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Automatic detection of outliers is universally needed when working with scientific
datasets, e.g., for cleaning datasets or flagging novel samples to guide instrument
acquisition or scientific analysis. We present Domain-agnostic Outlier Ranking Algorithms
(DORA), a configurable pipeline that facilitates application and evaluation of outlier
detection methods in a variety of domains. DORA allows users to configure experiments
by specifying the location of their dataset(s), the input data type, feature extraction
methods, and which algorithms should be applied. DORA supports image, raster,
time series, or feature vector input data types and outlier detection methods that
include Isolation Forest, DEMUD, PCA, RX detector, Local RX, negative sampling,
and probabilistic autoencoder. Each algorithm assigns an outlier score to each data
sample. DORA provides results interpretation modules to help users process the results,
including sorting samples by outlier score, evaluating the fraction of known outliers
in n selections, clustering groups of similar outliers together, and web visualization.
We demonstrated how DORA facilitates application, evaluation, and interpretation of
outlier detection methods by performing experiments for three real-world datasets from
Earth science, planetary science, and astrophysics, as well as one benchmark dataset
(MNIST/Fashion-MNIST). We found that no single algorithm performed best across all
datasets, underscoring the need for a tool that enables comparison of multiple algorithms.

Keywords: astrophysics, planetary science, Earth Science, outlier detection, novelty detection, out-of-distribution
detection

1 INTRODUCTION

The ability to automatically detect out-of-distribution samples in large data sets is of interest
for a wide variety of scientific domains. Depending on the application setting, this capability is
also commonly referred to as anomaly detection, outlier detection, or novelty detection. More
broadly, this is referred to as out-of-distribution (OOD) detection. In general, the goal of OOD
detection systems is to identify samples that deviate from the majority of samples in a dataset in
an unsupervised manner (Pimentel et al., 2014). In machine learning, these methods are commonly
used for identifying mislabeled or otherwise invalid samples in a dataset (Liang et al., 2018;
Böhm and Seljak, 2020). When working with science datasets, OOD detection can be used for

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 1 May 2022 | Volume 9 | Article 867947

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.867947
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fspas.2022.867947
http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.867947&domain=pdf&date_stamp=2021-10-15
https://www.frontiersin.org/articles/10.3389/fspas.2022.867947/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.867947/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.867947/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.867947/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kerner et al. Domain-Agnostic Outlier Ranking Algorithms

cleaning datasets, e.g., flagging ground-truth labels with GPS or
human entry error or identifying wrongly categorized objects
in a catalog (Wagstaff et al., 2020a; Lochner and Bassett, 2021).
It could also be used for discovery, e.g., to flag novel samples
in order to guide instrument acquisition or scientific analysis
(Wagstaff et al., 2013; Kerner et al., 2020a; Kerner et al., 2020b;
Wagstaff et al., 2020b). Another application is the detection of
rare objects that are known to exist but the known examples
are too few to create a large enough labeled dataset for
supervised classification algorithms (Chein-I Chang and Shao-
Shan Chiang, 2002; Zhou et al., 2016).

Despite wide differences in applications, data types,
and dimensionality, the same underlying machine learning
algorithms can be employed across all of these domains. A
challenge for applying them however is that domain scientists
do not always have the programming or machine learning
background to apply the algorithms themselves using existing
tools. Given the widespread applicability and transferability of
OOD methods, the scientific community would benefit from a
tool that made it easy for them to apply popular outlier detection
algorithms to their science datasets.We createdDORA (Domain-
agnostic Outlier Ranking Algorithms) to provide a tool for
applying outlier detection algorithms to a variety of scientific data
sets with minimal coding required. Users need only to specify
details for their data/application including the data type, location,
and algorithms to run in an experiment configuration file.
DORA supports image, raster, time series, or feature vector input
data types and outlier detection methods that include Isolation
Forest, Discovery via Eigenbasis Modeling of Uninteresting
Data (DEMUD) (Wagstaff et al., 2013), principal component
analysis (PCA), Reed-Xiaoli (RX) detector (Reed and Yu, 1990),
Local RX, negative sampling (Sipple, 2020), and probabilistic
autoencoder (PAE). Each algorithm assigns an outlier score
to each sample in a given dataset. DORA provides results
organization and visualization modules to help users process the
results, including sorting samples by outlier score, evaluating
outlier recall for a set of known/labeled outliers, clustering
groups of similar outliers together, and web visualization. We
demonstrated how DORA facilitates application, evaluation,
and interpretation of outlier detection methods by performing
experiments for three real-world datasets from Earth science,
planetary science, and astrophysics, as well as one benchmark
dataset (MNIST/Fashion-MNIST).

The key contributions of this paper are:

• A new pipeline, DORA, for performing outlier detection
experiments using several AI algorithms that reduces the
effort and expertise required for performing experiments and
comparing results from multiple algorithms
• Using experiments for a diverse set of real world datasets and

application areas, we show that no single algorithm performs
best for all datasets and use cases, underscoring the need for a
tool that compares multiple algorithms
• We provide publicly available code for running and

contributing to the DORA pipeline and datasets that can be
used for reproducing experiments or benchmarking outlier
detection methods

2 RELATED WORK

Methods for outlier detection have been surveyed extensively
and can be differentiated primarily based on how they score
outliers (Markou and Singh, 2003a; Markou and Singh, 2003b;
Chandola et al., 2009; Pimentel et al., 2014). Reconstruction-
based methods construct a model of a dataset by learning
a mapping between the input data and a lower-dimensional
representation that minimizes the loss between the input and
its reconstruction from the low-dimensional representation
(Kerner et al., 2020a). The reconstruction error is used as
the outlier score because samples that are unlike the data
used to fit the model will be more poorly reconstructed
compared to inliers. Reconstruction-basedmethods include PCA
(Jablonski et al., 2015), autoencoders (Richter and Roy, 2017),
and generative adversarial networks (Akcay et al., 2018).
Distance-based methods score outliers based on their distance
from a “background” which can be defined in a variety of
ways. For example, the Reed-Xiaoli (RX) detector computes the
Mahalanobis distance between each sample and the background
dataset defined by its mean and covariance matrix (Reed and
Yu, 1990). Sparsity-based methods such as isolation forest
(Liu et al., 2008) and local outlier factor (Breunig et al., 2000)
score outliers based on how isolated or sparse samples
are in a given feature space. Probability distribution and
density based methods estimate the underlying distribution
or probability density of a dataset and score samples using
likelihood. Examples include the probabilistic autoencoder,
which scores samples based on the log likelihood under the latent
space distribution (Böhm and Seljak, 2020), Gaussian mixture
Models, and kernel density estimators (Chandola et al., 2009).
Other methods formulate outlier detection as supervised
classification, usually with only one class constituted by known
normal samples. Such methods include one-class support
vector machines (Schölkopf et al., 1999) and negative sampling
(Sipple, 2020).

In astrophysics, outlier detection methods have been used
to identify astrophysical objects with unique characteristics
(Hayat et al., 2021) as well as data or modeling artifacts
in astronomical surveys (Wagstaff et al., 2020a; Lochner
and Bassett, 2021). Example outlier detection applications
in Earth science include detecting anomalous objects
or materials (Zhou et al., 2016), data artifacts or noise
(Liu et al., 2017), change (Touati et al., 2020), and ocean
extremes (Prochaska et al., 2021). Planetary science applications
have mostly focused on prioritizing samples with novel geologic
or geochemical features for follow-up targeting or analysis
(Wagstaff et al., 2013; Kerner et al., 2020a). These examples
show the benefit of applying outlier detection methods in a
variety of real-world science use cases. However, the effort
required to apply and evaluate the many available algorithms
is non-trivial and can be daunting for non-ML experts, thus
impeding the uptake of outlier detection methods in science
applications. There is a need for tools that make it easier for
domain scientists to apply outlier detection methods as well as
compare results across datasets. While there have been some
efforts to develop tools for facilitating the application of outlier
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detection methods (Zhao et al., 2019), they cover limited data
formats and algorithms. DORA aims to fill the need for tools that
facilitate application, evaluation, and interpretation of outlier
detection methods.

3 METHODS

Figure 1 illustrates the architecture of DORA including
data loading, feature extraction, outlier ranking, and results
organization and visualization modules. In order to improve
the readability and execution speed of the code, we adopted
object-oriented and functional programming practices. We
designed DORA to be readily extensible to support additional
data types or formats, outlier detection algorithms, and results
organization or visualization methods by writing new modules
that follow the DORA API. Experimental settings are controlled
by configuration files in which users can specify the input
data, feature extraction methods, normalization method, outlier
ranking methods, and results organization methods. DORA is
implemented in Python 3.

3.1 Data Loaders
We chose to implement data loaders for four data types that are
commonly used by the machine learning and domain science
communities: time series, feature vectors, images (grayscale
or RGB), and N-band rasters. N-band rasters are images or
grids in which every pixel is associated with a location (e.g.,
latitude/longitude in degrees); most satellite data are distributed
as rasters. A data loader for each data type locates the data
by the path(s) defined in the configuration file and loads
samples into a dictionary of numpy arrays indexed by the
sample id. This data_dict is then passed to each of the ranking
algorithms.

3.2 Outlier Ranking Algorithms
We implemented seven unsupervised algorithms for scoring and
ranking samples by outlierness. We chose these algorithms to
include a diverse set of approaches to scoring outliers since
different algorithmsmay perform better for different datasets and
use cases. We describe each approach to scoring outliers and the
associated methods below.

3.2.1 Reconstruction Error
Principal component analysis (PCA) has been used for
outlier detection by scoring samples using the reconstruction
error (here, the L2 norm) between inputs and their
inverse transformation from the principal subspace
(Kerner et al., 2020a). DEMUD (Wagstaff et al., 2013) differs
from other outlier ranking methods: instead of independently
scoring all observations, DEMUD incrementally identifies the
most unusual remaining item, then incorporates it into the
model of “known” (non-outlier) observations before selecting
the next most unusual item. DEMUD’s goal is to identify diverse
outliers and avoid redundant selections. Once an outlier is found,
repeated occurrences of that outlier are deprioritized. Methods
that score samples independently maximize coverage of outliers,
while DEMUD maximizes fast discovery of distinct outlier
types.

3.2.2 Distance
The Reed-Xiaoli (RX) detector is commonly used for anomaly
detection in multispectral and hyperspectral remote sensing. RX
scores samples using the Mahalanobis distance between a sample
and a backgroundmean and covariance (Reed andYu, 1990).The
local variant of RX (Local RX or LRX) can be used for image or
raster data and scores each pixel in an image with respect to a
window “ring” of pixels surrounding it (Molero et al., 2013). LRX
requires two parameters to define the size of the outer window

FIGURE 1 | DORA pipeline architecture.
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surrounding the pixel and the inner window around the target
pixel to exclude from the background distribution.

3.2.3 Sparsity
Isolation forest (iForest) is a common sparsity-based method
that constructs many random binary trees from a dataset
(Liu et al., 2008).Theoutlier score for a sample is quantified as the
average distance from the root to the item’s leaf. Shorter distances
are indicative of outliers because the number of random splits
required to isolate the sample is small.

3.2.4 Probability
The negative sampling algorithm is implemented by converting
the unsupervised outlier ranking problem into a semi-supervised
problem (Sipple, 2020). Negative (anomalous) examples are
created by sampling from an expanded space defined by the
minimum and maximum values of each dimension of the
positive (normal) examples. The negative and positive examples
are then used to train a random forest classifier. We use
the posterior probabilities of the random forest classifier as
outlier scores, which means that the observations with higher
posterior probabilities are more likely to be outliers. The
probabilistic autoencoder is a generative model consisting of
an autoencoder trained to reconstruct input data which is
interpreted probabilistically after training using a normalizing
flow on the autoencoder latent space (Böhm and Seljak, 2020).
Samples are scored as outliers using the log likelihood in the
latent distribution, the autoencoder reconstruction error, or a
combination of both.

3.3 Results Interpretation
Each of the outlier ranking algorithms returns an array
containing the sample index, outlier score, and selection
index (index after sorting by outlier score). DORA provides
organization and visualization modules intended to help users
interpret andmake decisions based on these outputs.The simplest
module saves a CSV of the samples sorted by their outlier score
(i.e., selection order). Clustering the top N outlier selections
can enable users to investigate the different types of outliers
that might be present in the dataset; this could be especially
useful for separating outliers caused by noise or data artifacts vs
scientifically interesting samples. We implemented the K-means
and self-organizing maps (SOMs) algorithms for clustering the
top-N outliers. For use cases in which an evaluation dataset
containing known outliers is available, we provide a module
to assess how well algorithm selections correlate with known
outliers. This is done by plotting the number of known outliers
vs number of selections made. We provide a module for plotting
histograms of outlier scores to visualize the distribution of scores
in the dataset (whichmay be, e.g., multimodal or long-tailed).We
developed a desktop application to easily visualize DORA results
with the Electron application framework and React frontend
library. This enables fast and easy comparison of the results from
different methods. We developed a desktop application to easily
visualize DORA results with the Electron application framework
and React frontend library. The application loads the DORA
configuration file to locate the dataset and result CSVs. Then, it

displays the ranked samples and their scores in a table sorted by
their selection order. This allows for fast and easy comparison
of the results of different methods. Figure 2 shows a screenshot
of the “Aggregate Table” view, which displays all results from
different algorithms side-by-side.

4 DATASETS

We constructed three datasets to evaluate the utility of DORA
and algorithm performance for a variety of scientific domains
(astrophysics, planetary science, and Earth science). We also
included a benchmark dataset that uses MNIST and Fashion-
MNIST. Table 1 summarizes the number of unlabeled samples
used for training and evaluation for each dataset. We describe
each dataset in detail below.

4.1 Astrophysics: Objects in Dark Energy
Survey
Astronomical data sets are large and growing. Large modern
optical imaging surveys are producing catalogs of order 108
stars and galaxies, with dozens or hundreds of distinct measured
features for each entry. Discovery science becomes difficult
at this data volume: the scale is too large for expert human
inspection, and separating real astrophysical anomalies from
non-astrophysical sources like detector artifacts or satellite trails
is a challenging problem for current methods.

The Dark Energy Survey (DES) is an ongoing imaging survey
of 5,000 deg2 of the southern sky from the Cerro-Tololo Inter-
AmericanObservatory inChile (Zuntz et al., 2018).The resulting
galaxy catalogs produced have provided some of the strongest
constraints to date on the physical properties of dark energy
and accelerated expansion of the Universe. The first version
of this catalog, released June 2018, incorporated only cuts on
signal-to-noise and resolution, masks against known detector
anomalies and data quality indicators, and the automated data
quality flags produced during processing to filter outliers. In
December 2019, the full catalog was released after 18 months
of extensive manual vetting. We used the samples that were
removed in the second version of the catalog as a set of known
outliers for evaluating anomaly detection methods on the first
version.

We compared all methods on a dataset of 100K galaxy objects
observed by the Dark Energy Survey (DES) sampled from the
initial June 2018 release. We labeled the 25,339 objects from
this 100 K set that did not appear in the later December 2019
release, thus were likely eliminated during the manual vetting
process, as outliers. While the remaining 74,661 objects may
also contain outliers, we assume them to be inliers in this
experiment. We used publicly-available photometry from the
g−, r−, i− and z− band DES exposures. We transformed the
photometry into luptitudes1. The input features were the r-band

1A “Luptitude” (Lupton et al., 1999) is an arcsinh-scaled flux, with properties
quantitatively equal to traditional astronomical magnitudes for bright sources, but
which gracefully handles non-detections and negative fluxes.
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FIGURE 2 | A screenshot of the DORA visualizer displaying results from the planetary science dataset.

luptitude, colors computed as banddifferences between g− r, i− r,
and z− r, and associated observational errors, for a total of eight
features.

4.2 Planetary: Targets in Mars Rover
Images
Mars exploration is fundamentally an exercise in discovery with
the goal of increasing our understanding of Mars’s history,
evolution, composition, and currently active processes. Outliers
identified in Mars observations can inspire new discoveries
and inform the choice of which areas merit follow-up or
deeper investigation (Kerner et al., 2020a;Wagstaff et al., 2020b).
We collected 72 images from theNavigation camera (Navcam) on
theMars Science Laboratory (MSL) rover and employedRockster
(Burl et al., 2016) (currently used by onboard rover software) to

TABLE 1 | Number of samples in the training and test sets for each dataset.

Dataset Training Test Inliers
Unlabeled Outliers

Astrophysics 100,000 25,339 74,661
Planetary 992 9 49
Earth 6,757 37 76
F-MNIST 60,000 1,000 1,000

identify candidate rock targets with an area of at least 100 pixels,
yielding 1,050 targets. We cropped out a 64 × 64 pixel image
centered on each target.

We simulated the operational setting in which the rover has
observed targets up through mission day (sol) s and the goal
is to rank all subsequent targets (after sol s) to inform which
recent targets merit further study. Our rover image data covers
sols 1,343 to 1703. We partitioned the images chronologically to
assess outlier detection in the 10 most recent sols, using “prior”
setD1343−1693 (n = 992) and “assessment” setD1694−1703 (n = 58) for
evaluation. We collaborated with an MSL science team member
to independently review the targets in D1694−1703 and identify
those considered novel by the mission (noutlier = 9). Our goal for
this application is to assess how well the selections made by each
algorithm correlate with human novelty judgments to determine
which methods would be most suitable for informing onboard
decisions about follow-up observations.

4.3 Earth: Satellite Time Series for Ground
Observations
Many Earth science applications using satellite Earth observation
(EO) data require ground-truth observations for identifying and
modeling ground-identified objects in the satellite observations.
These groundobservations also serve as labels that are pairedwith
satellite data inputs for machine learning models. For example,
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a model trained to classify crop types in satellite observations
requires ground-annotated labels of crop type. A widespread
challenge for ground-annotated labels is that there are often
points with erroneous location or label information (e.g., due
to GPS location error or human entry error) that need to be
cleaned before the labels can be used for machine learning or
other downstream uses. Automatically detecting these outliers
could save substantial time required for cleaning datasets and
improve the performance of downstream analyses that rely on
high-quality datasets.

We used a dataset of ground annotations of maize crops
collected by the UN Food and Agriculture Organization
(FAO). This dataset includes 6,757 samples with location
(latitude/longitude) metadata primarily in Africa and Southeast
Asia. Most locations coincide with crop fields but there are
many outliers that coincide with other land cover types such
as water, buildings, or forests. We constructed an evaluation
set of all samples in Kenya (n = 113) and manually annotated
whether each sample was located in a crop field (inlier) or not
(outlier) using high-resolution satellite images in Collect Earth
Online (ninlier = 76, noutlier = 37). We used the Sentinel-1 synthetic
aperture radar (SAR)monthlymedian time series for each sample
location from the year the sample was collected. We used SAR
data because it is sensitive to ground texture and penetrates
clouds, which is important for the often-cloudy region covered
by the dataset. Our goal for this application was to assess how
well the selections made by each algorithm correlate with outliers
determined by visual inspection of the satellite images.

4.4 Benchmark: MNIST and
Fashion-MNIST
We used MNIST and Fashion-MNIST (F-MNIST) to
demonstrate DORA with a traditional benchmark dataset. We
used 60,000 images from F-MNIST as the training set and a test
set of 1,000 images each from MNIST (outliers) and F-MNIST
(inliers).

5 RESULTS

Theexperimental setup for each dataset was to fit or train amodel
for each ranking algorithm using a larger unlabeled dataset and
then apply the models to compute the outlier scores for a smaller
test dataset for which labels of known outliers were available
(Table 1). For each test set, we created a plot of the number of
known outliers detected out of the top N selections. We also
reported the Mean Discovery Rate (MDR) in the legend for each
algorithm to give a quantitative comparison across the datasets.
We defined MDR as:

MDR =
∑Ns

i=1
ni

∑Ns

i=1
si

(1)

where i ∈ [1,Ns] is the selection index, Ns is the total number
of selections, si is the number of selections made up to index i,
and ni is the number of known outliers (true positives) among
si selections. We also reported the precision at N = noutlier for

each test set where noutlier is the number of known outliers,
i.e., the precision obtained when the number of selections
is the same as the total number of outliers. Precision at
N is the number of known outliers divided by the number
of selections N (Campos et al., 2016). Table 2 compares the
precision at N = noutlier for each dataset and ranking algorithm.
We calculated a random selection baseline which we refer to as
“Theoretical Random” using the expected value of ni for i random
selections:

E[ni, i ∈ [1,Ns]] =
∑i

j=0
(noutlier
j )(D− noutlier

i− j ) j

(Di )
(2)

=
noutlieri
D

(3)

For the astrophysics dataset (Figure 3A), DEMUD was
omitted due to computational time and LRX was omitted
as it applies only to image data. Of the remaining methods,
PCA achieved the highest precision, followed by RX. Negative
sampling performs well initially before its performance drops off.
The PAE finds the most outliers overall.

For the planetary dataset, we found that the Isolation Forest
achieved the highest precision (best outlier detection) when
allowed to select only 9 images. Figure 3B shows the complete
(cumulative) outlier detection performance for each algorithm
when ranking all 58 target images in D1694−1703. We could
not employ RX since the data dimensionality (64× 64 = 4,096)
exceeded the data set size.

For the Earth dataset, negative sampling had the best
performance in both metrics. DEMUD, PCA, and PAE tied for
the lowest precision atN = noutlierwhileDEMUDandPCA tied for
the lowest MDR (Figure 3C). We did not evaluate LRX for this
time series dataset because LRX can only be applied to gridded
image or raster data types.

For theMNIST and F-MNIST dataset, PCA andDEMUD tied
for the highest precision at N = noutlier while DEMUD, PCA, and
PAE tied for the highest MDR (Figure 3D). Negative sampling
had the lowest performance in both metrics.

TABLE 2 | Precision at N = noutlier for four datasets; the best result for each
data set is in bold.

Algorithm Astro Planetary Earth F-MNIST

PCA 0.42 0.44 0.41 0.84
DEMUD — 0.44 0.41 0.84

RX 0.40 — 0.43 0.82
LRX — 0.33 — 0.56

IForest 0.34 0.56 0.46 0.74

PAE 0.35 0.44 0.41 0.83
Neg. Sampling 0.32 0.33 0.49 0.43

Random 0.25 0.14 0.32 0.50
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FIGURE 3 | Number of known outliers ranked in top N selections for the (A) astrophysics, (B) planetary, (C) Earth, and (D) FMNIST datasets.

6 DISCUSSION

6.1 Algorithm Performance
No one algorithm had the best performance across all four
datasets. PCA had the best performance for the astrophysics
and F-MNIST datasets, while negative sampling and isolation
forest was best for the Earth science and planetary datasets
respectively.This illustrates the importance of including a diverse
set of algorithms and tools for easily inter-comparing them
in DORA, since the best algorithm will vary for different
datasets. The purpose of this study was to demonstrate how
DORA could be used to facilitate outlier detection experiments
and compare results across datasets from different domains.
Thus we did not perform hyperparameter tuning which could
improve results for each dataset; we leave this for future
work.

6.2 Evaluation in Outlier Detection
Prior work has emphasized the difficulty of creating standardized
metrics for outlier detection that represents how models

will perform in real world settings while also enabling
intercomparison between datasets (Campos et al., 2016). We
chose two complementary metrics with this in mind: precision at
N = noutliers, which measures the fraction of selections that are
known outliers when the number of selections is equivalent
to the number of outliers, and Mean Discovery Rate, which
measures the fraction of selections that are known outliers on
average. Designing experiments to evaluate outlier detection
methods for real-world use cases is also difficult because it is
difficult, or sometimes impossible, to obtain labeled samples of
outliers, inliers, or both for evaluation. In addition, labels are
often subjective or uncertain, especially in the case of scientific
datasets. For example, a dataset of known outliers was available
for the astrophysics dataset from human annotation in prior
work, but the remainder of samples in the dataset used for
evaluation were not known to be inliers or outliers. This can
result in evaluation metrics that are deceptively low because
unlabeled samples that might actually be outliers (as was found
to be common in prior work (Wagstaff et al., 2020a)) are counted
as false positives.
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6.3 Open Code and Data
Our goal is for DORA to enable increased application and benefit
of outlier detectionmethods in real-world scientific use cases.We
have designed DORA to make it as easy as possible for scientists
to apply algorithms and to compare and interpret their results.
Users need only to specify the specifics of their data (e.g., path,
data type) in a configuration file to start running experiments
and seeing results for their own datasets and use cases. DORA
is publicly available and can be installed using pip via Github,
making it easy to integrate into existing scientific workflows.
The datasets used in this study are also publicly available via
Zenodo. This enables DORA to be improved and expanded by
the machine learning and domain science communities. If a
researcher wants to use DORA for a dataset with a type that
is not yet supported, they can contribute a new data loader
by creating a subclass that extends the DataLoader abstract
base class. Similarly, new results interpretation modules can be
added by creating a subclass of the ResultsOrganization abstract
base class. A new outlier ranking algorithm can be added by
writing a new python module that defines a subclass of the
OutlierDetection abstract base class and implements the required
functions for scoring and ranking samples, following the existing
algorithm modules named *_outlier_detection.py. In addition,
DORA will be infused into the scientific workflows for the three
use cases we demonstrated results for in this study. The DORA
code can be accessed at https://github.com/nasaharvest/dora and
datasets at https://doi.org/10.5281/zenodo.5941338.

7 CONCLUSION

The ability to automatically find outliers in large datasets is
critical for a variety of scientific and real-world use cases.
We presented Domain-agnostic Outlier Ranking Algorithms
(DORA), a configurable pipeline that facilitates application
and evaluation of outlier detection methods in a variety of
domains. DORA minimizes the coding and ML expertise
required for domain scientists since users need only to specify
their experiment details in a configuration file to get results from
all available algorithms. This is particularly important because
the experiments for three cross-domain science datasets in this
study showed that no one algorithmperforms best for all datasets.
DORA will be publicly accessible as a python package to make
it easy to integrate into existing scientific workflows. The will be
open-sourced to enable continued improvement and expansion
of DORA to serve the needs of the science community. The
datasets used in this study will also be public and can serve as
real-world benchmarks for future outlier detection methods.

In future work, we will continue to improve DORA based on
the experience of deploying it in the workflows of the domain
scientists associated with the datasets in this study and add
additional interpretation modules including causal inference
graphs.
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