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Motivated by MMS mission observations near magnetic reconnection sites, we have
developed a new empirical reconstruction (ER) model of the three-dimensional (3D)
magnetic field and the associated plasma currents. Our approach combines both the
measurements from a constellation of satellites and a set of physics-based equations as
physical constraints to build spatially smooth distributions. This ER model directly
minimizes the loss function that characterizes the model-measurement differences and
the model departures from linear or nonlinear physical constraints using an efficient
stochastic optimization method by which the effects of random measurement errors
can be effectively included. Depending on the availability of the measured parameters and
the adopted physical constraints on the reconstructed fields, the ER model could be either
slightly over-determined or under-determined, yielding nearly identical reconstructed fields
when solved by the stochastic optimization method. As a result, the ER model remains
valid and operational even if the input measurements are incomplete. Two sets of new
indices associated respectively with the model-measurement differences and the model
departures are introduced to objectively measure the accuracy and quality of the
reconstructed fields. While applying the reconstruction model to observations of an
electron diffusion region (EDR) observed by NASA’s Magnetospheric Multiscale (MMS)
mission, we examine the relative contributions of the errors in the plasma current density
arising from randommeasurement errors and linear approximations made in application of
the curlometer technique. It was found that the errors in the plasma current density
calculated directly from the measured magnetic fields using a linear approximation were
mostly contributed from the nonlinear configuration of the 3D magnetic fields.

Keywords: stochastic optimization, empirical reconstruction model, magnetospheric reconnection, simultaneous
perturbation stochastic approximation, loss function

INTRODUCTION

Visualization of Earth’s magnetosphere is an effective way to understand the magnetospheric
environment and its associated physical processes. However, historically our exploration and
understanding have been limited to either remote sensing (energetic neutral atom imaging, e.g.,
IMAGE, TWINS) or in-situ point-wise measurements made from satellites in space, from either
single- (e.g., Geotail, Polar) or multi-satellite (e.g., THEMIS, Cluster, MMS) missions. One technique
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to translate discrete point-wise satellite measurements into a 3D
visualization is to develop a reconstruction model that captures
the fundamental magnetic field (B) and plasma field as
characterized by the plasma current density (J)—measured
independently from the magnetic field—in the neighborhood
of the measurement domain. Introduction of
magnetohydrodynamic (MHD) equations could also lead to
the reconstruction of additional field variables such as plasma
velocity (U) and electric field (E). It is understood that MHD is
not appropriate just at the localized site of the electron diffusion
region (EDR) where the X-point becomes a singularity in an ideal
MHD model and the diffusion is parameterized by a bulk
parameter of resistivity in a resistive MHD model (Priest,
2016). Our goal is to visualize the broader regions
surrounding the EDR site. Depending on specific science
problems, the magnetic and plasma fields can be reconstructed
either from a set of global measurements to yield a climatological
configuration covering the entire magnetosphere (e.g.,
Tsyganenko and Sitnov, 2007) or from a set of in-situ
measurements along satellite paths to yield a localized
configuration in both space and time (e.g., Dunlop et al., 1988;
Dunlop et al., 2002). This paper focuses on the localized
reconstruction.

Previously, there have been two categories of models for
reconstructing localized fields (e.g., B and J) in Earth’s
magnetosphere. The first uses the Grad-Shafranov
reconstruction (GSR) technique to produce reconstruction
field maps of (B, J) and U by solving a set of MHD equations
where the measurements are used as boundary conditions to
constrain the reconstructed field (e.g., Sonnerup and Guo, 1996;
Hasegawa et al., 2004; Hasegawa et al., 2005; Sonnerup and Teh,
2008; Zhu and Lui, 2012; Sonnerup et al., 2016). The GSR
technique was developed for a force-free magnetic-field
configuration (e.g., Sturrock, 1994) and was mainly used to
derive two-dimensional stationary and coherent MHD
structure in the magnetosphere (e.g., Sonnerup and Guo,
1996). In this category of approaches, the spatial configuration
of the reconstructed fields is determined by solving a full set of
self-consistent MHD partial differential equations that
extensively describe various physical processes relating
different parameters. This reconstruction approach can
effectively yield and solve a full set of physics-based model for
(B, J) and U using measurements obtained by a single satellite
along its trajectory as the boundary conditions.

The second category of reconstruction approaches
reconstructs the field maps of (B, J) by empirically fitting a
prescribed spatial configuration of the field maps to the point-
wise in-situ satellite measurements forming a finite volume with
multiple lines and faces in space (e.g., Dunlop et al., 1988; Dunlop
et al., 2002; Torbert et al., 2020). We may call this category of
techniques an “empirical reconstruction” (ER). This ER approach
is especially effective and useful for reconstructing (B, J) fields
from multi-satellite measurements. Unlike the GSR techniques
where the spatial configuration of the fields (B, J) and U is solved
from the measurements based on a full set of MHD equations, the
ER models prescribe the spatial configurations of (B, J) guided by

in-situ measurements and use only limited number of physical
equations as constraints, such as

μ0J � ∇× B and (1a)
∇ · B � 0 (1b)

to determine the model parameters. In Eq. 1a, μ0 is the
permeability of free space. Note that the above two equations
do not form a closed set of equations for a system. There are six
individual dependent variables for four component equations. As
a result, ERmodels heavily rely on the measurements to construct
smooth fields.

Assuming a linear approximation for the spatial variation of
the modeled B, Dunlop et al. (1988) introduced a curlometer
technique to reconstruct the J field solely from the measured B
based on one MHD equation (Eq. 1a). The authors also proposed
an objective index called the “quality indicator” to measure the
accuracy or quality of the reconstructed J field. In Torbert et al.
(2020), an ERmodel for bothB and J fields produced by assuming
a nonlinear function for B was developed based on point-wise
measurements of (B, J) fromMMS and physical constraints from
Eqs. 1a, b. For a reconstruction model with a nonlinear variation
in B, we expect the reconstructed B and J fields to be more
accurate and of higher quality than those derived from the
curlometer technique, which is founded upon a linear
approximation for the B field. Such an improvement is
especially important near EDRs where the magnetic field lines
are expected to be highly curved and the plasma field plays an
important role in the localized reconnection process. Note that
the ER model by Torbert et al. (2020) was developed as an evenly
determined problem, i.e., the numbers of unknown parameters
and constraints are equal, from the perspective of the more
general data analysis technique for which an extra constraint
is needed to add to the model that will affect the quality of the
reconstructed fields. In addition, the quality and the factors
affecting the reconstruction quality are difficult to quantify.

In this paper, we develop a new 3D ER model by using a
stochastic optimization method to construct the smooth fields.
This new ER model is a generalization of the previous ER models
for which additional measurements and MHD equations can be
flexibly introduced in the samemodel framework. In addition, the
model effectively considers and quantifies the effects of random
errors arising from uncertainties in the in-situ measurements.
Furthermore, this stochastic optimization approach introduces
additional flexibility into the model by allowing it to work
regardless of whether the parameters considered are over- or
under-defined. The central idea of the previous ER models is the
utilization of the MHD Eq. 1a that derives J field from a
prescribed analytic B field to fit the point-wise measurements
and to perform the reconstructions. Note that Eq. 1a is derived by
neglecting the displacement current in Ampere’s Law and is one
of several important equations in anMHD system. The validity of
Eq. 1a is based on the MHD fundamental assumption that the
fields vary on the same time and length scales as the plasma
parameters (Boyd and Sanderson, 2003). Two other important
MHD equations similar to Eq. 1a are Ohm’s Law
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E � (η/μ0)(∇× B) − U × B (2)
which derives the electric field E from the plasma velocity U for a
given B field, and Faraday’s Law of Induction, which relates the
plasma resistivity (η) to the rest of the fields (Boyd and Sanderson,
2003)

zB
zt

� −B(∇ · U) + (B · ∇)U − (U · ∇)B + η

μ0
∇2B + ∇η ×

(∇× B)
μ0

.

(3)
Here, Eq. 2 plays a role similar to Eq. 1a in that an analytic E

field can be derived from a prescribed analytic U field for given
(B, η). Note that the plasma resistivity η can be considered a
parametric measure of the particle acceleration and energy
conversion near EDRs. Alternatively, it can also be considered
as a phenomenological parameter to be used as a proxy to locate
the EDRs of reconnection (e.g., Scudder, 2016; Yamada et al.,
2016). In particular, the ultimate inclusion of this aspect of
particle acceleration—and thus connection to recent MMS
energetic particle observations near EDRs (e.g., Cohen et al.,
2021; Turner et al., 2021)—motivated development of this new
reconstruction approach.

For an ER model that only adopts one or two MHD linear
equations, the problem can be solved by a traditional least-
squares method that solves a set of linear algebraic equations
(e.g., Dunlop et al., 1988; Dunlop et al., 2002; Denton et al., 2020;
Torbert et al., 2020). When additional and, more importantly,
nonlinear MHD equations such as Eqs. 2, 3 are included, a more
practical approach is to solve the model parameters by directly
minimizing a “loss function” that characterizes the model-
measurement differences and the model departures from the
above MHD equations (Eqs. 1–3). The new ERmodel introduced
here solves for the reconstruction parameters by directly
minimizing this loss function, which will be discussed in detail
in Section 2. Note that the term “model departure” here means
violation of a physical constraint—e.g., a violation of Eq. 1b in the
reconstructed model. Such a violation arises either from the
measurement errors on which the ER model is built or from
the nature of the ER with a prescribed configuration—e.g., a
linear or quadratic functional form in B field.

The new 3D ER model presented here has been built on the
basis of directly minimizing the loss function L (or y) using a
stochastic optimization method. For a linear system such as one
using only Eqs. 1a, b, the model parameters could also be solved
by the traditional least-squares method if the reconstruction is
formulated in an even-determined or an over-determined
problem. Comparing to the traditional least-squares method
that solves a set of linear algebraic equations, this alternative
method has several merits. First, the system could be nonlinear or
the loss function L is not necessarily in a quadratic form with
respect to the model parameters. The nonlinearity becomes
unavoidable when the plasma resistivity is included in an ER
model that uses MHD Eqs. 1–3. The loss function L, to be
discussed in detail in Section 2 for the present ideal MHD ER
model, has a quadratic form for which the model parameters
could also be derived by solving a set of linear algebraic equations

when an additional constraint is used to formulate the problem
into an even-determined one (e.g., Denton et al., 2020; Torbert
et al., 2020). However, our detailed discussions on how to specify
and select different components of L clearly also show the
flexibility of the new model that allows other constraints
corresponding to the point-wise measurements of (U, E) fields
and Eqs. 2, 3 to be added to the reconstruction without much
change in the algorithmic structure. Second, the effect of the
measurement errors is explicitly included in the reconstruction
model (see Section 3.1). While by nature all parameters of
stochastic algorithms are random variables, there are two
sources of uncertainties in practice for a physical problem: 1)
the measurements carry random errors and 2) physical relations
used in the loss function constraints are not perfect. Both
uncertainty sources are included in the stochastic optimization
method, which gives a solution with its accuracy limited by the
error term εσ in Eq. 8b. Of course, algorithmically, one may
choose a very small error term or set σ → 0 in Eq.
8b—i.e., assuming perfect measurements and physical
constraints - to recover a quasi-mathematically deterministic
solution (e.g., Zhu and Spall, 2002). Finally, we adopted a
simultaneous perturbation stochastic approximation (SPSA)
algorithm to solve the stochastic optimization problem that
makes directly minimizing the loss function efficient or
practically feasible when the number of the model parameters
gets large. The ability of SPSA algorithms to efficiently evaluate
the loss function gradient at each iteration makes stochastic
optimization a powerful tool for various applications models
and simulations (e.g., Spall, 2003; Bhatnagar et al., 2013).

In Section 2, we describe how to build an ER model that
includes two critical steps: 1) design of a loss function and 2) use
of an efficient optimization technique to solve for the model
parameters. Section 3 defines several indices that measure the
accuracy and quality of the reconstructionmodel and presents the
model results for a test case near a previously-studied EDR event
(Torbert et al., 2018; Torbert et al., 2020) observed in the
magnetotail by the Magnetospheric Multiscale (MMS) mission
(Burch et al., 2016). Section 4 provides a few concluding remarks.

MODEL DESCRIPTION

The first step to build an ER model is to design a “loss function”
based on the available measurements and a set of adopted MHD
equations such as those shown in Eqs. 1–3. In general, an analytic
and smooth specification of the field variables (B, U, η) will
automatically lead to analytic and smooth functions for (J, E)
fields by use of Eqs. 1a, 2. This procedure allows analytic
evaluations of all modeled fields at any space-time grids to be
compared with the available measurements. The loss function is
defined as a collection of various constraints corresponding to the
model-measurement differences and the model departures from
the adopted MHD equations, such as Eqs. 1–3. In practice, other
complementary physical equations may serve as additional
constrains. For example, just as to Eq. 1b that imposes a
strong constraint on the reconstructed B field, the plasma
velocity U may satisfy an approximate continuity equation ∇ ·
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U � 0 (Priest, 2016), which can serve as an additional constraint
on the U field in addition to Eqs. 2, 3 and the point-wise U
measurements.

The second step to build an ER model is to solve for the model
parameters by minimizing the defined loss function. When the
MHD equations are linear, such as those shown in Eqs. 1a, b, the
model parameters can be derived by a traditional least-squares
method that solves a set of linear algebraic equations.
Alternatively, the model parameters can also be solved by
directly minimizing the loss function. This approach is
especially useful when the adopted MHD equations contain
nonlinear components, which generally cannot be converted to
a set of linear algebraic equations. In this paper, we use a
stochastic optimization method called the “simultaneous
perturbation stochastic approximation” (SPSA) method to
directly minimize the loss function regardless of whether or
not the system contains nonlinear terms (e.g., Spall, 1998a;
Zhu and Spall, 2002; Spall, 2003). In addition, random errors
are treated directly in the loss function and the SPSA solution
procedure so that the effects of measurement uncertainties can be
examined. Once the model parameters are obtained, the last step
to build an ER model is to diagnose the accuracy and the quality
of the reconstructed fields. Such a post-diagnostic procedure is
necessary because the ER models are built on both measurements
that contain random measurement errors and adopted MHD
equations that do not form a closed system.

Design of the Loss Function for the
Reconstruction Model for an Ideal
Magnetohydrodynamic System
To demonstrate how the aforementioned three steps are
implemented, we first apply this new 3D ER model to an
MHD system that only contains point-wise measurements of
(B, J) fields together with MHD Eqs 1a, b as has been extensively
investigated by the traditional least-squares method (e.g., Denton
et al., 2020; Torbert et al., 2020). This reconstruction model can
be considered an ER model for an ideal MHD system because the
effect of resistivity (η) is not included. Extension to a more
comprehensive nonlinear ER model that uses Eqs. 1–3 with
point-wise measurements of (B, J) and (U, E) fields and
incorporates the effects of plasma resistivity contained in Eqs.
2, 3 near the EDRs will be presented in our future investigations.

Here, we follow Torbert et al. (2020) and prescribe the form of
the reconstructed field by expressing the time-independent
magnetic field B as a quadratic function of the spatial
coordinate r by a second-order Taylor expansion of a vector field

B(r) ≈ B(r0) + [DrB(r0)](r − r0)
+ 1
2
(r − r0)T[D2

rB(r0)](r − r0), (4)

where r0 � (1/4)∑α�1: 4rα is the barycenter of the tetrahedron
defined at its four vertices by the locations of the four MMS
spacecraft (rα(α � 1, 2, 3, 4)), with DrB(r0) and D2

rB(r0) being
the first- and second-order derivatives of B at r0, respectively. The
new ER model presented here is independent of the coordinate

system though we have chosen to employ Geocentric Solar
Ecliptic (GSE) coordinates. The terminology, notations and
various manipulations of the tetrahedron geometry formed by
a four-point satellite configuration have been discussed
previously (e.g., Chanteur, 1998; Harvey, 1998; Robert et al.,
1998; Dunlop et al., 2002). In addition to the barycenter, we may
also define four face-centers (rFα � (1/3)∑β≠αrβ) and six edge-
centers (rαβ � (rα + rβ)/2) of the tetrahedron that can be easily
calculated from the coordinates of the vertices. In practice, the
coefficients of the derivatives in Eq. 4 will be determined by the
reconstruction model based on the measurements. Hence, we
may define the reconstruction model by rewriting Eq. 4 into the
following explicit form for the ith component of the magnetic
field

Bi(r) � B0i +∑3
j�1
C0i,jΔxj + 1

2
∑3
j,k�1

D0i,jkΔxjΔxk, i � 1, 2, 3, (5)

where r � (x1, x2, x3) and Δxj � xj − x0,j. The resulting smooth
3D magnetic field will be determined by thirty model parameters
{B0i, C0i,j, D0i,jk} constrained by the MMS measurements. Given
these model parameters, the spatial derivatives of the B field and
the associated divergence (∇ · B) and vorticity (∇× B) fields can
be evaluated analytically and thus their valuations are available at
any spatial point, though the measurements (B̂, Ĵ) are only
available at the four vertices. Note that, physically, δ(r) ≡ ∇ ·
B(r) � ∑3

i�1zBi(r)/zxi ≡ 0 for any value of r. Specifically, δ(r0) �
0 leads to ∑3

i�1C0i,i � 0 and ∑3
i�1∑3

j�1D0i,ijΔxj � 0 for the
quadratic expression of B given in Eq. 5. Likewise, the plasma
current density J can also be evaluated analytically from the
modeled B field by Eq. 1a. When using these analytic expressions,
the field values and constraints evaluated at barycenter, four
vertices and four face centers, such as J(rFα) � JFα and
δ(r0) � δ(rα) � δ(rFα) � 0, are of particular importance.

GivenMMSmeasurements at the vertices (rα) of the magnetic
field (B̂) from the MMS Fluxgate Magnetometer (FGM)
instruments (Russell et al., 2016) and particle current density
(Ĵ) from the Fast Plasma Investigation (FPI) sensors (Pollock
et al., 2016), the model parameters {B0i, C0i,j, D0i,jk} in Eq. 5 can
often be derived by minimizing a loss function as defined below.
Here, the loss function characterizes 1) the model-measurement
differences between the modeled (B, J) and measured (B̂, Ĵ)
parameters and 2) the model departures corresponding to the
violation of the MHD Eqs. 1a, b. For a linear system, the
minimization procedure can also be reduced to solving a set
of linear algebraic equations (e.g., Menke, 1989). Depending on
whether the number of the adopted constraints is smaller than,
equal to, or greater than the number of model parameters, the
solution derived from the least-squares method could be under-,
even-, or over-determined, respectively. Previous reconstruction
models have focused on the even-determined solutions of a
quadratic loss function (e.g., Dunlop et al., 1988; Torbert
et al., 2020), for which the measurement errors were not
explicitly considered. The new ER model presented here
adopts a new method that derives the model parameters by
directly minimizing a generalized loss function using a
stochastic optimization method that contains random
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measurement errors and consists of a flexible number of
constraints. As a result, the solution is always
programmatically feasible regardless of whether the physical
constraints defined by the MHD equations are linear or
nonlinear and whether the system is under-, even-, or over-
determined.

The generalized loss function (L) has the following form

L � LO + wAεALA + wBεBLB + wCεCLC, (6)
where the individual components of the loss function
(LO, LA, LB, LC) are given by

LO � 1
12

∑4
α�1

∑3
i�1
[Bi(rα) − B̂α,i]2, (7a)

LA � 1
12

∑4
α�1

∑3
i�1
[Ji(rα) − Ĵα,i]2, (7b)

LB � 1
9
⎡⎣δ2(r0) +∑4

α�1
δ2(rα) +∑4

α�1
δ2(rFα)⎤⎦or

Lp
B � 1

5
⎡⎣δ2(r0) +∑4

α�1
δ2(rα)⎤⎦, and (7c)

LC � 1
4
∑4
α�1

[μ0J(rFα) · (Δrβγ × Δrβδ) − (�Bβγ · Δrβγ + �Bγδ · Δrγδ + �Bδβ · Δrδβ)]2
(7d)

with Δrβγ � (rγ − rβ) being the edge vector connecting the
vertices rβ and rγ and �Bβγ � (B̂β + B̂γ)/2 being the mean
magnetic field on the edge Δrβγ calculated by the measured B̂
field by using a linear approximation to obtain the field along an
edge, between two spacecraft measurements. In Eq. 7, we use i to
denote the dimensional index ranging 1-3 and use Greek letters to
denote tetrahedron points or faces ranging 1–4. The components
LO and LA each consist of twelve terms or twelve constraints and
represent the differences of the modeled and measured fields at
the vertices rα. Thus, LO and LA correspond to the model-
measurement differences in the loss function. The component
LB consists of nine physical constraints, which requires
minimization of δ2(r) � (∇ · B)2 at nine particular spatial
points (i.e., one barycenter r0, four vertices rα and four face
centers rFα). Because the measurements do not directly enter the
expression, LB corresponds to the model departures or violations
from the above MHD equations. LB can be replaced by LpB, which
neglects the face-center constraints. The component LC consists
of four approximate physical constraints derived from the generic
MHD equation obtained by applying Stokes’ Theorem to
Ampere’s Law (μ0 ∫∫

S

~J · dS � ∮
C
B̂ · dl) on the four tetrahedron

faces, which derives the current density components normal to
the tetrahedron faces (~J) by using the linear curlometer technique
from the measured B̂ (Dunlop et al., 1988). A minimization
between ~J and J projecting onto the normal directions of four
tetrahedron faces yields LC. Thus, LC also possesses the nature of
the model-measurement differences. Note that, as previously
denoted, each face-center rFα in Eq. 7d is defined by other
three vertices (rβ, rγ, rδ). Specification of the weighting factors
(wA,wB, wC) in Eq. 6 determines the selection of the loss

function components to be included in the reconstruction
model. The scaling parameters (εA, εB, εC) in Eq. 6 depend on
the characteristic length scale of the tetrahedron and the
dimensional factors of the loss functions. We will discuss the
settings of these parameters in more detail below.

We first note the similarities and differences between LA and
LC in Eqs. 6, 7. Both loss function components adopt the
differences in current densities as constraints. LA is the
difference between the modeled J and the measured particle
current density Ĵ at four vertices whereas LC is the difference
between the modeled J components and the current density ~J
components derived from the curlometer technique (i.e., using
B̂) on the four tetrahedron face-centers. When both B̂ and Ĵ are
available and include direct measurement errors of the same
order, LA is more accurate to be included in the generalized loss
function L than LC because the ~J value used in LC contains
additional errors due to the linear approximation assumed in
the curlometer technique. On the other hand, if only B̂, but not
Ĵ, is available (in which case LA will not be available) or if the
errors in Ĵ are far greater than those in B̂, then LC is preferred to
LA for inclusion in L. In Denton et al. (2020), ~J derived from the
curlometer technique is used to modify the particle current
density Ĵ to produce a composite current density, which together
with the measured B̂ is used to build the reconstruction model.
Our approach of introducing different constraints LA and LC for
different current densities Ĵ (measured directly by FPI) and ~J
(derived from the curlometer technique) evaluated at different
spatial locations provides a clear physical significance and
algorithmic flexibility.

Application of a Stochastic Optimization
Algorithm to Solve for Model Parameters
and Selection of Loss Function
Components
In this new 3D ER model, the model parameters in Eq. 5 are
solved by directly minimizing the loss function L defined in
Eq. 6 using a stochastic optimization algorithm called the
SPSA method (Spall, 1998a; Spall, 1998b; Spall, 2003) through
an iterative procedure that also naturally incorporates the
errors for the measured fields (B̂, Ĵ). A comprehensive
introduction to the algorithm with detailed procedures of
implementation to the current problem is presented in
Supplementary Appendix A. Note that the generalized loss
function L defined by Eqs. 6, 7 is in a quadratic form with
respect to the model parameters {B0i, C0i,j, D0i,jk} because the
MHD Eqs. 1a, b are linear. Minimization of a quadratic loss
function is equivalent to solving a set of linear algebraic
equations for the model parameters (e.g., Menke, 1989;
Axelsson, 1996). When the model parameters are obtained
by directly minimizing the loss function L the corresponding
MHD system could be either linear or nonlinear. The
nonlinearity occurs in our new 3D ER model when Eqs. 2,
3 are also included as additional constraints. Nonlinear
systems are not unusual in various empirical models. For
example, in Roelof et al. (1993), the loss function for
reconstructing global magnetospheric images based on the
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extreme ultraviolet (EUV) and energetic neutral atom (ENA)
measurements is highly nonlinear, for which the loss function
can only be directly minimized. Furthermore, when the loss
function contains measurements, it also contains random
measurement errors. The SPSA method effectively solves
problems containing random errors by including the errors
in the solutions. In addition, we will show later through
examples that the SPSA method can solve slightly under-
determined problems that could not be solved directly by the
traditional least-squares approach.

In practice, the SPSA method solves for the model parameters
that minimize the following dimensionless loss function (y) with
a random perturbation that characterizes the measurement errors
(Supplementary Eqs. A4a, b in Supplementary Appendix A)

Lθ �
��
L

√ /B00 and (8a)
y � Lθ + εσ , (8b)

where L is given by Eq. 6, B00 is themeasured meanmagnetic field
(defined by Supplementary Eq. A1 in Supplementary Appendix
A) used to normalize the general loss funciton L, εσ � N(0, σ2)
represents a random variable having a normal distribution with
zero mean and σ2 variance that characterizes the random
measurement errors. The first-order SPSA algorithm is
adopted to solve for the model parameters in this paper. The
specifications of various model parameters including the
weighting coefficients and scaling parameters in Eq. 6 and the
algorithmic procedures of the recursive formulations are
presented in Supplementary Appendix A. In Section 3, we
will detail the application of this SPSA-based ER model to a
specific EDR case using MMS measurements and discuss the
relationship between the SPSA model variance σ2 in Eq. 8b and
the variances of the random errors of the measured B̂ and Ĵ fields,
σ2B and σ2J , respectively. Note that Lθ in Eq. 8a is a deterministic
variable whereas y in Eq. 8b is a randome variable. A stochastic
optimation method such as SPSA algorithm optimizes loss
functons associated with randome variables.

When all the loss function components in Eq. 6
(LO, LA, LB, LC) are included, then, the total number of
constraints is thirty-seven (37). This number is greater than
the number of model parameters (30) and the problem is
significantly over-determined. Because LC adopts a linear
approximation in the curlometer technique it is expected to
introduce additional errors in the modeled fields near the
reconnection regions where the field curvature is large. As a
result, our default setting for the reconstruction model is to set
wC � 0, i.e., to not include LC in the generalized loss function L.
This reduces the total number of constraints for the default
setting to thirty-three (33) and thus renders the problem,
i.e., solving thirty model parameters, only slightly over-
determined. The model departures in the loss function
component LB shown in Eq. 7c are the application of the
MHD equation ∇ · B � 0 to nine particular points on the
tetrahedron (the four vertices, the four face-centers, and the
barycenter). When LB is replaced by LpB that only applies ∇ ·
B � 0 to the barycenter plus four vertices, the total number of the
constraints is reduced to twenty-nine (29) and the problem

becomes slightly under-determined. Our numerical
experiments show that the model parameters resulting from
the SPSA method yield only slight and negligible (~1–3%)
differences when the problem is changed between slightly
over-determined and slightly under-determined. On the other
hand, the numerical solution to a set of under-determined linear
algebraic equations no longer exists or cannot be calculated
directly if the problem were solved by the traditional least-
squares method (e.g., Menke, 1989).

To explain why using LB and LpB does not lead to significantly
different solutions, we first note that for an even-determined or
an over-determined problem with a quadratic loss function, a
unique solution can be derived either by directly solving an
optimization problem or by solving a set of linear algebraic
equations (e.g., Axelsson, 1996; Chong and Zak, 2001). It is
also noted that for an over-determined problem, the inclusion
of additional measurements or constraints may not change
noticeably the existing solution if the newly added constraints
are redundant (e.g., Menke, 1989). For an under-determined
problem where the number of constraints is less than that of
the model parameters, however, the set of linear algebraic
equations becomes undetermined and one is no longer able to
uniquely solve for the model parameters. Returning to the
expressions of the loss functions in Eqs. 6–8, we note that the
roles of model parameters and constraints (e.g., B vs. B̂, or J vs. Ĵ)
do not show preference to one or the other. A minimized or a
least-squares solution is always formally available for given
numbers of model parameters and constraints regardless of
their relative magnitudes. Adding four constraints of ∇ · B � 0
to the four tetrahedron faces is expected to be largely redundant
to the already existing constraints of ∇ · B � 0 at the barycenter
and four vertices, thus leading to only slight modifications to the
model parameters. Again, it is noted that unlike (B̂, Ĵ) that are
only available on the four vertices, the analytic B-field as
expressed by Eq. 5 and all its derived fields such as J and ∇ ·
B are available on any spatial point. Furthermore, in terms of the
uniqueness of the solution, either the random noise term or the
under-determined constraints in the loss function y in Eq. 8 could
lead to the non-uniqueness of the solution. Note that the
stochastic optimization algorithm minimizes the random
variable y defined by Eq. 8b rather than the deterministic
physical loss function Lθ defined by Eq. 8a. We will discuss
this issue in more detail in the next section. From the perspective
of constraint redundancy, it is also noted that given the analytic
expression in Eq. 5 for B, the relation ∇ · J � ∇ · (∇× B/μ0) ≡ 0
will be automatically satisfied regardless of what the model
parameters are. As a result, one cannot introduce a constraint
component for J similar to LB based on the redundant relation of
∇ · J � 0.

RESULTS

To test our new model and to also demonstrate the third step of
diagnosing the accuracy and the quality of the reconstructed
fields while building an ER model, we use MMS measurements
from the magnetotail EDR event of 11 July 2017. During this
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event, the MMS constellation traversed a reconnection region in
the earthward and northward directions while remaining near the
neutral plane (Torbert et al., 2018). Figure 1 shows 7 s of
magnetic field (B̂) and particle current density (Ĵ)
measurements starting at 22:34 UT. Since B̂ and Ĵ are
measured and processed at different sampling rates and the
loss function L shown in Eq. 6 is assumed to be evaluated
simultaneously, we have interpolated the measured fields onto
the same time resolution with a time interval of Δt � 0.0293 s,
which corresponds to a sampling frequency of 34 Hz.

Error Consideration and Quality Indicators
Note that the measurement errors here include uncertainties in
both the instrumentation and subsequent processing of the data.
However, the random errors in Eq. 8 are associated with the
unbiased instrument noise. Here, we estimate the errors by
directly calculating the parameter variability included in the
data series. In Figure 2, we show both the means (B0, J0) and
the normalized standard deviations (σB, σJ) of themagnitudes for
the measured B̂ and Ĵ fields. The averages are taken over the four
spacecraft and over moving windows with widths of 7, 11, and

FIGURE 1 | Measurements from the four MMS spacecraft (MMS1, MMS2, MMS3, MMS4) on 11 July 2017 showing (left) the measured magnetic field B̂ �
(Bx ,By ,Bz) from FGM (Russell et al., 2016) and (right) particle current density Ĵ � (Jx , Jy , Jz) from FPI (Pollock et al., 2016) in GSE coordinates.

FIGURE 2 |Mean and normalized standard deviation fields derived from the MMSmeasurements. The means and standard deviations are calculated on a moving
window with a width of 7 (red), 11 (blue), and 15 (green) time steps, respectively. Panels (A) and (B) correspond to the B field and J field, respectively.
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15 time steps, respectively. The calculated B0 is approximately
equal to the characteristic value of the temporal mean of the
magnetic field B00 defined in Supplementary Eq. A1. It is noted
that themean fields are not noticeably sensitive to the width of the
moving window. This implies that the sampling rate of the
measurements is high enough to resolve the temporal
variability of the fields. It is also noted from Figure 2 that
there is no systematic variation of σB with respect to B0,
whereas σJ is inversely proportional to J0. The weighting
factor wA in Eq. 6 is proportional to the σ2B/σ

2
J parameter that

can be calculated from the values shown in the figure. The
weighting factors (wB, wC) are prescribed to (1, 0) for the
default setting of the reconstruction model. Note that setting
wB � 1 here also means that we give no preference between the
model-measurement differences L0 and the model departures LB.
To set the final model parameter σ used in Eq. 8, we note that σB
directly derived from the measured B̂ contains both the unbiased
random errors required for the construction of εσ in Eq. 8 and
possibly also the biased errors associated with the parameter
retrieval and data processing issues. In addition, a smaller σ in the
random loss function y will yield a more numerically accurate
solution, though its usefulness may be limited by the
measurement errors; any numerical accuracy achieved that is
higher than the measurement errors after setting σ → 0 does not
contain additional information as the results are ultimately
limited by the uncertainty in the measurements. As a result,
our default setting for σ in the algorithm as shown in Eq. 8b takes
a conservative value of σ � 0.1�σB, where �σB is the time-averaged
standard deviation of B̂ as shown in Figure 2A.

Given model parameters {B0i, C0i,j, D0i,jk}, a smooth 3D
solution for (B, J) can be plotted to be visulized. But before
addressing these visualizations, we begin our discussions here
with evaluations of the quality factors associated with these
results. In Figure 3, we show the relative differences of the
fields (B, J) reconstructed at every time step based on the
MMS-measured fields (B̂, Ĵ) shown in Figure 1. The indices
(γB, γJ) can be considered as the normalized loss function

components (LO, LA) corresponding to the model-measurement
differences, which can be used as a set of accuracy indicators of the
reconstruction model and are defined as:

γB �

����������������∑4
α�1

∑3
i�1
[Bi(rα) − B̂α,i]2
∑4
α�1

∑3
i�1
B̂
2

α,i

√√√√
and (9a)

γJ �

����������������∑4
α�1

∑3
i�1
[Ji(rα) − Ĵα,i]2∑4
α�1

∑3
i�1
Ĵ
2

α,i

√√√√
. (9b)

The results from a pair of reconstructions with σ � 0.1�σB and
σ � �σB, respectively, are presented in Figure 3. The default
setting, which has a smaller measurement noise of σ � 0.1�σB,
yields a more accurate reconstruction field as characterized by
smaller indices (γB, γJ). On the other hand, if the measurement
noise in the loss function y amounts to �σB, such that
σ ~ �σB ~ 0.1 as shown in Figure 2, then, a numerical solution
of B with γB < �σB can be considered to be an acceptable or valid
solution. Our default setting of σ � 0.1�σB leads to a numerical
solution of B with γB ≪ �σB, which can be considered an accurate
solution. It should also be noted that because of the existence of
measurement errors in B̂ (i.e., σ > 0), a deterministic and
idealized solution with γB ≡ 0 is considered to be as accurate
as one with γB < σ. Figure 3 shows that far greater errors exist in
the modeled current density γJ than those in the magnetic field
γB. This is largely expected since the modeled current density J is
a quantity derived from the prescribed B field and contains
fewer free parameters and therefore is expected to lead to greater
errors in J than in B. This is another reason for us to set σ so that
it is much smaller than �σB in Eq. 8, which yields a solution also
with an acceptable error in the reconstructed J field.
Comparison between the two panels in Figure 3 shows that
the magnitude of the errors in the reconstruction model is

FIGURE 3 | Relative differences (γB , γJ) of the reconstructed (B,J) fields based on MMS measurements shown in Figure 1. Panels (A) and (B) correspond to two
cases of a standard setting of σ in Eq. 8 with σ � 0.1�σB and an alternative setting of σ � �σB, respectively.
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sensitive to the measurement errors. This feature can be further
confirmed by examining γJ variation with the time-dependent
measurement errors. We note from Figure 2 that σJ changes
more significantly with time than σB, which leads to a significant
variation in the weighting factor wA. Figure 4 shows both wA(�
σ2B/σ

2
J) and γJ for a standard setting of σ � 0.1�σB. The figure

shows a negative correlation between wA and γJ. Since errors in
B̂ are nearly constant, Figure 4 shows a strong positive
correlation between the errors in the measured Ĵ and the
modeled J. Overall, Figures 2–4 show that the accuracy of
the reconstructed fields from the stochastic optimization
algorithm is limited by the measurement uncertainties, with
more accurate measurements unsurprisingly resulting in a more
accurate solution for the reconstruction based upon those
measurements.

Unlike reconstruction models based on the GSR technique,
where the reconstructed fields are mainly derived by various
physical relations, the new ER model presented here is mainly
data-driven, directly fitting the modeled fields to the measured
fields. Since the design of the general loss function highlighted in
Eqs. 6, 7 also contains a component of the model departures
characterizing a few physical constraints, the validity of those
constraints can be used as a measure of the quality of the ER
model in addition to the two indices (γB, γJ) for measuring the
accuracy of the solution. Here, one important constraint is the
vanishing of the divergence of the magnetic field (∇ · B � 0),
which is also used as a constraint of the loss function component
LB in Eq. 7. Dunlop et al. (1988) introduced an index of the ratio
of the divergence to the vorticity of the magnetic field as a quality
indicator to measure the robustness of the reconstructed current
density J field. In Figure 5, we show the following two quality
indicators Qmodel and Qcurl representing the ratio of the
divergence to the vorticity of the magnetic field based on the
reconstructed B field and the measured B̂ field by curlometer
technique, respectively. These are defined as

Qmodel �
�������������∑4

α�1(∇ · B)2α∑4
α�1

∑3
i�1
(∇× B|α,i)2

√√√
and (10a)

Qcurl � [∣∣∣∣∇ · B̂∣∣∣∣∣∣∣∣∇× B̂
∣∣∣∣]curlometer

. (10b)

In the above, Qmodel is calculated by evaluating ∇ · B and ∇× B
analytically based on the modeled B field at the four vertices,
whereasQcurl is calculated by evaluating the volume-averaged |∇ ·
B̂| and |∇× B̂| based on the measured B̂ field following the
schemes shown in Dunlop et al. (2002) and Middleton and
Masson (2016). Note that Qcurl has also been used as an
objective index that measures the quality of the J fields
reconstructed from the curlometer technique (Dunlop et al.,
2002). On the other hand, the index Qmodel defined in Eq. 10a

FIGURE 4 | Weighting factor wA versus the relative difference γJ for the
reconstructed current density J shown in Figure 3.

FIGURE 5 | Quality indicators Qmodel and Qcurl representing the ratio of the divergence to the vorticity of the magnetic field based on the reconstructed B field and
the measured B̂ field by curlometer technique, respectively. The left and right panels correspond to two cases of a standard setting of σ in Eq. 8 with σ � 0.1�σB and an
alternative setting of σ � �σB, respectively.
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measures the quality or robustness of both B and J fields derived
from the ER model. Figure 5 shows that typically Qmodel ≤ 0.01
for a standard setting of the model parameter σ � 0.1�σB, whereas
the typical values ofQcurl are much greater, Qcurl ≥ 0.1. Since Qcurl

is calculated directly by a linear approximation from the
measured B̂ field, it contains errors from both the linear
approximation and measurement errors (Dunlop et al., 1988;
Dunlop et al., 2002). Comparison between the two panels in
Figure 5 also shows that the increase in the measurement errors
by changing σ � 0.1�σB to σ � �σB only increases the quality
indicator Qmodel by a factor of ~3 (note the changed scale on
the ordinate between the two panels for just the “model” result,
not the “curl” result). The relation of Qmodel ≪Qcurl is still valid
for σ � �σB. As a result, we can conclude based on Figure 5 that the
uncertainties in the reconstructed fields based on the MMS-
measured B̂ near the EDR using the curlometer technique are
mostly contributed by the linear approximation used in the
technique. It should be pointed out that when an ER model is
formulated and solved as an even-determined problem based on
the traditional least-squares method, one may impose a condition
of vanishing Qmodel everywhere (Qmodel ≡ 0). In this case, an
alternative constraint corresponding to model departures, say, a
vanishing variance of the modeled B field in a particular diretion
M, i.e., z2B/zM2 � 0, needs to be introduced into the
reconstruciton model (e.g., Torbert et al., 2020).

We now turn to the loss function component LC. The default
setting of the weighting factors is (wB, wC) � (1, 0). This means
that the constraint of the precise physical relation of ∇ · B � 0 is
fully utilized whereas the constraint of matching the modeled
current components to the ones derived from the curlometer
technique on the tetrahedron faces is neglected. Again, setting
wB � 1 here also means that we give no preference between two
sets of constraints of the model-measurement differences and the
model departures. Our analysis of the quality indicators
(Qmodel, Qcurl) derived from the runs without LC shown in
Figure 5 can be considered as a rationale for the default
setting of wC � 0. It is noted that the curlometer technique

developed in Dunlop et al. (1988) and Middleton and Masson
(2016) applies a linear approximation to the entire volume of the
tetrahedron, whereas in LC the linear approximation applies only
to the four individual tetrahedron faces. Hence, it is worthwhile
examining quantitatively the effect of the loss function
component LC on the performance of the reconstruction
model. In Figure 6, we show the indices (rB, rJ) and the
quality indicators (Qmodel, Qcurl) for a sensitivity run of the
reconstruction model with all parameters in default settings,
except wC that is set to 1. Comparing Figure 6A with
Figure 3A, we find that the inclusion of LC significantly
reduces the accuracy of the reconstructed fields. This is
expected because the inclusion of LC not only introduces a
linear approximation in the calculation of the current density
J from the magnetic field B, but also enhances the degree of over-
determination of the model. Both of these are expected to increase
the errors of a least-squares solution. Comparing Figure 6B with
Figure 5A on the modeled quality indicators Qmodel derived from
different runs underscores the same conclusion—i.e., that the
inclusion of LC makes the model performance worse. However,
Figure 6B also shows that Qmodel is still significantly smaller than
Qcurl (note the different scales), indicating that a linear
approximation in a loss function component only partially
affects the model performance. This sensitivity investigation of
setting wC � 1 also demostrates the flexibility of the new ER
model that directly minimizes the general loss function with its
components being able to be included or excluded without
changing the model framework.

At this stage, it is also interesting to examine a largely
under-determined setting of excluding both LB and LC in the
generalized loss function L by setting (wB, wC) � (0, 0) in Eq.
6. There are only twenty-four (24) constraints in LO and LA, all
given by the MMS measurements, whereas the reconstruction
model contains thirty (30) model parameters that need to be
determined. Hence, the problem is largely under-determined
and the solution cannot be uniquely solved. For a stochastic
optimization, such as the one based on the SPSA method, there

FIGURE 6 | (A) Relative differences (γB , γJ) and (B) quality indicators (Qmodel ,Qcurl) for a sensitivity run with weighting factors wB and wC being both set to 1:
(wB ,wC) � (1, 1).
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is no fundamental difference in the non-uniqueness of the
solution either due to the lack of constraints or due to random
errors in the loss function. In other words, the unknown
parameters for the reconstruction model can always be
formally solved by minimizing the generalized loss function
y in Eq. 8. Figure 7 shows the indices (γB, γJ) and the quality
indicators (Qmodel, Qcurl) for a sensitivity run of the
reconstruction model that sets (wB, wC) � (0, 0). We note
from Figure 7A that the relative differences between the
modeled and measured fields (γB, γJ) are much less than
those shown in Figures 3A, 6A. However, the quality
indicator Qmodel shown in Figure 7B is much greater than
those derived by any approach shown above including Qcurl

derived by the curlometer technique. Figure 7 shows that even
though one can construct an empirical model that leads to a
very good fit between the modeled and the measured fields at
the prescribed spatial points, the fields may not necessarily
satisfy some physical relations, such as ∇ · B � 0. This is due to
the following two facts: 1) the fields contain errors, either in the
measured field or in the modeled field derived from the
measurements and 2) the numerical evaluation of the
physical relation based on the discrete measurements
involves a small difference between two large quantities.
The divergence of a vector field contains two components
of variation corresponding to variations in the magnitude and
direction of the vector. For a deformation vector field that is
mainly confluent-diffluent—i.e., divergence is mainly caused
by the change in direction—the calculation of the divergence of
the vector field generally involves a small difference of two
large quantities (e.g., Holton, 2004). In this case, small errors
in the B field will be greatly amplified in calculating ∇ · B unless
an additional constraint or assumption of ∇ · B � 0, or |∇ · B|
being small, is explicitly included in the model or algorithm
development. A similar assumption of “charge neutrality” in
plasma physics is also used as an explicitly imposed constraint
in developing various MHD models (e.g., Gurnett and
Bhattacharjee, 2005).

The other more important implication of this test run for a
largely under-determined setting with only 24 constraints for a
30-parameter reconstruction model is that the current ER
model can be directly applied to reconstructing fields with a
set of incomplete measurements. The stochastic optimization
algorithms can solve for model parameters under the same
algorithmic framework regardless whether the problem is
over- or under-determined. For example, for a default setting
of the current ER model with 33 constraints, the algorithm can
be directly applied to an incomplete set of MMS measurements
if the (B̂, Ĵ)measurements from one spacecraft are not available.
Under such a circumstance, the same algorithm with 27 (=
33−6) constraints will produce a reconstruction field (B, J) that
fits the measured (B̂, Ĵ) at three vertices having available
measurements plus ∇ · B � 0 being satisfied at all four
vertices, all within the measurement errors. The results
shown in Figure 7 also suggest that the deterioration of the
reconstructed fields due to lack of the needed constraints is
gradual. On the other hand, the algorithm based on the
traditional least-squares method that solves a set of linear
algebraic equations (e.g., Torbert et al., 2020) becomes
inapplicable once the problem changes from an even- to
under-determined one.

The Reconstructed Fields
We now present the reconstructed fields based on the MMS
measurements shown in Figure 1. A reconstruction model can be
developed in either an L-M-N coordinate system derived from the
minimum variance analysis or in a fixed system, such as GSE that
is used in the present reconstruction model. One purpose of
adopting the L-M-N coordinate system to develop a
reconstruction model is to take advantage of the ability to
neglect changes in the minimum variance direction to convert
a slightly under-determined problem into an even-determined
one (Denton et al., 2020; Torbert et al., 2020). When the
reconstructed field varies rapidly with time, the constructed
L-M-N coordinate may also change accordingly. Under such a

FIGURE 7 | (A) Relative differences (γB , γJ) and (B) quality indicators (Qmodel ,Qcurl) for a sensitivity run with weighting factors wB and wC being both set to 0:
(wB ,wC) � (0, 0).
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circumstance, the reconstructed fields at different time instances
cannot be directly compared with each other. Our reconstruction
model based on the SPSA stochastic optimization method can
automatically accommodate an over-determined or under-
determined setting of the model as discussed above. As a
result, the fields reconstructed at different temporal instances
but on the common, fixed GSE coordinate system can be directly
compared.

We present the reconstructed fields in a local GSE coordinate
X-Y-Z such that

(X,Y, Z) � (X′, Y′, Z′) − (X0, Y0, Z0), (11)
where X′ − Y′ − Z′ define the generic GSE coordinate system
and (X0, Y0, Z0) = (−1.373 × 105, 2.70 × 104, 2.32 × 104) km is
determined by the satellite constellation, which corresponds
to the GSE coordinate of the mean barycenter averaged over

the measurement time shown in Figure 1. In Figure 8, we
show the reconstructed B fields projected into and its
magnitude |B| (�

�����������
B2
1 + B2

2 + B2
3

√
, in nT) evaluated on the

X-Z plane of Y = 0 at six time instances of (a) t � 1.172 s,
(b) t � 1.904 s, (c) t � 2.636 s, (d) t � 3.368 s, (e) t � 4.100 s,
and (f) t � 4.833 s after 22:34 UT. The figure shows that both
the magnetic configuration and the intensity of the magnetic
field change noticeably with time. The reconnection region is
characterized by a weak |B| and a reversal of the orientation
(or a near anti-parallization) of the B vectors across the
region. It is noted that a weak |B| also means a weak
confinement to the motions of energetic electrons. This will
lead to localized very fine-scale energy spectra and angular
distributions that could be correlated with the remote
magnetic topologies through the gyro-sounding process as
revealed by the data from the Fly’s Eye Energetic Particle
Spectrometer (FEEPS) onboard the MMS spacecrafts (Cohen

FIGURE 8 |Modeled B fields projected into and its magnitude |B| (in nT) evaluated on the X-Z plane of Y = 0 at six time instances of (A) t � 1.172 s, (B) t � 1.904 s,
(C) t � 2.636 s, (D) t � 3.368 s, (E) t � 4.100 s, and (F) t � 4.833 s after 22:34 UT on 11 July 2017.
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et al., 2021; Turner et al., 2021). The development and
evolvement of these two features can be easily identified in
this figure. To provide a better view on the development of the
reconnection region, we show in Figure 9A the superimposed
B fields at two neighboring time instances of t � 2.636 s and
t � 3.368 s on the same plot. The figure shows the
development of an anti-parallel B field having a nearly
opposite direction and an equal magnitude with a
significantly weak B field sandwiched between the two
regions at t � 3.368 s and especially in the region of X> 0.
Though the reconstruction in the present model is under the
X-Y-Z coordinate whereas the reconstruction in Torbert et al.
(2020) was presented in the L-M-N coordinate, the
configuration of the reconstructed B-field shown in
Figure 9A is qualitatively similar to that shown in Torbert
et al. (2020). Figure 9B shows the corresponding cross tail
current J on the Y-Z plane of X = 0 that shows a significant
intensification in its magnitude due to the development of the
reconnection event.

CONCLUSION

A new ER model for the 3D magnetic field and plasma current
field has been developed by use of a stochastic optimization
method called SPSA. This reconstruction model adopts an
empirical approach by fitting the prescribed analytic functions
for the magnetic and plasma fields to the point-wise
measurements from a constellation of satellites with a set of
physical constraints determined by the MHD equations. The
fitness is defined by a general loss function that consists of the
model-measurement differences and the model departures
from linear or nonlinear physical constraints. The new ER
model directly minimizes the loss function using a stochastic
optimization method called SPSA algorithm for which the
effect of the random measurement errors is also included. We
presented the concrete steps of how to implement this ER
model to a special case of having the MMS-measured fields
(B̂, Ĵ) combined with a set of physical constraints
corresponding to an ideal MHD system of Eqs. 1a, b, which
has been extensively investigated by traditional least-squares
method (e.g., Denton et al., 2020; Torbert et al., 2020). Most
SPSA applications contain the loss functions that only involve
the difference between the modeled and measured quantities
(e.g., Chin, 1999; Spall, 2003). On the other hand, the
constraints contained in the generalized loss function (6)
include not only the model-measurement differences but
also the model departures derived from the physical
constraints Eqs. 1a, b, which in turn characterizes the
physical robustness of the fields reconstructed by an
empirical model.

We have introduced the indices (rB, rJ) in Eq. 9 that
calculate the relative differences between the modeled (B, J)
fields and the measured (B̂, Ĵ) fields. This set of indices (γB, γJ)
provides an objective measure of the accuracy to the modeled
fields. In addition, the concept of the quality indicator Qcurl

introduced in Dunlop et al. (1988) has been extended to a new
model quality indicator Qmodel shown in Eq. 10. This index
provides an objective measure to the robustness of the modeled
field in terms of its physical property of ∇ · B � 0. These two
sets of new indices are respectively associated with the two sets
of constraints of model-measurement differences and the
model departures used in designing the general loss
function for the new ER model. The new ER model was
applied to the measurements of an EDR observed by the
MMS mission (Torbert et al., 2018). By conducting various
sensitivity investigations of the reconstruction model, we were
able to examine the sources of the errors in the reconstructed
fields previously noted by the curlometer technique. It is now
found that the errors in the plasma current density calculated
directly from the measured magnetic fields based on
curlometer technique were mostly contributed from the
linear approximation to a nonlinear configuration of the 3D
magnetic fields. A more comprehensive nonlinear ER model
that uses Eqs. 1–3 with point-wise measurements of (B, J) and
(U, E) fields and effectively includes the effects of plasma
resistivity contained in Eqs. 2, 3 near the EDRs will be
presented in our future investigations.

FIGURE 9 | (A)Modeled B fields projected into the X-Z plane of Y = 0 at
two times of t � 2.636 s (blue) and t � 3.368 s (red) after 22:34 UT on 11 July
2017. (B) Modeled J fields projected into the Y-Z plane of X = 0 at the same
two instances as in panel (A). A significant intensification in J fields at
t � 3.368 s as indicated by a plot with dominant red arrows.
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