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It is well known that magnetohydrodynamic (MHD) turbulence is ubiquitous in
astrophysical environments. The correct understanding of the fundamental properties of
MHD turbulence is a pre-requisite for revealing many key astrophysical processes. The
development of observation-based measurement techniques has significantly promoted
MHD turbulence theory and its implications in astrophysics. After describing the
modern understanding of MHD turbulence based on theoretical analysis and direct
numerical simulations, we review recent developments related to synchrotron fluctuation
techniques. Specifically, we comment on the validation of synchrotron fluctuation
techniques and the measurement performance of several properties of magnetic
turbulence based on data cubes from MHD turbulence simulations and observations.
Furthermore, we propose to strengthen the studies of the magnetization and 3Dmagnetic
field structure’s measurements of interstellar turbulence. At the same time, we also
discuss the prospects of new techniques for measuring magnetic field properties and
understanding astrophysical processes, using a large number of data cubes from the
Low-Frequency Array (LOFAR) and the Square Kilometre Array (SKA).

Keywords: magnetohydrodynamic turbulence, polarization radiation, interstellar magnetic fields, statistic
methods, magnetic fields

1 INTRODUCTION

Turbulence is ubiquitous in our universe. As is perceived in everyday life, the movement of the
fluid leads to the development of hydrodynamic turbulence. Unlike our terrestrial world, conductive
fluids in astrophysics naturally induce magnetic field fluctuations leading to MHD turbulence due
to the presence of almost all materials in an ionization plasma state. The self-similarity over a large
dynamical range of MHD turbulence in astronomical environments has been well confirmed by
observations, as shown by the power-law spectrumof interstellar electron density fluctuations on the
plane of the sky (Armstrong et al., 1995; Chepurnov and Lazarian, 2010). In addition, the presence
of MHD turbulence has been also pointed out by observations that are as far as in galaxy clusters
(Zhuravleva et al., 2019) as well as by in situ direct measurements in the local solar wind (Bruno and
Carbone, 2013).

It is known that MHD turbulence plays an important role in many critical astrophysical
processes, such as star formation (Mac Low and Klessen, 2004; McKee and Ostriker 2007; Ostriker,
2009; Dib et al., 2010; Crutcher, 2012), magnetic reconnection (Lazarian and Vishniac, 1999,
henceforth LV99 Lazarian et al., 2020), magnetic field amplification (Federrath, 2016), cosmic ray
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acceleration (Gaches et al., 2021; Zhang and Xiang, 2021) and
diffusion (Yan and Lazarian, 2008; Xu and Lazarian, 2018;
Lazarian and Xu, 2021; Fornieri et al., 2021, for a comprehensive
numerical study), and heat conduction in galaxy clusters (Yuan
et al., 2015; Bu et al., 2016). Naturally, a thorough understanding
of MHD turbulence is essential in order to better describe a
large number of astrophysical processes that operate over a large
number of physical scales.

MHD turbulence with the nonlinear complexity generally
exhibits diverse properties at a microscopic plasma level, but
it shows regularity behind chaotic phenomena for turbulent
fluctuations and allows a statistical description at a macroscopic
level (Biskamp, 2003). Taking statistical description into account,
commonly usedmethods are the power spectrum, the correlation
and structure functions (see Monin and Yaglom (1975) for an old
book; Boldyrev et al., 2002a; Boldyrev et al., 2002b), by which
one mostly considers volume and time averaging of physical
variables to implement the statistical ensemble measurements
of turbulence. In addition, the delta-variance spectrum
(Stutzki et al., 1998; Dib et al., 2021), as another manifestation
of the power spectrum, has been used to characterize turbulence
properties.

In recent years, numerical simulations or experiments
combined with analytical theory have significantly promoted
the study of MHD turbulence (Goldreich and Sridhar, 1995,
thereafter GS95; LV99; Cho and Lazarian, 2002; Kowal and
Lazarian, 2010; Beresnyak 2017). In particular, the numerical
experiments are gradually alleviating the gap between the realistic
MHD turbulence physics and the analytical theory. However,
due to the large-scale characteristics inherent in astrophysical
systems resulting in a high Reynolds number Re > 1010, it is
challenging to simulate a realistic astrophysical environment.
The currently available 3D MHD simulations are limited by
the Reynolds number of about Re ≃ 10

5 (e.g., Beresnyak, 2019).
Therefore, a new observation-based research perspective
is needed to break the bottleneck of the direct numerical
simulation.

In addition to the study of electron density information,
there are two additional sources of information regarding MHD
turbulence in astrophysics: turbulent velocity andmagnetic fields.
The former can be retrieved from spectrometric observations
of emission lines (e.g., Lazarian et al., 2002; Lazarian and
Pogosyan, 2004), while the latter, by radio observations
(Gaensler et al., 2011; Lazarian and Pogosyan, 2012; Lazarian
and Pogosyan, 2016, hereafter, LP12 and LP16). The main
purpose of this article is to review the progressmade inmeasuring
the fundamental properties of MHD turbulence using the radio
synchrotron radiation method.

Section 2 describes the fundamentals of MHD turbulence
theory necessary to understand what MHD turbulence is and
developmagnetic fieldmeasurement techniques. In Section 3, we
provide some basic formulae of synchrotron radiative processes
in MHD turbulence. Section 4 presents various statistical
techniques that are being currently developed, the feasibility
of which is tested using synthetic, realistic simulation and
observational data in Section 5. Finally, we give a discussion in
Section 6.

2 FUNDAMENTALS OF MHD
TURBULENCE THEORY

2.1 Turbulence Driving Mechanism
The turbulence energy source driving varies with different
astrophysical environments. Here, to simplify considerations,
we divide the driving sources into two categories: external and
internal driving mechanisms. The former has been considered
as a common way for turbulence driving in the simulations
of interstellar turbulence, due to the convenience of setting
external forces. The most typical cases are supernova explosions
in ISM (Spitzer Jr, 1978; Dib et al., 2006; Ostriker, 2009;
Chamandy and Shukurov, 2020), merger events and active
galactic nuclei (AGN) outflows in the intercluster medium
(Chandran, 2005; Subramanian et al., 2006; Lazarian et al., 2020)
and outflow in molecular clouds (Carroll et al., 2009), and
young stellar objects (Federrath, 2016). In contrast, the latter
is also accepted generally, such as magnetic reconnection
driving/mediating turbulence in various regimes (Huang and
Bhattacharjee, 2016; Cerri and Califano, 2017; Franci et al., 2017;
Kowal et al., 2017; Dong et al., 2018), the magneto-rotational
instability-generated turbulence (Sellwood and Balbus, 1999;
Gardiner and Stone, 2005; Fromang, 2013; Kunz et al., 2016;
Riols et al., 2017; Zhdankin et al., 2017). Indeed, for realistic
astrophysical processes such asmolecular clouds and supernovae,
their drivings may be involved in internal and external
mechanisms simultaneously.

Sometimes the complexity of turbulent driving is manifested
by the coexistence of multiple driving mechanisms in the same
environment. One of the most classic cases is the driving process
in the ISM, where various drivers may occur simultaneously:
expanding shells and gravitational instability at about 1,000 pc
scales arising from galaxy mergers; expanding shells, MRI and
cloud collisions at about 100 pc scales from supernova explosion;
and stellar feedback at 10-pc to sub-pc scales by outflow. In
the turbulence research community, for simplicity, one usually
uses external driving with the solenoidal or compressible
approach, which is more effective at limited numerical
resolution. In recent years, internal driving mechanisms
have gradually become the focus of research, but only at
the cost of expensive numerical resources (Beresnyak, 2017;
Kowal et al., 2017).

2.2 Basic Properties of MHD Turbulence
In the spirit of understanding the nature of turbulence from
first principles, we here provide the visco-resistive equations that
govern the evolution of magnetized plasma as follows1:

∂ρ
∂t
+∇ ⋅ (ρv) = 0, (1)

1These equations can be applied to describe the plasma dynamics in the case of the
long wavelengths and low frequencies with respect to plasma characteristic scales
and frequencies, and the associated plasma approximations such as quasi neutrality,
no displacement current in Ampére’s law because of non-relativistic limit, as well as
resistive Ohm’s law (refer to Chapter 3 of the work of Krall and Trivelpiece (1973)
for further details).
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ρ( ∂
∂t
+ u ⋅∇)u =

j×B
c
−∇pg + ρν∇2u, (2)

∂pg

∂t
+ u ⋅∇pg + Γpg∇ ⋅ u = 0, (3)

∂B
∂t
−∇× (u×B) = η∇2B, (4)

∇ ⋅B = 0, (5)

describing the continuity, Eq 1, the momentum conservation,
Eq 2, the adiabatic invariance, Eq 3, the magnetic induction,
Eq 4, and the divergence of magnetic field, Eq 5, respectively.
Here, pg = c2sρ is the gas pressure, cs = √Γpg/ρ the speed of sound,
t the evolution time of the fluid, ν the kinematic viscosity,
η = c2/(4πσ) the magnetic diffusivity, σ the conductivity, and Γ
the adiabatic index. Other physical quantities have their usual
meanings.The interaction of plasma fluids andmagnetic fieldwas
formulized in the aforementioned equations, by which a series
of physical quantities characterizing the properties of the MHD
turbulence can be better understood.

Let us replace the operator ∇ by ∇/L and set u = uũ = L/tũ in
Eq 2 andB = BB̃ inEq 4, where L is the characteristic scale length
at the typical velocityu, as well as ̃u and B̃ are dimensionless. After
a simple analytical derivation (including only the viscosity term
in Eq (2)), we obtain

∂ ̃u
∂t
+ ũ ⋅∇ũ = ν

uL
∇2 ̃u, (6)

∂B̃
∂t
−∇× (ũ× B̃) =

η
Lu
∇2B̃. (7)

Through the coefficients of the equations, we define two
dimensionless physical quantities

Re =
Lu
ν
, Rm =

Lu
η
, (8)

where Re is the kinetic Reynolds number characterizing the ratio
of the viscous timescale to the advection timescale, and Rm is
the magnetic Reynolds number denoting the ratio of resistive
diffusion timescale to the advection timescale. Considering the
temperature T ≃ 104K related to η ≃ 0.42× 107T−3/2eV cm2/s, the
scale length L ≃ 1 pc, and the velocity u ≃ 1 km/s, one can obtain
a large Rm ≃ 10

16 as an example of turbulence setting (e.g.,
Brandenburg and Subramanian, 2005). The relative dominance
between the kinematic viscosity and magnetic diffusivity is
described by the magnetic Prandtl number:

Pr =
Rm

Re
= ν
η
. (9)

Similarly, combining the adiabatic invariance, Eq 3 and
momentum conservation, Eq 2, one can obtain the sonic Mach
number (Biskamp, 2003 for a detailed derivation)

Ms = u/cs, (10)

for the high-β plasma case. This parameter can be used to
describe the information of compressibility of MHD turbulence.
For the low-β plasma case, the momentum conservation Eq 2
is dominated by the magnetic pressure. On multiplying Eq 2 by
u = u ̃u, the quantity characterizing the magnetization strength is
called the Alfvénic Mach number

MA = u/VA, (11)

where VA = B/√4πρ is the Alfvénic velocity.
Considering current density (∇×B = 4π

c
j) related to the

magnetic field by Ampere’s law, the Lorentz force can be written
in the following form:

j×B
c
=
(B ⋅∇)B

4π
−∇B

2

8π
, (12)

where the first termon the right-hand side describes themagnetic
tension force and the second term describes the magnetic
pressure force. The plasma parameter β, denoting the ratio of gas
pressure to magnetic one, is defined as

β =
pg

B2/8π
, (13)

which can be rewritten as

β =
2M2

A

M2
s
, (14)

with the sonic and Alfvén Mach numbers.
As for the description of the properties of helicity in MHD

turbulence, one can introduce another two quantities termed as
the magnetic helicity and cross helicity, which are, respectively,
written as

HM =∫V
A ⋅BdV , (15)

HC =∫V
u ⋅BdV . (16)

Here,A is the vector potential with B = ∇×A. The former can
measure the twist and linkage of the magnetic field lines, and the
latter can reflect the overall correlation of magnetic and velocity
fields (Falgarone and Passot, 2003).

2.3 Cascade Processes of MHD
Turbulence
2.3.1 Power-Law Scaling of Turbulence Cascade
The pioneering work regarding incompressible hydrodynamic
turbulence (Kolmogorov, 1941, henceforth K41) demonstrated
that the energy is injected at a large scale (called the injection
scale) and dissipated at small scales (the dissipation scale). The
range between these two scales is called the inertial range, where
the energy cascades from the injection scale to the dissipation
scale with negligible energy losses, that is, the energy transfer rate
in this range keeps a constant,

𝜖 ≈ u2
l /tcas = const., (17)
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where ul is a characteristic velocity and tcas = l/ul is the cascading
timescale. This expression indirectly reflects the relationship
between velocity ul of fluid elements and their scales l, namely
ul ∝ (𝜖l)1/3. Therefore, we have the well-known Kolmogorov 1D
spectrum

E (k)∼𝜖2/3k−5/3, (18)

where k is the wave number. Alternatively, the 3D spectrum is
expressed as

E3D (k)∼k−11/3. (19)

It is noted that this 3D spectrum can be transformed into the
1D one by the transformation of the volume element d3k∼k2dk,
i.e., E(k)∼k2E3D(k)∼k−5/3.

For incompressible magnetic turbulence, two classical works
(Iroshnikov, 1963; Kraichnan, 1965, henceforth IK) introduced
nonlinear energy models to study the power-law scaling from
turbulence cascade. Different from the K41 energy cascade by
the interaction of eddies, it is considered that the energy was
transferred via the Alfvén waves along the local magnetic field.
The relation between the velocity and scale is expressed as ul ∝
(𝜖VAl)1/4 after considering the influence of themagnetic field.The
power spectrum in the IK theory is

E (k)∼(𝜖VA)1/2 k−3/2 (20)

in the inertial range. Although this model considered the role
of the magnetic field, it ignored a critical issue that turbulence
should be anisotropic in the presence of the magnetic field. This
limitation was pointed out in later studies (Montgomery, 1982;
Shebalin et al., 1983).

With the anisotropy due to turbulent magnetic fields, GS95
studied the nonlinear energy cascade of incompressible and
strong MHD turbulence. They predicted that the motions of
eddies perpendicular to themagnetic field have similar properties
to Kolmogorov turbulence, i.e., v⊥ ∝ (𝜖l⊥)1/3. The resulting
Kolmogorov-like energy spectra are given by

E (k⊥) ∝ 𝜖2/3k
−5/3
⊥ , (21)

where k⊥ represents thewave-vector component perpendicular to
the magnetic field. Notice that the magnetic field in the original
article refers to the global frame of reference which has been
corrected as the local frame of reference by later intensive studies
(LV99; Cho and Vishniac, 2000; Maron and Goldreich, 2001;
Cho and Lazarian, 2002; Cho and Lazarian, 2003, henceforth
CL02; 2003, henceforth CL03). In particular, the LV99 theory
pointed out that the reconnection of turbulent magnetic fields
takes place within the eddy turnover time and the motions of
eddies perpendicular to the magnetic field are not controlled by
the magnetic field tension. The magnetic field here refers to the
local magnetic field around the eddies.

Besides, for the weak MHD turbulence, the energy
transfer rate is expressed as 𝜖∝ (V 4

L l∥/VAl
2
⊥), resulting in vl ∝

VL(l⊥/Lin)1/2. Thus, the power spectrum of weak turbulence
follows (LV99; Galtier et al., 2000)

E (k⊥)∼k−2⊥ . (22)

2.3.2 Anisotropy
Except for the prediction of the exponent of −5/3 in
the perpendicular direction mentioned previously, another
important contribution of the GS95 theory is the prediction
of scale-dependent anisotropy. They assumed that the relative
motion perpendicular and parallel to the magnetic field is
described by the critical balance condition, namely, l−1⊥ v⊥∼l−1∥ VA,
where v⊥ is fluctuation velocity of turbulence at the scale l⊥, l∥ and
l⊥ represent the scales parallel and perpendicular to the magnetic
field, respectively. Based on the critical balance condition and the
relation of v⊥ ∝ (𝜖l⊥)1/3, two scales are related by

l∥∼VA𝜖−1/3l
2/3
⊥ , (23)

which is the so-called scale-dependent anisotropy theory. This
implies that the smaller the scale, the larger the anisotropy. Note
that this anisotropic relationship holds in the local frame of
reference rather than in the global frame of reference. As for the
latter, the anisotropy is scale-independent and is determined by
the anisotropy of the largest eddies (CL03).

It should be stressed that GS95 focused on trans-Alfvénic
turbulence, i.e.,MA ≈ 1, with the turbulence kinetic energy equal
to the magnetic energy. Later, the theory was generalized to sub-
Alfvénic MA < 1 and super-Alfvénic MA > 1 cases, respectively
(LV99; Lazarian, 2006). When the turbulence is driven with
the injection velocity VL less than VA at the injection scale
Lin, it initially undergoes a weak turbulence cascade process
with vl ∝ l1/2⊥ , where the parallel scale l∥ does not change (LV99;
Galtier et al., 2000). With the intensification of the interaction of
wave packets, the turbulence changes to strong turbulence at the
transition scale Ltr = LinM

2
A and continues up to the dissipative

scale Ldis. In the inertial range, the scales perpendicular
and parallel to the magnetic field have the following
relationship:

l∥ ≈ L
1/3
in l2/3⊥ M−4/3A . (24)

Compared with the trans-Alfvénic turbulence, this
relationship has an additional factor related to the magnetization
M−4/3A . In addition, the turbulent velocity is written as

vl ≈ VL(
l⊥
Lin
)
1/3

M1/3
A , (25)

which still follows the Kolmogorov-type cascade, i.e., vl ∝ l1/3⊥ .
In the case of the super-Alfvénic turbulence, there is almost

no constraint of the magnetic field at the injection scale Lin, so
the turbulence follows the law of hydrodynamic turbulence.With
the development of turbulence, it experiences a transition from
hydrodynamic turbulence to MHD one at the transition scale
LA = LinM

−3
A . In the inertial range from LA to Ldis, the turbulence

again exhibits an anisotropy consistentwith theGS95 theory, with
the scale relation of

l∥ ≈ L
1/3
in l2/3⊥ M−1A (26)

and the velocity relation of

vl ≈ VL(
l⊥
Lin
)
1/3

. (27)
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In the strongly turbulent region, the scale-dependent
anisotropy becomes more significant as the scale decreases.

2.4 Compressibility of MHD Turbulence
Compressibility is an important addition to the MHD turbulence
theory. In fact, in a real astrophysical environment such as a
molecular cloud, theMHD turbulence is essentially compressible
and is composed of three plasma modes, i.e., Alfvén, slow,
and fast modes. The idea of the decomposition of MHD
turbulence into individual modes was originally formulated in
Dobrowolny et al. (1980), where they mainly dealt with small
amplitude perturbations in incompressible MHD turbulence.

The actual decomposition in a numerical simulation has
been implemented using Fourier transformation (CL02; CL03).
Covering the gas pressure-dominated and magnetic pressure-
dominated turbulence regimes, they revealed the spectrum and
anisotropy in the compressible MHD turbulence. Typically, the
Alfvén mode in the high- and low-β regimes follows the scaling
slope and scale-dependent anisotropy of GS95.

EA (k) ∝ k−5/3⊥ , k∥ ∝ k2/3⊥ . (28)

The slow mode, as a passive mode, is dominated by the Alfvén
mode, and has properties similar to those of the Alfvén mode:

Es (k) ∝ k−5/3⊥ , k∥ ∝ k2/3⊥ . (29)

The fast mode, different from the Alfvén and slow modes,
possesses isotropic properties similar to acoustic turbulence, with
the following scaling relations:

Ef (k) ∝ k−3/2, k∥ ∝ k⊥. (30)

Later, Kowal and Lazarian (2010) advanced the studies on
mode decomposition using a wavelet method to treat large
amplitude perturbations. This method enables us to trace
the direction of the local magnetic field and has significant
advantages over the Fourier transform done in the frame of
reference of the mean magnetic field.

2.5 Controversy
To explain the numerical simulations in Maron and
Goldreich (2001), several studies that have attracted community
attention proposed a particular process termed as dynamical
alignment to modify the GS95 spectrum from k−5/3 to k−3/2

(Boldyrev, 2005; Boldyrev, 2006; Mason et al., 2006). At present,
there are numerical results that are compatible with a dynamic
alignment model (e.g., Chandran et al., 2015). Moreover, solar-
wind observations seem to find some scale-dependent alignment
(e.g., Wicks et al., 2013) or the emergence of three-dimensional
anisotropy (e.g., Chen et al., 2011) which would also point
toward a scale-dependent alignment of some sort (see also
Wang T et al., 2020 for similar findings from the end of theMHD
cascade to the kinetic scales).

At scales close to the dissipation scale, another
modification of the GS95 theory was proposed by Mallet
and Schekochihin (2017) for their intermittency model
and Mallet et al. (2017) for their reconnection-mediated

turbulence model (see also Loureiro and Boldyrev, 2017), the
testing/confirming of which is difficult due to current limitations
in computational abilities.

However, the anisotropy predicted in Bolryrev’s work
is inconsistent with some recent numerical simulations
(Beresnyak, 2019; Beresnyak and Lazarian, 2019). Many studies
claimed that the deviation from the spectral index -5/3 is
transient, namely, localized in the vicinity of the injection scale,
and does not extend to the whole inertial range (Beresnyak and
Lazarian, 2010; Beresnyak, 2013; Beresnyak, 2014). To the best
of my knowledge, this issue is still open. Anyway, the current
attempts still do not change the paradigm of the modern MHD
turbulence theory.

Synchrotron fluctuation techniques reviewed in this article
are developed closely based on the modern understanding
of MHD turbulence theory (e.g., GS95; LV99; CL02) without
more concern for its controversial appearance. Fortunately,
modifications attempted to the fundamental theory are not
expected to seriously affect the measurement of the techniques.
This is because the development of measurement techniques
is independent of a specific scaling slope of turbulence and is
constrained in the strongly turbulent range, while modifications
to turbulence theory focus on the driving or dissipation scale.

3 SYNCHROTRON RADIATIVE
PROCESSES IN MHD TURBULENCE

Magnetic field and relativistic electrons, as two key factors,
play a decisive role in emitting synchrotron radiation (Ginzburg
and Syrovatskii, 1965; Ginzburg, 1981). Assume that relativistic
electrons display a power-law spectrum

N (E)dE = KE−pdE, (31)

where N represents the number density of relativistic electrons
with the energy between E and E+ dE, K the normalization
constant, and p spectral index of the electrons. In an environment
containing regular and random magnetic fields, synchrotron
emissivity can be expressed as the combination of homogeneous
(jh) and random (jr) parts (Crusius and Schlickeiser, 1986)

j (ν,θ) = χ jh (ν,θ) +
1
2
(1− χ) jr (ν) , (32)

where χ and 1− χ are the percentage of homogeneous and random
parts, respectively. θ is the angle between field lines and the
direction of emission, and the factor 1

2
denotes half of the power

jr(ν) measured in the each of two polarization directions for
turbulent magnetic fields.

3.1 Radiation in Homogeneous Magnetic
Field
In a completely homogeneous field, the synchrotron emissivity
of relativistic electrons is expressed by (Ginzburg and
Syrovatskii, 1965)

jh (ν,θ) =∫dEN (E)F (E,ν,θ) . (33)
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The integrand F , representing the power per frequency unit
emitted by a single electron of given energy and pitch angle, is
given by (see Rybicki and Lightman, 1979 for more details on the
derivation)

F (E,ν,θ) =
√3e3B sin θ

mec
2 [

ν
νc ∫
∞

ν/νc

K5/3 (t)dt], (34)

where K5/3(t) is the modified Bessel function of order 5/3, f ( ν
νc
) =

ν
νc

∫∞ν/νcK5/3(t)dt is often referred to as a kernel function, and νc =
3E2eBsin θ/4πm3

ec
5 is a characteristic frequency of synchrotron

emission.
The power per frequency of a single electron, F , is divided

into the perpendicular and parallel components with respect to
the magnetic field B (Rybicki and Lightman, 1979).

F⊥ (E,ν,θ) =
√3e3B sin θ

2mec
2 [f (

ν
νc
)+ g ( ν

νc
)], (35)

F∥ (E,ν,θ) =
√3e3B sin θ

2mec
2 [f (

ν
νc
)− g ( ν

νc
)], (36)

where g(ν/νc) =
ν
νc
K 2

3
( ν
νc
) and K 2

3
is the modified Bessel function

of order 2/3. As a result, the degree of linear polarization can be
calculated by

Π (ν) =
F⊥ −F∥
F⊥ +F∥

=
g (ν/νc)
f (ν/νc)

(37)

for a single electron radiation. Replacing F in Eq 33 with F∥
or F⊥, we can obtain the perpendicular (j⊥) and parallel (j∥)
components of synchrotron emissivity for electron populations.
Hence, we have the degree of linear polarization for the electron
populations.

Π (ν) =
j⊥ − j∥
j⊥ + j∥
. (38)

After integration, the total emissivity (Eq 33) can be simplified
as

jh (ν,θ) ∝ (B⊥)(p+1)/2 ν−(p−1)/2, (39)

where the spectral index of photons is α = p−1
2

and B⊥ = B sin θ.

3.2 Radiation in Random Magnetic Field
In a completely random field, the calculation of synchrotron
emissivity will be more complex compared to a completely
homogeneous field, due to the presence of a stochastic direction.
The synchrotron emissivity is formulated as (Crusius and
Schlickeiser, 1986)

jr (ν) =
1
4π∫

2π

0
dφ∫

π

0
dθ sin θjh (ν,θ) , (40)

by averaging the total spontaneously emitted power for the
homogeneous field jh(ν,θ) over all possible values of the polar (θ)
and azimuthal (φ) angles. This equation implies that randomness

of themagnetic field ismaintained ranging from the Larmor radii
of the radiating electrons to the size of the emitting source.

Defining x = ν sin θ/νc, Eq 40 can be rewritten as

jr (ν) ∝ B∫
∞

0
dEN (E)R (x) , (41)

where x = ν
(c1BE2)

, c1 =
3e

4πm3
ec5

and R(x) = x
2
∫π
0 dθ sinθ∫∞x/sin θK5/3(t)dt

is associated with the Bessel function of order 5/3. The analytical
results demonstrated that jr has the same power–law relation for
frequency as that of jh (Crusius and Schlickeiser, 1986). Different
from the situation of homogeneous field, jr is related to the
total magnetic field strength B and not just its perpendicular
component B⊥ in jh expression.

3.3 Synchrotron Self-Absorption
When involving in the synchrotron self-absorption, one
can adopt Eq 34 to obtain the following the self-absorption
coefficient:

κ (ν,θ) = c2

8πν2 ∫E2 d
dE
(
N (E)
E2 )F (E,ν,θ)dE. (42)

We can, thus, write total radiation intensity by the radiative
transfer equation

I (ν) =
j
κ
(1− e−τ) , (43)

where τ = κℓ is the absorption optical depth, and ℓ is the size of
the emitting region.

For the electronswith a power-lawdistribution, the absorption
coefficient can be reduced to

κ (ν,θ) =
p+ 10/3
p+ 2

μ (ν,θ)

= G (p) e3

2πme
( 3e
2πm3

ec
5)

p/2

K (Bsinθ)(p+2)/2 ν−(p+4)/2, (44)

where μ(ν,θ) = p+2
p+10/3

κ(ν,θ), and the coefficient G(p) =
√3
4
Γ( 3p+2

12
)Γ( 3p+22

12
) is only associated with the electron exponent.

To obtain polarization properties, we herein introduce the
following coefficients in two mutually perpendicular directions:

κ⊥ (ν,θ) = κ (ν,θ) + μ (ν,θ) , (45)

κ∥ (ν,θ) = κ (ν,θ) − μ (ν,θ) . (46)

By adapting Eq 43, we have radiation intensity components

I⊥ (ν) =
j⊥
κ⊥
(1− e−κ⊥ℓ) , (47)

I∥ (ν) =
j∥
κ∥
(1− e−κ∥ℓ) . (48)

As for an optically thin medium, i.e., κ⊥,∥ℓ≪ 1, the degree
of linear polarization is consistent with Eq. 38. In the case of
optically thick medium, i.e., κ⊥,∥ℓ≫ 1,

Π (ν) =
j⊥/κ⊥ − j∥/κ∥
j⊥/κ⊥ + j∥/κ∥

(49)

can be used to calculate the degree of linear polarization.
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4 STATISTICS OF SYNCHROTRON
FLUCTUATIONS

On the basis of synchrotron emissivity in Section 3, we can
obtain the observable synchrotron intensity (I) and polarization
intensity (P) by integrating along the line of sight (Burn, 1966;
Waelkens et al., 2009).

I (X) =∫
L

0
(j⊥ + j∥)dz, (50)

P(X,λ2) =∫
L

0
(j⊥ − j∥)e2iψ(X,z)dz, (51)

where L is the spatial scale of radiative propagation, X is a 2D
vector on the plane of the sky, and z is the distance variable along
the line of sight.The phase (polarization) angleψ(X,z) = ψ0 + λ

2Φ
is associated with the intrinsic polarization angle ψ0 and the
Faraday rotation measure Φ. This is expressed as

Φ (X,z) ∝∫
z

0
ne (X,z′)B∥ (X,z′)dz′, (52)

where ne is the thermal electron density and B∥ is the magnetic
field parallel component along the line of sight. Defining the
intrinsic polarization intensity density as Pi =Qi + iUi which is
independent of wavelengths (this simplification does not affect
the statistical results, as verified in Zhang et al., 2018), we can
write the polarization intensity P =Q+ iU as

P(X,λ2) =∫
L

0
dzPi (X,z)e

2iλ2Φ(X,z). (53)

4.1 Correlation Analysis of Synchrotron
Fluctuations
According to the commonly used method of correlation analysis,
the two-point correlation of the polarized intensities can be
expressed as (LP16)

〈P(X1,λ21)P
∗ (X2,λ22)〉 =∫

L

0
dz1∫

L

0
dz2

〈Pi (X1,z1)P∗i (X2,z2)e
2i(λ21Φ(X1,z1)−λ

2
2Φ(X2,z2))〉,

(54)

where P∗ denotes the conjugate of the polarization intensity,
X1 and X2 represent two different spatial positions on the
plane of the sky, and λ1 and λ2 correspond to two wavelengths.
Eq 54 can not only characterize the correlation of the spatial
separation but also the dispersion of frequencies. Based on
this, LP16 proposed two techniques, namely the polarization
spatial analysis (PSA) and the polarization frequency analysis
(PFA).

In analogy with the velocity channel analysis (VCA) technique
(Lazarian et al., 2002), the PSA correlates the polarization signal
at different spatial points of the position–position frequency
(PPF) space that has similarities with the position–position

volume (PPV) space. At a fixed wavelength, the PSA can be
expressed as

⟨P (X1)P∗ (X2)⟩ =∫
L

0
dz1∫

L

0
dz2e

2iϕλ2(z1−z2)

× ⟨Pi (X1,z1)P∗i (X2,z2)⟩

× e−2λ
4
⟨(△Φ (X1,z1) −△Φ (X2,z2))

2⟩, (55)

where ϕ is the mean Faraday rotation measure density and ΔΦ
is the fluctuation of Faraday rotation measure. This represents
the correlation of polarization intensity as a function of spatial
separation R = X2 −X1 at the same wavelength.

The PFA that is analogous to the velocity coordinate spectrum
(VCS) correlates the polarization information along a single line
of sight at the same spatial position. At a fixed spatial position,
the PFA for different wavelengths is expressed by

〈P(λ21)P
∗ (λ22)〉 =∫

L

0
dz1∫

L

0
dz2e

2iϕ(λ21z1−λ
2
2z2)

〈Pi (z1)P
∗
i (z2)e

2i(λ21△Φ(z1)−λ
2
2△Φ(z2))〉,

(56)

which is complementary to the PSA, so this enables a more
comprehensive acquisition of the properties of MHD turbulence.

Another important aspect of the development of the
synchrotron fluctuation technique is the construction of the
statistics of polarization intensity derivative with respect to the
squared wavelength λ2. The correlation statistics of dP/dλ2 is
formulated as

〈
dP (X1)
dλ2

dP∗ (X2)
dλ2
〉 =∫

L

0
dz1∫

L

0
dz2e

2iϕλ2(z1−z2)

× 〈Pi (X1,z1)P
∗
i (X2,z2)ΔΦ (X1,z1)

×ΔΦ (X2,z2)e
−2λ2i(ΔΦ(X1,z1)−ΔΦ(X2,z2))〉, (57)

which is more sensitive to the fluctuations of Faraday rotation
than the polarization intensity correlation given in Eq 55. The
introduction of this relationship allows for more information
such as the spectrum of Faraday rotation to be obtained. In
addition to considering the correlation function, one can also
use the structure function of polarization intensity to reveal
the anisotropy of MHD turbulence (see LP16 for detailed
formulation).

4.2 Analysis of Power Spectrum
With the correlation analysis of synchrotron fluctuations, the
power spectrumof synchrotron polarization is described through
the Fourier transform of the two-point correlation tensor as

EP (K) =
1
(2π)2 ∫dRe−iK⋅R⟨P (X1)P∗ (X2)⟩, (58)

where R = X1 −X2 ∝ 1/K is the spatial lag vector on the plane
of the sky. Similarly, the power spectrum of the polarization
derivative with respect to λ2 can be written as

EdP (K) =
1
(2π)2 ∫dRe−iK⋅R⟨

dP (X1)
dλ2

dP∗ (X2)
dλ2
⟩ (59)

for analyzing the multi-frequency observations. Once the power
spectrum distribution of the observed information is obtained
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through the aforementioned two equations, we can obtain the
distribution characteristics of turbulent energy in space, and also
understand several properties related to turbulence, such as the
scaling slope, energy dissipation, and injection scales.

4.3 Analysis of Anisotropy
Following LP12, we can define the normalized correction
function for an arbitrary observable ϝ as

ξϝ (R) =
〈ϝ (X)ϝ (X+R)〉 − 〈ϝ(X)〉2

〈ϝ (X)2 〉 − 〈ϝ (X)〉2
, (60)

whereX andR denote a spatial position and a separation between
any two points on the plane of the sky, respectively. This is related
to the normalized structure function of the observable ϝ

D̃ϝ = 2(1− ξϝ) , (61)

by which we have a multi-pole expansion

M̃n (R) =
1
2π∫

2π

0
e−inφD̃ϝ (R,φ)dφ, (62)

where n represents the order of multi-pole and φ is the polar
angle. The order of the multi-pole expansion has following
meaning: n = 0 represents the monopole reflecting the isotropy
of statistics, n = 1 denotes the dipole which is zero due to the
rotational symmetry of the structure function, n = 2 is called the
quadrupole moment revealing the anisotropy, and n = 4 is the
octupole moment which has a negligible contribution for the
anisotropy. Hence, we define the ratio of the quadrupole moment
to the monopole one (termed quadrupole ratio, ref. LP16)

RQ =
M̃2 (R)
M̃0 (R)
=

∫
2π

0
e−2iφD̃ϝ (R,φ) dφ

∫
2π

0
D̃ϝ (R,φ) dφ

(63)

to characterize the degree of anisotropy, and the absolute value of
which is called the quadrupole ratio modulus.

Alternatively, the ratio of structure functions in the
perpendicular direction to each other can also depict the level of
anisotropy and is given by

RS =
〈|ϝ∥ (x +R∥)−ϝ∥ (x) |

2〉

〈|ϝ⊥ (y +R⊥)−ϝ⊥ (y) |
2〉
, (64)

where R = (R2
∥ +R

2
⊥)

1/2 is the spatial separation on the plane of
the sky. When RS = 1, statistics represents an isotropy while any
deviation from RS = 1 implies an appearance of anisotropy.

4.4 Statistics of Spatial Gradients
Combining the local alignment theory of MHD turbulence
(GS95; LV99) with the synchrotron polarization fluctuation
predictions (LP16), the gradient techniques were proposed to
measure the properties ofMHD turbulence (Lazarian et al., 2017;
Lazarian and Yuen, 2018a). This is analogous to velocity gradient
techniques (González-Casanova and Lazarian, 2017; Yuen and

Lazarian, 2017). The feasibility lies in that magnetic field and
velocity fluctuations enter symmetrically, according to the theory
of Alfvénic turbulence. In the framework of GS95 MHD
turbulence theory, it is expected that the alignment of the
magnetic field gradient direction is perpendicular to the local
magnetic field direction with the eddies (for other different
anisotropy models, the sensitivity to this alignment effect may
significantly depend on the scales). Since the synchrotron
fluctuations are elongated in the direction of the mean magnetic
fields, the magnetic fields can be traced by the direction of the
spatial gradient of the observed signal.

When involved in Faraday depolarization of synchrotron
radiation fluctuations, synchrotron polarization gradients (SPGs)
and synchrotron polarization derivative gradients (SPDGs) can
reveal more detailed information on the turbulent magnetic field.
In particular, the latter can sample the spatial regions close to
the observer with the sampling depth controlled by the radiation
wavelength (see Figure 1), which provides a new approach to
map the 3D distribution of Galactic magnetic fields.

Specifically, the de-correlation of the Faraday rotationmeasure
is introduced as (LP16; Zhang et al., 2020)

λ2Φ = 0.81λ2∫
Leff

0
dzneB∥ = 2π, (65)

where Leff is an effective spatial depth of the Faraday rotation
sampling. We can thus write the ratio of the depth sampled by
the Faraday rotation to the emitting region size as

Leff

L
≈ 2π
λ2L

1
ϕ
, (66)

with ϕ =max(√2σϕ,ϕ). Here, σϕ denotes the root mean square
and ϕ Faraday rotation density. According to Eq 66, the strong
and weak depolarizations can be characterized by Leff/L < 1 and
Leff/L > 1, respectively. In the case of the strong depolarization,
the entire space is divided into two different parts as shown in
Figure 1, from which we can know that only the part of z < Leff
experiences the depolarization while the part of z > Leff cannot
contribute to the polarization correlation. When observing

FIGURE 1 | Schematic diagram of the principle of reconstructing the 3D
magnetic field structure using SPDGs. The spatial gradient of polarization
intensity ∇(△P) at two neighboring wavelengths λ reflects the mean magnetic
field structure between the slice [L2,L1] (Lazarian and Yuen, 2018a).
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that the frequency interval △ν = c/λ2△ λ is small enough, the
difference of P(λ1) and P(λ2) in the range of [L2,L1] is written as

△P ≈∫
L1

L2

dzPi (X,z)e2iλ
2Φ(X,z), (67)

from which the expression of the SPDGs is given by

∇
d|P|
dλ2
∼λ−2∇|P (λ1) −P (λ2) |. (68)

From another perspective, namely, based on the spatial
gradient analysis of Stokes parameters Q and U on the
complex plane, Gaensler et al. (2011) proposed the synchrotron
polarization gradients to constrain the sonic Mach number in
warm or ionized ISM. After a simple mathematical derivation,
the spatial gradient of polarization intensity can be expressed as

|∇P| = √(∂Q
∂x
)
2
+(∂U

∂x
)
2
+(∂Q

∂y
)
2
+(∂U

∂y
)
2
. (69)

Subsequently, considering rotational and translational
invariance of coordinates, various diagnostic quantities were
developed by Herron et al. (2018).

5 APPLICATIONS OF STATISTICAL
TECHNIQUES

5.1 Measurement of Scaling Slope
LP12 predicted that the power spectrum, correlation, and
structure functions of synchrotron radiation fluctuations, termed
two-point statistics, can recover the scaling slope of turbulent
magnetic fields. Numerical simulations show that the correlation
function does not work in revealing scaling slopes, but it can be
used to explore the correlation scale and the effect of the electron
spectral index on turbulence (Herron et al., 2016; Lee et al., 2016;
Zhang et al., 2016). The main reason that we think is that LP16
performed theoretical studies under the condition of the power-
law correlation model, from which they predicted the possibility
of obtaining the scaling slope for the corresponding model. The
correlation function itself, however, has a divergent behavior
for numerical simulation or observational data, because Stokes
parameters Q and U contain the information of negative values
arising from the change in the direction of the turbulentmagnetic
field.

Numerical results demonstrated that the scaling slope of the
underlying MHD turbulence can be recovered approximately
by the two-point structure function of synchrotron radiation
fluctuations (Lee et al., 2016). From the perspective of numerical
simulations, the direct calculation of the spatial structure
function ismore time-consuming, compared with the correlation
function or power spectrum. Alternatively, one can first get the
statistics of the correlation function, provided that it maintains
convergence, and then calculate the structure function using
the relation of SF(R) = 2[CF(0) −CF(R)]. In general, the two-
point structure functions are unable to correctly reproduce the
scaling of a spectrum with a slope ∼ − 3 or steeper (sometimes

problems may arise already at slopes slightly shallower than
− 3, if the underlying spectrum is not a perfect power-law). For
instance, Lee et al. (2016) measured the scaling slope of 5/3 with
the change in a numerical resolution. It was pointed out that
the scaling slope of the two-point structure function, calculated
directly from 2D synthetic data, was still less than 5/3 expected
for the Kolmogorov spectrum, even with a 81922 resolution.
Thus, using a two-point structure function to extract the scaling
slope of turbulence requires more precise statistics with a higher
numerical resolution. Alternatively, the multi-point structure
functions are recommended to achieve better convergence of the
results (see Cho and Lazarian, 2009; Cho, 2019).

Obtaining the scaling slope through the power spectrum of
synchrotron fluctuations should be one of the most efficient
ways, as the calculation of the power spectrum invokes the
fast Fourier transform in the wavenumber space to effectively
accelerate the process. Adopting both synthetic and MHD
turbulence simulation data, Lee et al. (2016) obtained the power
spectrum and its derivative with respect to the wavelength of
synchrotron polarization arising from synchrotron polarization
radiation together with Faraday rotation fluctuations. This study
succeeded in obtaining the scaling slope and demonstrated that
simulations are in agreement with the theoretical prediction in
LP16. In addition, using simulated interferometric observations
on how to recover the scaling slope was also attempted.
Notice that the study mentioned previously is based on
the spatially coincident synchrotron emission and Faraday
rotation regions. Furthermore, considering spatially separated
and compounded synchrotron radiation and Faraday rotation
fluctuations, Zhang et al. (2018) studied how to extract the
scaling slope of synchrotron polarization intensities. In the
short wavelength range, the power spectra revealed fluctuation
statistics of the perpendicular component of turbulent magnetic
fields, and the spectra reflected the fluctuation of the Faraday
rotation in the long-wavelength range. As shown in Figure 2,
the effects of telescope angular resolution and noise structure
do not hinder the use of power spectrum methods to obtain
scaling slopes of MHD turbulence in the large-scale inertial
range.

Motivated by one-point statistics in LP16 (termed PFA),
which is characterized by the variance of polarized emission
as a function of the squared wavelength along a single line
of sight, Zhang et al. (2016) studied how to extract the scaling
slope of underlying MHD turbulence. To depict the level of
turbulence, they defined a ratio η of the standard deviation
of the line of sight turbulent magnetic field to the line of
sight mean magnetic field. As shown in Figure 3, a large
ratio (η≫ 1) characterizing a turbulent field dominated regime
reflects the polarization variance ⟨〈P2〉⟩ ∝ λ−2, and a small ratio
(η ≲ 0.2) characterizing a mean field-dominated regime reveals
the polarization variance ⟨〈P2〉⟩ ∝ λ−2−2m = λ−10/3 with m = 2/3
for the Kolmogorov scaling. As a result, the turbulent spectral
index was successfully recovered by the polarization variance
in the case of the mean field-dominated regime, i.e., a small
η. At the same time, it was pointed out that the change in
cosmic ray electron spectral indices cannot affect the scaling
slope measurement of magnetic turbulence. This provides a new
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FIGURE 2 | The influences of telescope angular resolution (left panel) and Gaussian noise (right panel) on the power spectrum calculated at the wavelength λ =2.4 in
code units. The symbol Δσ indicating standard deviation of Gaussian noise accounts for a fraction of the mean synchrotron polarization intensity. The symbol θFWHM

denoting an effective Gaussian beam is used to convolve 2D maps of Stokes parameters. The original (ideal) slope without considering the resolution and noise is
shown in the solid line (Zhang et al., 2018).

method for recovering the scaling index of MHD turbulence
and agrees with the theoretical prediction of LP16. Interestingly,
this technique has been successfully applied to explain the
depolarization in the optical wavebands from active galactic
nuclei (Guo et al., 2017).

5.2 Measurement of Anisotropy
As described in Section 2, the prediction of the anisotropy
(eddy’s elongation along the local magnetic field direction) in
turbulent cascade is an important contribution of GS95. It is

FIGURE 3 | The transition of polarization variance from the stochastic
Faraday rotation fluctuation dominant regime for η =∞, to the uniform
fluctuation dominant one for η =0.080 in 3D synthetic simulation with a
resolution of 40963. The underlying MHD turbulence corresponds to the
Kolmogorov spectrum of the index 11/3 (Zhang et al., 2016).

challenging to test the local anisotropy of MHD turbulence from
an observational point of view because the observational signal is
inevitably involved in the integration along the line of sight in the
observer’s frame of reference. Note that integrated synchrotron
fluctuations along the line of sight were predicted by LP12 to be
anisotropic, with the eddy’s major axis aligned with the direction
of the mean magnetic field instead of the local field within the
MHD turbulence volume.

The spatial second-order structure function of radiation
fluctuations is a very direct way to reveal the existence of
anisotropy in MHD turbulence, although the anisotropy here
does not directly correspond to the local anisotropy favored
by the modern MHD turbulence theory. By visualizing a
contour map for 2D structure function of observations, one
can easily see the anisotropic distribution, from which the
major axis direction of the elongated structure will qualitatively
characterize the mean magnetic field orientation (see Figure 1
in Wang R. Y et al. (2020) for an example). Considering the ratio
of two measurement directions perpendicular to each other
from observed polarization intensities, called an anisotropic
coefficient, we can quantitatively determine the degree of
the anisotropy of the MHD turbulence in the global frame
of the reference; refer to the work of Lee et al. (2019) and
Wang R. Y et al. (2020) for more details.

A new more precise method to measure the anisotropy is
termed as the quadrupole ratio described in Section 4. This
method was proposed in LP12 that derives many analytical
formulae including the predictions from the Alfvén, slow, and
fast modes in the high or low β plasma regime. A numerical test
of theoretical predictions on the quadrupole ratio was attempted
by Herron et al. (2016) based on MHD turbulence simulation.
We have to point out that their testing used a simplified version
rather than a general formula. In particular, they adopted the
compressibleMHD turbulence data to study the isotropic version
of formulae, which fails to provide proof of the usability of the
analytical formula. Considering the angle change in between the
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meanmagnetic field direction and the line of sight, recently tested
the theoretical prediction of LP12 in detail and confirmed the
correctness of the analytical formulae, providing convenience to
study the anisotropy of MHD turbulence by using the analytical
expressions.

How the anisotropic structure changes with observation
frequency were studied in Lee et al. (2019) by the quadrupole
ratio. Their studies showed that in the high-frequency range,
the observed polarization exhibits the averaged structures of
both foreground and background regions, while in the low-
frequency range, the large-scale structures are wiped out by a
strong Faraday depolarization and the small-scale anisotropy
reflects the magnetic field structure from the foreground region.

By decomposing the compressible MHD turbulence into
three plasma modes, i.e., Alfvén, slow, and fast modes,
Wang R. Y et al. (2020) demonstrated that the quadrupole ratio
statistics of the polarization intensity from the Alfvén and slow
modes present a significant anisotropy, while the fast mode
statistics show isotropic structures (see Figure 4). Those findings
are in agreement with the earlier direct numerical simulations
provided in CL02. As a result, the quadrupole ratio method
can be applied to the measurement of the anisotropy of MHD
turbulence in various astrophysical environments.

5.3 Measurement of Magnetic Field
Orientations
The traditional method ofmeasuring themagnetic field direction
is called the synchrotron polarization vector, which is based on
the fact that the observed polarization vectors are perpendicular
to the magnetic field directions within the emitting source.
Note that the limitation of this method cannot be applied to
observations with Faraday rotation.

Using synchrotron intensity gradients (SIGs) together with
both MHD turbulence simulation and PLANCK archive data,

Lazarian et al. (2017) demonstrated the practical applicability
of the gradient technique described in Section 4, comparing
the measured directions of magnetic fields arising from the
gradient technique with that of the traditional polarization
vector method. Furthermore, SIGs were advanced in Lazarian
and Yuen (2018a) to SPGs and SPDGs. Subsequently, to
explore the magnetic field measurement capabilities of
synchrotron gradient techniques, SPGs and SPDGs were
generalized and applied to a variety of possible astrophysical
environments in a series of studies including different turbulence
regimes, the gradient of various diagnostic quantities, realistic
observations of Galactic diffuse media, as well as spatially
separated synchrotron radiation and Faraday depolarization
regions.

5.3.1 Gradient Measurement in Various Turbulence
Regimes
Based on synthetic observations from MHD turbulence
simulations, Zhang et al. (2019a) extended both SPGs and
SPDGs to super-Alfvénic regimes and studied how to trace
the directions of turbulent magnetic fields. Focusing on multi-
frequency measurements in the presence of strong Faraday
rotation, they provided the procedures of how to recover the
projected mean magnetic fields on the plane of the sky and the
local magnetic fields within a tomographic slice. The results
demonstrated that in the low-frequency strong Faraday rotation
regime, the SPGs had a significant advantage over the traditional
polarization vector method in tracing projected mean magnetic
fields and the SPDGs were applicable to tracing the local
magnetic field directions in the local frame of reference of MHD
turbulence. At the same time, their parameter research provided
a testing ground for the application of the new techniques
to a large number of data cubes, such as those from LOFAR
and SKA.

FIGURE 4 | Quadrupole ratio of synchrotron polarization intensities for Alfvén, slow, and fast modes as a function of radial separation of maps in the sub-Alfvénic
regime (Wang R. Y et al., 2020).
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5.3.2 Gradient Measurement of Various Diagnostic
Quantities
The various diagnostic quantities, including the polarization
directional curvature, polarization wavelength derivative,
and polarization wavelength curvature, are derived in
Herron et al. (2018) considering the translational and rotational
invariance of the observed quantities. It is noticed that the
authors were not aware of the relation between the magnetic field
direction and the gradients of synchrotron radiation gradients,
and did not explore whether the new diagnostics they introduced
could trace magnetic field in observations.

The spatial gradients of various diagnostics provided in the
work of Herron et al. (2018) have been proposed to trace the
directions of the mean magnetic field by Zhang et al. (2019b),
who found that the gradients of various diagnostics can effectively
determine the direction of the projected magnetic fields on the
plane of the sky. One of these techniques, namely the maximum
of the radial component of the polarization directional derivative,
is the best robust method for tracing the mean magnetic field
directions in the Galactic ISM.

The synergy of various diagnostic gradients is complementary
in tracing the actual direction of interstellar magnetic fields,
especially in the low-frequency Faraday rotation regime where
the traditional polarization vector method cannot work.
Applying the synergies of synchrotron diagnostic gradients
to the archive data from the Canadian Galactic Plane Survey
(Taylor et al., 2003), Zhang et al. (2019b) showed that various
diagnostic techniques make consistent predictions for the
Galactic mean magnetic field directions.

5.3.3 Gradient Measurement of Spatially Separated
Regions
When confronted with realistic observations, the synchrotron
polarization radiation obtained by the observers could originate
from complex turbulence regions rather than a single spatially
coincident radiation and a Faraday rotation region. Can the
synchrotron polarization gradient still measure the direction of
the magnetic field for more complex astrophysical settings?

The measurement capabilities of the SPGs were studied in
Wang et al. (2021) by constructing spatially separated models,
focusing on exploring how the Faraday rotation density in the
foreground region affects the measurement of the projected
magnetic field. Their numerical results showed that the use of the
SPG technique for a complex astrophysical environment could
successfully trace the projected mean magnetic field direction
within the emitting source region independent of radiation
frequency.

5.3.4 Measurement of the Local Magnetic Field
Direction
Thanks to the inevitable accumulation of the observed signal
along the line of sight, i.e., less locality, it is extremely challenging
tomeasure the localmagnetic field inMHD turbulence.However,
the measurement of the local magnetic field will be the direct
evidence to verify the modern MHD turbulence anisotropy
theory since this theory is based on the local magnetic field
reference system (see Section 2.3.1). At the same time, the

acquisition of the local magnetic field information is a pre-
requisite for reconstructing the Galactic 3D magnetic field as
well.

Using gradient statistics of the synchrotron polarization
derivative with respect to the squared wavelength dP/dλ2, the
measurement of the local magnetic field direction has been
implemented in Zhang et al. (2020) based on data cubes obtained
with MHD turbulence simulations. They demonstrated that in
the low-frequency strong Faraday rotation regime, the statistic
analysis of the spatial gradient of dP/dλ2 can indeed reveal the
local magnetic field direction and the local anisotropy of the
underlying MHD turbulence which increases with increasing
radiation frequency.

As illustrated in Figure 1, this technique can successfully
extract the local information of MHD turbulence in the
tomography space along the line of sight by using multi-
frequency observations at adjacent frequencies. Unlike the
traditional Faraday rotation synthesis (e.g., Burn, 1966), the
polarization gradient techniques are not affected by the Faraday
rotation and can improve the 3D model of the Galactic magnetic
field effectively.

5.4 Measurement of Magnetization
Strength
Several statistical methods, such as Genus, Tsallis, skewness, and
kurtosis statistics, are sensitive to the magnetization level MA of
MHD turbulence (e.g., Burkhart et al., 2012; Herron et al., 2016).
In addition, the correlation function (e.g., Lazarian et al., 2002;
Burkhart et al., 2014; Esquivel et al., 2015) and structure
function (Hu et al., 2021; Xu and Hu, 2021) analysis are also
suggested as alternative techniques of measuringMA. At present,
these studies are based on the velocity information analysis
from MHD turbulence simulations. Similarly, the adoption of
synchrotron fluctuations should be on the agenda.

In analogy with velocity gradient techniques,
Lazarian et al. (2018b) first discussed that synchrotron gradient
techniques should be able to measure the magnetization
level. The feasibility of the two methods was explored in
Carmo et al. (2020) to obtain the level of magnetization from
synchrotron polarization fluctuation, namely the top-base and
the circular standard deviation. They claimed that the signal-to-
noise ratio was more severe for the top-base method, but still
reliable with the standard deviation method. In short, the finding
on the power-law relation betweenMA and synchrotron gradient
statistics is important for determining MA from the current or
future available data cubes.

6 DISCUSSION

The progress in understanding the role of magnetic fields for
processes in a specific astrophysical environment depends on
our ability to obtain their properties from MHD turbulence.
Unfortunately, it is notoriously difficult for studying the
properties of magnetic fields. In practice, almost every technique
presents its limits. For example, the difficulty with dust
polarization measurement lies in the inability to measure the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 12 May 2022 | Volume 9 | Article 869370

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Zhang and Wang Measurement of MHD Turbulence Properties

magnetic field strength along the line of sight and insufficient dust
grain alignment efficiencies at low Galactic latitudes, preventing
observers from deriving the information of magnetic fields
in the ISM. For another example, the difficulty with Zeeman
splitting measurement is that it can only measure the line of
sight component strength of the magnetic field, access the
high magnitude end of the interstellar magnetic fields in a
mildly turbulent environment, and provide limited morphology
information (Crutcher, 2009). Last but not least, a serious
limitation of the well-known Faraday tomography is that the
line of sight component of the magnetic field in turbulence
is expected to change its sign, resulting in the Faraday depth
to become ambiguous (see Ho et al., 2019 for a comparison of
measure performance between Faraday tomography and SPGs;
refer also to Akahori et al., 2018 for the recent review on other
more methods and applications in specific astrophysics).

The further development of related new techniques can
potentially extract other properties of MHD turbulence. In the
framework of synchrotron fluctuations, many topics deserve
to be further studied. As an example, visualization of the
structure or correlation functions of synchrotron diagnostics can
present an anisotropic feature, by which one could trace the
mean magnetic field orientations and measure magnetization
strength. It should be encouraged to explore the feasibility of
this technique for measuring magnetic fields, the fundamental
spirit of which is similar to the correlation function anisotropy
technique on velocity information (Lazarian et al., 2002; Esquivel
and Lazarian, 2005; Hu et al., 2021; Xu and Hu, 2021). We would
like to emphasize that the synchrotron dispersion techniques
discussed currently are also complementary to other techniques
of magnetic field studies, such as velocity channel analysis,
velocity coordinate analysis, and velocity gradient techniques.
The synergistic use of multiple techniques is necessary because
one will be able to improve the reliability of magnetic field
measurements by fully utilizing the advantages of each technique.

None of the relevant articles covered in this review
consider synchrotron self-absorption effects (see Section 3
for self-absorption processes). However, when the brightness
temperature of synchrotron radiation approaches the ‘thermal’
temperature of emitting relativistic electrons, the synchrotron
self-absorption effect is expected to be important in the case of
low frequencies. In the framework of new techniques developed,
we expect that the effects of self-absorption can provide yet
another method of testing the 3D structure of the magnetic field.
Indeed, only the regions closer to the observer and less affected
by self-absorption are expected to be probed under strong
self-absorption. This effect is similar to the effect of the dust self-
absorption in spectral line statistics that was explored analytically
in Kandel et al. (2017b) and numerically in Yang et al. (2021).

In the recent studies related to synchrotron radiation
techniques, one simply assumes a homogeneous, isotropic,
non-thermal relativistic electron distribution with a power-
law energy spectrum. In fact, the specific properties of the
relativistic electrons would depend on the cascade process of
MHD turbulence, that is, it is also necessary to solve the so-called
turbulent heating problem between MHD scales and electron
plasma scales. Since part of the initial cascading turbulent energy

will be removed by the ion heating/energizing at ion scales
before it reaches the electron scales, only a fraction of the
energy cascading from the large MHD scales will end up in
heating/energizing the electrons which will determine a specific
spectral energy distribution N(E) to produce the observed
synchrotron radiation. What is this fraction is currently a big
open question and answering it would require understanding
on what happens at turbulent fluctuations during the transition
from MHD scales to kinetic scales, as well as the role of various
collisionless processes leading to particle heating that could be
at work within different plasma regimes (e.g., Quataert, 1998;
Schekochihin et al., 2009; Chandran et al., 2010; Cranmer, 2014;
Arzamasskiy et al., 2019; Cerri et al., 2019; Zhdankin et al., 2019;
Vasquez et al., 2020; Cerri et al., 2021). As a result, different
anisotropy models (i.e., different turbulence theories at MHD
scales; see Section 2.5) would determine different properties of
fluctuations at kinetic scales which are essential to determine the
differential heating of ions and electrons.

Compared to the Faraday rotation synthesis to obtain
the 3D magnetic fields in the galaxies (e.g., Burn, 1966;
Beck, 2015), where the Faraday depth is changing its sign along
the line of sight, making the determination of the magnetic
field component B∥ ambiguous (see Ferriere, 2016), the
advantage of the polarization gradient technique is that
it is not affected by Faraday rotation and will effectively
improve the measurement of our current Galactic 3D magnetic
field model. The correct understanding of this model, as a
fundamental ingredient, is indeed very important, e.g., for
modeling the anisotropic cosmic ray propagation in the Galaxy
(e.g., Cerri et al., 2017; Reichherzer et al., 2022) which can
explain some anomalies inferred from gamma-ray emission
(Acero et al., 2016; Yang et al., 2016), and is critical to obtain a
realistic Galactic evolution (e.g., Beck, 2015).

Furthermore, an accurate understanding of Galactic magnetic
fields is indispensable for searching the B modes of the Cosmic
Microwave Background (CMB, Zucca et al., 2017), which is
essential for understanding the evolution of the early Universe.
The CMB B mode studies require more accurate removal of the
Galactic foreground contamination, which is achievable provided
that the detailed information of Galactic magnetic fields can be
obtained (e.g., Cho andLazarian, 2010).Therefore, it is promising
that using the new synchrotron gradients performs foreground
removal for studying the CMB B modes on the plane of the sky.
We expect that there are different properties between the Galactic
foreground SPGs and cosmological perturbation one, that is, the
direction traced by the former is perpendicular to the foreground
polarization, while the latter does not follow this relation. In
addition, the CMB E and B mode ratio has been demonstrated
to be sensitive to the fraction of the fast modes in MHD
turbulence and themagnetization strength (Kandel et al., 2017a).
Furthermore, one can obtain the local properties of the CMB E
and B modes using the SPDGs, which provide an alternative way
of studying the distribution of compressible MHD turbulence
modes over the sky and of determining the magnetization level
of the Galactic ISM.

Most of the work that has been carried out is based
on numerical simulations, which, on the one hand, helps
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to test the feasibility of the technique and, on the other
hand, provides the test grounds for studying magnetic fields
using a large number of data cubes from the LOFAR and
SKA. Hence, the next step is necessary to advance the
application of the technique using observational data to test
the performance of the technique in a specific astrophysical
setting.
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