizing the lower diffusivity, tachocline-like
shear layer at the base of the convection zone, a feature common
in other types of dynamo models including such a layer. Note
how this “broadband” spectral structure appearing at low
frequencies, associated exclusively with the internal response
of the dynamo model to incoherent noise, spreads well into
the frequency range associated with the external forcing
considered earlier (cf. Figure 5). Not surprisingly, this “noise
level” increases with the amplitude of the stochastic forcing.

The next obvious step is to combine short coherence time
stochastic forcing as on Figure 6, with long-period periodic
forcing, as on Figure 5. The result of such an experiment is
shown on Figure 7 for a stochastic forcing amplitude ar = 0.1 and
now a triply periodic external forcing given defined as:

B1 t( ) � B0
1 1[ + 0.007 5 sin

2πt
0.25

+ 1
4

( )
+ 0.01 sin

2πt
0.12

( )
+ 0.005 sin

2πt
0.035

+ 1( )]
(5)

The forcing parameters and noise amplitude in Eq. 5 were
deliberately chosen to yield a borderline case, where the spectral
signatures of the external multiperiodic forcing are barely
detectable. In practice it would be quite challenging to
unambiguously disentangle these signatures from other peaks
and spectral structures associated with the model’s low-frequency
response to stochastic forcing; and ramping up the noise to 25%
amplitude would obliterate them altogether.

Because the low frequency response is internal to the dynamo
itself, it is similar for incoherent stochastic forcing and coherent
external periodic forcing. As long as the forcing frequency is well

FIGURE 6 | Magnetic energy power spectra for a dynamo solution
subjected to low amplitude stochastic forcing of amplitude ar = 0.05 (green), ar
= 0.1 (red) and ar = 0.25 (blue), with very short coherence time 2 × 10–4 τ. The
equivalent forcing (angular) frequency, ωr = π × 104rad τ−1, is off the
horizontal scale to the right. For future reference, the black horizontal line
segment indicate the mean “noise” level in the spectra, for the angular
frequency range [40, 100]rad τ−1. Note the significant broadband power
appearing at frequencies much lower than those of the magnetic cycle, and
reaching into the frequency range characterizing the external periodic forcing
used for Figure 5.

FIGURE 7 | Magnetic energy power spectrum for a dynamo solution
including the triply periodic forcing given by Eq. 5 and a stochastic noise level
of 10% (red). The power spectrum for an equivalent noise-free simulation is
plotted in blue, and the three forcing frequencies indicated by
dotted lines.
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separated from the magnetic cycle frequency, it is then
straightforward to establish the bounds of detectability by simply
comparing the peak power associated with external forcing to the
mean noise levels in the same frequency range. The results of such
an exercise is shown on Figure 8. With a 10% noise level, a 2σ
detection requires at least 2% forcing amplitude, while a more
stringent 5σ ups the requirement to 5%. These figures go up by a
factor of ~ 2 in the presence of noise at the 20% level. These
numbers turn out to be essentially the same for the two proxies
tested, even though their noise levels and spectral responses are
different in absolute terms (cf. top and bottom panels on Figure 8).

This leads naturally to the question: what is a physically
reasonable level of stochastic noise in a dynamomodel ? Insofar
as the dynamo and noise models used here are concerned, this
can be estimated by adjusting ar to reproduce the observed
cycle-to-cycle variation in sunspot number or dipole moment.
It was noted previously that ar = 0.1 leads to cycle-to-cycle
variations only at the 5% level (viz. Figure 2C herein). The
simulations discussed in (Charbonneau and Barlet, 2011),
using the same dynamo and noise models as here, indicate
that solar-like fluctuations require ar ≃ 0.5 (see their Figures

2C, 3E). Extrapolation of Figure 8 then indicates that
detectable spectral signatures of long-period external forcing
would require A ~ 0.1 or more, not exactly what one might call
homeopathic; but this remains of course a model-dependent
and purely empirical result.

At a more physical level, what represents reasonable internal
stochastic forcing depends on the dynamo model considered; for
classical αΩ kinematic mean-field models, stochasticity likely
enters most strongly at the level of the α-effect. Analytical
estimates and measurements in numerical simulations suggest
fluctuations at a level comparable to the mean (Hoyng, 1993;
Ossendrijver et al., 2001; Racine et al., 2011; Simard et al., 2016;
Warnecke et al., 2018), i.e., ar= 1 (100% fluctuation) in the notation
of Section 5. In models based on the Babcock-Leighton
mechanism, such as used in this paper, stochasticity enters via
convectively-driven fluctuations of the meridional flow (Miesch
et al., 2000; Charbonneau and Dikpati, 2000; Choudhuri and
Karak, 2012), and more importantly via the broad statistical
distributions of tilt angles characterizing bipolar active regions
(McClintock and Norton, 2013; Cameron et al., 2013; Nagy et al.,
2017). Indeed surface flux transport simulations indicate that this
scatter in tilt dominates the observed variability of the Sun’s surface
dipole moment [see, e.g., Muñoz-Jaramillo et al. (2013), Jiang et al.
(2014), Petrovay et al. (2020)]. These results are hard to transpose
onto the simple noise model used here, but Figure 5 of (Petrovay
et al., 2020), taken at face value, would suggest fluctuations
approaching 50% of the mean value of the dipole source term.

Moreover, dynamo models of any variety incorporating
magnetic backrection on large-scale flows, not considered in
all simulations reported upon above, can produce long
timescale modulations of the primary cycle with amplitude
comparable to that of the primary cycle [e.g., Küker et al.
(1999), Moss and Brooke (2000), Bushby (2006), Simard and
Charbonneau (2020)]; the same holds of parity modulation (e.g.,
Sokoloff and Nesme-Ribes (1994), Beer et al. (1998)]. Such
nonlinear modulations would further raise and deform the
spectral landscape at low frequencies.

All these considerations suggest that if external forcing of the
solar dynamo—of any origin—is responsible for the centennial
and millennial modulations of the magnetic activity cycle, the
required forcing amplitudes should be well beyond the
homeopathic regime in order to produce a detectable signature
in the presence of other sources of modulation, whether
deterministic or stochastic.

6 A DETOUR: DYNAMO
SYNCHRONIZATION BY EXTERNAL
FORCING
An interesting variation on the theme of planetary forcing of the solar
dynamo was recently put forth by Stefani et al. (2018); Stefani et al.
(2019), Stefani et al. (2021). These authors suggest and provide
modelling results showing that external forcing at a frequency
close to that of the internally-driven dynamo could lead to a
synchronization of this internal dynamo at the external forcing
frequency (Stefani et al., 2018). These authors also show that once

FIGURE 8 | The solid dots show variations of peak spectral power at ω =
2π/0.12τ with forcing amplitude, for noise-free dynamo solutions including a
single forcing period p = 0.12 τ. The two sets of colored horizontal lines
indicate the mean power level plus two (solid) and five (dotted) sigma, in
solutions without periodic forcing but with stochastic noise at the 10 and 25%
levels, as indicated. These levels are computed over the angular frequency
interval ω ∈ [4, 100]rad τ−1, as indicated by the black line segments on
Figure 6. The top panel (A) is constructed from spectra of the total magnetic
energy time series, while the bottom panel (B) uses the unsigned surface polar
field strength time series.
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synchronization is achieved, external forcing act as a clock effectively
setting the magnetic cycle period, and ensuring its phase coherence, a
long standing challenge to dynamo models of the solar cycle (Dicke,
1978; Hoyng, 1996; Charbonneau and Dikpati, 2000). Stefani et al.
(2019) present a series of simulations demonstrating this effect in the
context of a 1D kinematic αΩ mean-field dynamo model, but also
indicate that, in contrast, robust synchronization of a simple
dynamical system formulation of the Babcock-Leighton dynamo
[specifically, the model described in Wilmot-Smith et al. (2006)]
could not be achieved.

In flux-transport dynamo models of the Babcock-Leighton
variety operating in the advection-dominated regime, the
magnetic cycle period is determined primarily by the turnover
time of the meridional flow, with weaker dependence on source
term amplitude (s0) or envelope magnetic diffusivity (η0). Working
with a mean-field-like Babcock-Leighton dynamomodel without a
lower threshold on poloidal source term but otherwise identical to
that introduced in Section 3, Dikpati and Charbonneau (1999) find
a scaling of the cycle period with model parameters of the form:

P � 56.8u−0.89
0 s−0.130 η0.220 yr[ ] (6)

where u0 is the parameter setting the overall speed of the
meridional flow. Using the same dynamo model,
Charbonneau and Dikpati (2000) go on to show that in
the presence of stochastic forcing, this meridional flow
acts as a clock maintaining the cycle’s phase coherence.
This would suggest that in a kinematic dynamo model
with fixed meridional flow, synchronization may be hard
to achieve by modulating the amplitude of the dynamo
source terms, and may perhaps explain the negative result
in Stefani et al. (2018). The dynamo model used here may
shed some light on this issue.

Figure 9 shows a series of spectra for dynamo simulations
where the forcing period is now 10.62year (vertical dashed line),
quite close to the half-period of the magnetic cycle for the
reference solution (11.01yr, vertical dotted line). The spectra
corresponds to a series of dynamo simulations with increasing
forcing amplitudes. The spectra are plotted over a very small
angular frequency interval around the internal dynamo frequency
for the reference solution, ω = 1187.8rad τ−1. Volume-integrated
magnetic energy is again used here as a proxy for cyclic activity.

As the forcing amplitude A is increased, the power peak
associated with the magnetic (half-) cycle gradually shifts (black
→ cyan → blue → green) towards the forcing frequency, while a
secondary peak appears and grows at that frequency. Here at A =
0.2 (green) the primary peak has shifted almost halfway between
the dynamo and forcing frequencies, and the secondary peak is of
comparable amplitude. Further (relatively) small increase of A
rapidly concentrates all spectral power to the forcing frequency,
thus achieving complete synchronization (red). Here this happens
betweenA = 0.2 and 0.22. Further increase of the forcing amplitude
leave this part of the spectrum largely unaffected.

Interestingly, and contrary to the low frequency external
forcing investigated in the preceding section, here
synchronization, once it sets in, is very robust with respect to
the introduction of stochastic noise; for the restricted frequency
range and linear scale of Figure 9, theA = 0.3 spectrum plotted on
Figure 9 is hardly affected by the inclusion of noise at the 25%
level (viz. Figure 6). This remains the case if, rather than on the
dynamo number, noise is introduced directly on the threshold
parameter B1 in Eq. 1, in addition to the external forcing.

Although largely insensitive to noise, synchronization does
turn out to be quite sensitive to the degree of separation between
the (internal) dynamo frequency and (external) forcing
frequency. This is shown on Figure 10, summarizing results

FIGURE 9 | Magnetic energy power spectra for dynamo solutions
externally forced close to the activity cycle frequency (10.62 versus 11.01 year
for the reference dynamo solution). As the amplitude of the forcing increases,
power gradually shifts from the primary “internal” period to the forcing
period, until the dynamo “synchronizes” on the external forcing. Here this
occurs around A = 0.22, with further increase of A leaving the spectrum largely
unaffected. Unlike in preceding Figures showing power spectra, here the
spectra are displayed over a very narrow frequency interval.

FIGURE 10 | Angular frequency associated with peak power in the
magnetic energy power spectrum, for sequences of solutions subjected to
increasing singly-periodic forcing, for three different forcing periods, as color
coded. The horizontal dotted line indicates the angular frequency of the
reference solution (magnetic half-cycle period of 11.01 year). Synchronization
sets in swiftly past a critical forcing amplitude that increases with growing
frequency difference between the cycle and forcing frequencies [see text; and
compare to Figure 10 in Stefani et al. (2019)].
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for three sets of simulations using increasing forcing amplitudes,
and periods P1/τ = 0.004 5 (red), 0.0051 (green) and 0.006 (blue).
While a larger frequency separation requires a larger forcing
amplitude to achieve synchronization, the latter sets in very
abruptly when this critical value of A is reached. One could
legitimately speaks of a “synchronization threshold” here.

It is interesting to compare these results with those presented
in Stefani et al. (2019). These authors start with a conventional 1D
(latitude only) α-quenched kinematic αΩ mean-field model, and
introduce an additive periodic contribution to the otherwise
steady mean-field α-effect. As can be deduced from their
Figure 10, they also find a behavior qualitatively similar to
that described in this section: synchronization sets in abruptly
as their forcing amplitude is increased, and larger frequency
separation between dynamo and forcing requires larger forcing
amplitude to achieve synchronization. Finally, and as with the
dynamo model used here, the forcing amplitudes required to
achieve synchronisation in the Stefani et al. (2019) model are
clearly not in the homeopathic regime.

This good qualitative and semi-quantitative agreement
between the present synchronization simulations and those
presented in Stefani et al. (2019), using quite distinct dynamo
and noise models, suggests that the above characteristics are not
highly model-dependent, but represent robust features of external
dynamo synchronization.

7 DISCUSSION: HOW SMALL IS
“HOMEOPATHIC”?

At this point one can no longer postpone facing the proverbial
elephant in the room: what, then, can be considered a physically
reasonable amplitude for external forcing ?

It is straightforward to calculate the absolute gravitational and
tidal accelerations imparted by Solar System planets on a fluid
element in the solar interior, say at the level of the tachocline (r/R⊙≃
0.7). The two most tidally effective planets, Jupiter and Venus,
impart to our fluid element tidal accelerations of the order of a few
10−8cm s−2. Calculating the inertial acceleration associated with the
Sun’s motion about the center of mass of the Solar System
(barycentric motion) is a bit trickier, and comes out some two
orders ofmagnitude larger, ≃ 5 × 10−6cm s−2 (Callebaut et al., 2012).
These are minuscule accelerations compared to solar gravity at
tachocline depth, ≃ 5 × 104cm s−2. However, even on the longest
timescales considered here the Sun is in hydrostatic equilibrium, so
that the local gravity is already exactly equilibrated by the pressure
gradient, and as such its magnitude may be argued to be irrelevant
to the issue. Following de Jager and Versteegh (2005), Callebaut
et al. (2012), one can instead compared planetary-mediated fluid
accelerations to convective acceleration terms in the fluid equations,
associated for example with angular momentum transport by
convective overshoot into the tachocline. These can be estimated
at ≃ 6 × 10−4cm s−2 (de Jager and Versteegh, 2005), over 4 orders
larger than tidal accelerations. At any rate, this (finally) establishes a
baseline for what is implied by “homeopathic”.

Based on the results presented in the preceding sections, it is
clear that a very strong amplification mechanism is required for

planetary gravitational/tidal influences to impact magnetic activity.
Some candidates, viable in principle but yet to be physically
quantified, have already been put forth. Abreu et al. (2012)
suggest that small, changes in the subadiabatic structure of the
tachocline, induced by planetary-mediated alterations of shear
flows therein, may induce large changes in the rate of active
region eruptions. This would occur because of the sensitive
dependence of the growth rate of the buoyant instability of
magnetic flux ropes on the level of subadiabacity in the
tachocline [compare, e.g., Figures 1, 2 in Ferriz-Mas et al.
(1994)]. Again even if this provides a suitable amplification
mechanism, one would have to consider the impact of
convective overshoot as a form of incoherent stochastic noise
whose effect on magnetic flux emergence would also become
amplified through the same mechanism. There is no free lunch
here: any perturbation, of whatever origin, gets amplified. This is
true more generally of any forcing scenario that relies on the
sensitivity of a nonlinear system operating near a bifurcation point.

Another class of potential amplification mechanisms relies on
resonant excitation. This is the gist of the Stefani et al. (2019)
proposal, whereby small tidal forcing (m = 2 azimuthal order) can
excite a m = 1 helicity oscillations driven by the Tayler instability,
which then powers its own dynamo, which then interacts with the
primary turbulent dynamo so as to achieve phase-locked
synchronization. A less intricate dynamo scenario has been
proposed by Albert et al. (2021), with resonance occuring between
two distinct operating modes of the same dynamo, as the solution
moves back and forth from the attraction basin of one to the other.

8 CONCLUDING REMARKS

In this paper paper I have examined to what degree an externally-
imposed harmonic forcing operating on timescales much longer
than the solar magnetic cycle can leave a detectable signal in time
series of magnetic activity proxies, despite the internal
“reprocessing” associated with the operation of the dynamo.

The simulation experiments reported upon in this paper were
purposefully designed to be as simple as possible, and to best display
the impact of external forcing: the said forcing acts directly on a steep
threshold nonlinearity in the dynamo source term for the poloidal
magnetic component, the background dynamo solution is onlymidly
supercritical so that the magnetic cycle has a constant amplitude and
duration, and its equatorial parity is held fixed by model design. The
simulations also impose a good frequency separation between
external forcing and the internal magnetic cycle, and the activity
proxy time series used for spectral analysis are long andwell-sampled.
This all adds up to a best-case scenario for detecting the spectral
signature of weak external periodic or multiperiodic forcing.

In the absence of any other mechanisms modulating the cycle
amplitude, the spectral signature of low frequency external
forcing is indeed detectable even for small forcing amplitudes
(viz. Figure 5). However, even low amplitude internal stochastic
forcing of the dynamo effectively drowns the spectral signature of
external forcing, at least for reasonable values of stochastic noise
and small (A ≤ 0.01) amplitudes of external forcing amplitudes
(Figures 7, 8). These results are of course model-dependent, in
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that they were obtained using a specific dynamo model running
in a specific parameter regime, and incorporating equally specific
external driver and noise model. Nonetheless, and to the (limited)
extent that other parameter regimes and forcing schemes were
explored, these conclusions appear robust.

Motivated by numerical experiments reported upon by Stefani
et al. (2018), synchronization of the dynamo by external forcing at a
frequency close to the dynamo frequency was also explored.
Synchronization is readily achieved in the Babcock-Leighton
dynamo model used here, which stands in contrast to the negative
results of Stefani et al. (2018). These authors used a zero-dimensional
dynamical system representation of the Babcock-Leighton dynamo
framework, originally developed byWilmot-Smith et al. (2006), which
then suggests that spatial extension is a feature promoting
synchronization, perhaps via the agency of magnetic diffusion.
Interestingly, in the two-dimensional kinematic mean-field-like
dynamo model used here, synchronization proved very robust to
the introduction of stochastic noise in the dynamo poloidal source
term. However, and in good agreement with the synchronization
study by Stefani et al. (2019) using this time a one-dimensional
kinematic mean-field αΩmodel, high external forcing amplitudes are
required to achieve synchronization, even when the forcing frequency
is close to the natural dynamo frequency.

The modelling results presented in this paper, although restricted
in scope, indicate that a hypothetical spectral signal of planetary origin,
if really present in solar activity data, is likely to be masked by other
sources of fluctuations entirely internal to the dynamo mechanism
itself, unless a very efficient amplificationmechanism is present3 and is
largely insensitive to internal sources of perturbations. Potentially
viable suchmechanisms include planetary-driven tidal perturbation of
shear flows within the tachocline altering the buoyant instability
threshold of toroidal magnetic magnetic flux tubes stored in the
tachocline (Abreu et al., 2012), or excitation of the Tayler instability
leading to secondary dynamo action (Stefani et al., 2018; Stefani et al.,
2019). More complex related dynamical possibilities include
intermittency and stochastic resonance (Albert et al., 2021).
Detailed quantitative physical investigations of some of these
mechanisms may be possible via numerical simulations, or even
laboratory experiments. Section 4 in Stefani et al. (2021) offers an
interesting discussion of these possibilities.

From the observational point of view, the one characteristic of
planetary forcing that seems most likely to lead to an observable
signature is its very long phase coherence; planetary motions are
celestial clockwork, and therein lies perhaps the best hope of
detecting a statistically significant signature, even in the presence
of other internal sources of forcing. The cosmogenic radioisotope
record may well be suitable for such an investigation.

There is another potentially interesting observational approach
that, to the best ofmy knowledge, remains to be seriously explored in
this context. Past and ongoing surveys of exoplanets have revealed
the existence of hundreds of so-called hot Jupiters, gas giant orbiting

their host stars at distances smaller than 0.1 Astronomical Units [see,
e.g., Schneider et al., 2011)]. Such systems could be ideal testbeds to
investigate possible planetary influences on magnetic activity of the
host stars. The large planetary masses and short orbital radii would
presumably lead to high amplitude forcing, and the short orbital
periods should make it (relatively) easy to detect corresponding
periodicities in cyclic magnetic activity observations of the host stars;
for a hot Jupiter orbiting at 0.1AU, a decade of observations would
already sample some 300 orbit.

Having read this far, one might still rightfully ask: why even
bother with such “astrological” notions when more conventional
and physically well-grounded explanations for long periodicities
and quasi-periodicities in solar activity exist already within the
accepted framework of hydromagnetic dynamos ? The answer is
obviously a matter of opinion, and I shall close by offering a single
reason for arguing that the idea is at least worth testing—when
formulated in a manner conducive to such tests, of course. One
very far-reaching feature of the planetary hypothesis is the
aforementioned very long phase coherence of the associated
forcing. This implies that it could yield a powerful and
potentially precise forecasting scheme for the variations of
solar activity on timescales going from multi-decadal and up.
As discussed for example in Matthes et al. (2017), the current lack
of such predictive models is a primary unknown in quantitatively
assessing the possible impacts of solar activity on Earth’s climate
on those long timescales. The planetary forcing hypothesis is way
out there, but the payoff could be high. Your call.
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