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During the late asymptotic giant branch (AGB) phase of stellar evolution, the element
carbon is created through the triple-α nuclear reaction. This is followed by the synthesis of
other heavy elements via neutron capture in the core and the dredge-up of these elements
to the surface by convection. Simple molecules and solid-state minerals begin to form in
the upper photosphere. These molecules and solids are ejected into the interstellar
medium by a strong stellar wind. During the subsequent post-AGB evolution, complex
organics with aromatic and aliphatic structures are synthesized in the circumstellar
envelope. Planetary nebulae, formed by swept-up circumstellar material, are found to
show strong spectral signatures of ions, atoms, molecules, and inorganic and organic
solids. These ejected materials of planetary nebulae serve as primordial ingredients of
formation of new stars and planetary systems. Stellar synthesized organic solids may
survive their journeys through the interstellar medium and evidence for remnants of such
organics can be found in our own Solar System. In this paper, we summarize the recent
observations of circumstellar synthesis of molecules and solids and discuss the
implications of these ejected circumstellar materials on the chemical enrichment of the
Galaxy and planetary systems.
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INTRODUCTION

Planetary nebulae were first identified as extended objects in the sky and were grouped together with
stellar clusters, galaxies, diffuse nebulae, and supernova remnants in Charles Messier’s 1784
catalogue of nebulous objects. After the development of astronomical spectroscopy in the 19th
century, planetary nebulae were recognized to be different from other nebulous objects in that they
show strong atomic emission lines in their spectra. The presence of a hot star in the center of
planetary nebula suggests that the nebula is illuminated by radiation from the central star (Hubble
1922). Ultraviolet radiation from the central star photoionizes the surrounding gaseous nebulae, and
the recombination between electrons and hydrogen (H) and helium (He) led to the strong emission
lines observed (Zanstra, 1827; Menzel 1926). Other strong emission lines in the nebulae are from
collisionally excited lines of heavy elements. Together, these lines are responsible for the visible
brightness of planetary nebulae.

Planetary nebulae are different from other emission nebulae (e.g., the Orion nebula) in that they
show some degree of symmetry in their nebular morphology. The nebulae are the ejecta of the
envelopes of their central stars, which are in the process of evolving from the red giant branch to the
white dwarf stage of stellar evolution (Shklovsky 1956). The central stars of planetary nebulae are
powered by H-shell burning on an electron-degenerate carbon-oxygen (C–O) core. Through a
combination of nuclear burning and mass loss, the H envelope continues to thin, resulting in a
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gradual increase in the effective temperature of the central star
while maintaining a constant luminosity determined by the mass
of the core (Paczyński 1971). The discovery of extensive mass loss
on the AGB phase prior to the planetary nebulae phase led to the
realization that the well-defined shell-like morphology of the
nebulae is the result of the interaction between the remnant of the
AGB wind with a later-developed fast wind from the central star
(Kwok et al., 1978).

Development in infrared and millimeter-wave astronomy in
the 1970s show that planetary nebulae are also strong sources of
emissions from molecules and solid-state materials, and the true
extent of planetary nebulae encompasses more than just the
optical nebulae. A large fraction of the energy output from
planetary nebulae is in the form of infrared continuum
radiation emitted by solid dust grains (Zhang and Kwok
1991). Mapping of the molecular distribution in planetary
nebulae shows that planetary nebulae contain a large amount
of neutral matter, and in some cases, neutral matter mass exceeds
the mass observed in the ionized nebulae. We now recognize that
planetary nebulae contain matter in the forms of ionized, neutral
atomic, molecular, to solid-state, and emit radiation throughout
the electromagnetic spectrum from radio to X-ray. A modern
view of the origin and evolution of planetary nebulae is given by
Kwok (2000).

PLANETARY NEBULAE AS SOURCES OF
HEAVY ELEMENTS

Although nuclear burning can theoretically occur in the core of
AGB stars through to the synthesis of iron (Fe), for most stars
their core masses never grow large enough to ignite carbon (C)
(under either electron-degenerate or electron-non-degenerate
conditions) due to surface mass loss. For stars in the Galaxy
with initial masses under 8 M⊙, the star will undergo H and He
shell burning on the AGB, evolve through the planetary
nebulae stage, and end as white dwarfs. Since this mass
range covers >95% of all stars in the Galaxy, C is the last
element synthesized by direct fusion (through the triple-α
process) for most stars. Heavy elements such as Y, Zr, Ba,
La, Ce, Pr, Nd, Sm, Eu are synthesized through neutron capture
followed by beta decay.

Because of their strong emission-line spectrum, abundance of
heavy elements can be determined from their recombination or
collisionally excited lines. The elemental abundances deduced are
useful checks on stellar nucleosynthesis models. A recent review
on elemental abundance determination in planetary nebulae is
given by Kwitter and Henry (2022).

PLANETARY NEBULAE AS SOURCES OF
MOLECULES

As a star evolves on the AGB, its H envelope expands, resulting in
a size hundreds of times larger than the Sun. This is accompanied
by an increasing luminosity to thousands of times that of the Sun,
and a corresponding decreasing surface effective temperatures to

as low as 3000 K. Such low atmospheric temperatures allow the
formation of molecules in the photosphere. Beyond the common
diatomic molecule CO, molecules such as C2, C3, and CN can
form in stars that are C-rich (elemental abundance of C exceeding
that of O). For O-rich stars (elemental abundance of O exceeding
that of C), the surplus O atoms are tied into OH, H2O, SiO, and
other oxides.

The development of millimeter-wave astronomy led to the
detection of interstellar and circumstellar molecules through
their rotational transitions. With infrared spectroscopy, the
vibrational transitions of molecules can also be detected in
absorption against the stellar photospheric or dust
continuum. These molecules can be used to probe the
physical conditions as well as kinematic structures of
planetary nebulae.

Molecular Synthesis During the AGB Stage
A large variety of molecules including inorganics (e.g., CO, SiO,
SiS, NH3, AlCl, etc.), organics (C2H2, CH4, H2CO, CH3CN, etc.),
radicals (CN, C2H, etc.), molecular ions (HCO+), chains (e.g.,
HCN, HC3N, HC5N, etc.), and rings (C3H2) are detected in the
circumstellar envelopes of AGB stars (Ziurys, 2006; Ziurys et al.,
2016). The spatial distribution of these molecules in the
circumstellar envelopes can be mapped by interferometric
observations, showing that these molecules are synthesized in
the stellar wind under very low density conditions. AGB stars are
prolific molecular factories.

Molecules detected in the circumstellar envelopes of AGB stars
include molecules involving heavy elements such as Si, Mg, Fe, Ti,
and Al and detected molecules include SiH4, MgCN, FeCN, TiO2,
and AlOH. The biological important element phosphorus (P)
(Maciá-Barber, 2019) is detected in the forms of CP, PN, PO,
HCP, CCP, PH3 (Agúndez et al., 2007; Agúndez et al., 2008;
Halfen et al., 2008; Tenenbaum and Ziurys, 2008; Agúndez et al.,
2014).

Molecular species detected in O- and C-rich AGB stars are
also different. The proto-typical C-rich molecular source is
IRC+10216 (CW Leo), where over 50 molecules have been
detected (Ziurys 2006; McGuire 2022). The most common
molecules in C-rich stars are CO, HCN, HC3N, CN, and CS.
The number of molecules detected in O-rich stars is more
limited, with OH, H2O, SiO being the most common. Recent
surveys of the O-rich star VY CMa has expanded the list of
molecules detected (Tenenbaum et al., 2010). The versatility
of carbon chemistry is illustrated by the fact that only
diatomic and triatomic compounds were observed in VY
CMa, while species with four or more atoms are common
in IRC+10216.

Molecular Synthesis During the Planetary
Nebulae Stage
The largest molecule detected in planetary nebulae is fullerene
(C60). Fullerene was discovered in the planetary nebula Tc-1
through its vibrational bands at 7.0, 8.5, 17.4 and 18.9 µm (Cami
et al., 2010). Further detections of C60 are found in H-rich
planetary nebulae (García-Hernández et al., 2010), proto-
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planetary nebulae (Zhang and Kwok 2011), and reflection
nebulae (Sellgren et al., 2010).

Also seen in the spectrum of Tc-1 are strong broad plateau
features around 8, 12, and 17 µm (Figure 1). These plateau
features are commonly seen in planetary nebulae and proto-
planetary nebulae showing unidentified infrared emission (UIE)
bands. These plateau features cannot be associated with any
specific molecule and the 8 and 12 µm plateau features have
been suggested to arise from superpositions of in-plane and out-
of-plane vibrational modes of aliphatic side groups attached to
aromatic compounds (Kwok et al., 2001). The presence of 8 and
12 µm plateau features in C60 sources (Otsuka et al., 2013; Zhang
and Kwok 2013) suggests that amorphous carbonaceous solids
could be precursors of fullerenes (Bernard-Salas et al., 2012;
García-Hernández et al., 2012).

The Molecular Component of Planetary
Nebulae
Although planetary nebulae are usually known for their optical
appearances and their optical nebulae are the most extensively
studied, millimeter and submm-wave interferometric
observations can map the distribution of the molecular
component (Dinh et al., 2008; Nakashima et al., 2010;
Santander-García et al., 2017; Andriantsaralaza et al., 2020).
For the CO molecule, entire ladder of rotational transitions
(up to J = 37–36) have been measured, making possible the
estimate of the total molecular masses (Justtanont et al., 2000). In
the near infrared, the v = 1–0, J = 3–1 S (1) vibrational-rotational
transition of H2 at 2.121 µm is widely observed in planetary
nebulae. Assuming that this line is shock or UV exited, the

molecular mass in the H2-emitting region can be estimated
(Rosado and Arias 2003). From single-dish CO observations,
masses of the molecular envelopes of NGC 7027 and IRAS
21282 + 5050 are found to be 1.3 and 4.7 M⊙ respectively
(Santander-García et al., 2022), much larger than the masses
of their ionized components (0.03 and 0.16 M⊙ for NGC 7027 and
IRAS 21282 + 5050, respectively).

PLANETARY NEBULAE AS SOURCES OF
SOLID MINERALS

Solid Condensations in Stellar Winds
The most common solid-state condensate observed in the stellar
winds of O-rich AGB stars is amorphous silicates. This mineral
can be detected through their Si–O stretching mode at 9.7 µm
and the Si–O–Si bending mode at 17 µm and is widely present in
the spectra of O-rich AGB stars. Also seen in the spectra of
O-rich stars are crystalline silicates (pyroxenes and olivines,
Jäger et al., 1998) and various kinds of refractory oxides
(corundum α-Al2O3, spinel MgAl2O4, rutile TiO2, Posch
et al., 1999, 2002).

In C-rich stars, the most common feature is the 11.3 µm feature
of silicon carbide (SiC). The strong featureless continuum emission
is commonly attributed to amorphous carbon.

As the strength of the stellar wind increases as the star ascend
the AGB, the amount of solid-state condensate in the
circumstellar environment can begin to obscure the
photosphere of the star. In some cases, the entire photospheric
visible output of the star is absorbed by circumstellar material and
the star will only appear as an infrared object.

FIGURE 1 | Spitzer IRS spectrum of planetary nebula Tc-1 shows C60 and C70 emission bands (in red) as well as broad emission plateau features at 8, 12, and
30 µm (in green). The narrow lines are atomic lines (in grey). The dotted line represents an approximate fit to the continuum. No UIE bands are seen in this object.
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The Solid-State Component of Planetary
Nebulae
Since planetary nebulae evolve from their AGB progenitors,
remnants of the dust envelopes of AGB stars should still be
detecable in planetary nebulae (Kwok 1982). Figure 2 shows the
spectral energy distribution of the planetary nebula NGC 7027 over
the wavelength range of 0.1 µm–1m. In the long wavelength region
(λ > 1mm), the spectrum is dominated by free-free emission from
the ionized nebula. Between 3 µmand 1mm, thermal radiation from
solid-state grains dominates. The UIE bands and the 30 µm feature
can be seen in emission above the dust continuum. In the optical
region, nebular emission is due to atomic line emission and bound-
free continuum emission from the ionized nebula. The central star is
heavily obscured by circumstellar dust and is very faint in the visible.
The molecular lines are not plotted in this diagram.

Planetary nebulae can be classified as O- or C-rich based on
the respective strengths of the atomic lines in the ionized
component (Zuckerman and Aller 1986; Delgado-Inglada and
Rodríguez 2014). A similar independent classification is also
possible using their infrared spectra of their solid components
(Kwok et al., 1997). The presence of silicate feature is a signature
of O-richness, and the UIE and 30 µm features are generally only
seen in C-rich nebulae (Cohen et al., 1986; Cohen et al., 1989).
The Spitzer Space Telescope was used to survey a large sample of
galactic and extragalactic planetary nebulae and their spectra have
been used to classify planetary nebulae as O- or C-rich types
(Stanghellini et al., 2007; Bernard-Salas et al. 2009; Stanghellini
et al., 2012; García-Hernández and Górny 2014).

PLANETARY NEBULAE AS SOURCES OF
ORGANICS

Before the mid-20th century, organics were commonly believed
to be within the sole domain of the Earth, and the existence of
organic matter in space was not expected. The discovery of
complex organics in planetary nebulae came as a surprise and
represents a new beginning of our understanding of abiotic
synthesis of organics in space.

Observational Evidence of Aromatic and
Aliphatic Organics in Planetary Nebulae
A family of broad unidentified infrared emission (UIE) bands at
3.3, 6.2, 7.7, 8.6 and 11.3 μmwas first found in the spectrum of the
planetary nebula NGC 7027 (Russell et al., 1977), and later found
to be commonly present in C-rich planetary nebulae. By
comparison with laboratory spectra of organic compounds,
these bands are suggested to arise from stretching and bending
modes of aromatic compounds (Duley and Williams 1981). Also
present in spectra are emission features around 3.4 μm, which
correspond to the symmetric and anti-symmetric C–H stretching
modes of aliphatic methyl and methylene groups (Puetter et al.,
1979; Geballe et al., 1992). The bending modes of these groups
manifest themselves at 6.9 and 7.3 μm (De Muizon et al., 1990;
Chiar et al., 2020). In addition, there are weaker unidentified
emission features at 15.8, 16.4, 17.4, 17.8, and 18.9 μmwhich may
be due to C skeleton vibrational modes of aromatic structures.

FIGURE 2 | Spectral energy distribution of the planetary nebula NGC 7027 from wavelength 0.1 to 1 m. Various symbols represent photometric measurements
and the lines are spectroscopic observations. The red and green curves are approximate fits to the dust continuum. The dashed line covering the entire spectrum is a
model bound-free and free-free emission from the ionized nebula. The dashed line in the visible and UV region is an approximate fit to the central star continuum. The UV
and optical photometry and spectroscopy has been corrected for circumstellar/interstellar reddening with E (B-V) = 0.887. Figure courtesy of C.H. Hsia.
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These discoveries represent the first discovery of stars as sources
of organic matter in the Universe.

Figure 3 shows the infrared spectrum of the planetary nebula
IRAS 21282 + 5050. In addition to the 3.3, 6.2, 7.7, 8.6, 11.3, 12.4,
13.4, and 16.8 μmUIE bands, emission bands around 3.4 μm due
to aliphatic C–H stretching modes can also be seen (Hrivnak
et al., 2007).

Circumstellar Synthesis of Complex
Organics
Since the UIE bands are seen in planetary nebulae but not AGB
stars, they are probably the product of circumstellar synthesis
during the post-AGB phase of evolution. The dynamical age of
planetary nebulae of ~104 yr places a limit on the time scale of
chemical synthesis. The first signs of UIE bands are seen in proto-
planetary nebulae, transition objects between the AGB and
planetary nebulae phases before the onset of photoionization
(Kwok et al., 1999). The first step to an aromatic compound is the
formation of the ring molecule benzene (C6H6), which was
detected in the proto-planetary nebula AFGL 618 through one
of its bending modes in the infrared (Cernicharo et al., 2001).
Acetylene (C2H2), a linear molecule and building block of
benzene, is commonly detected in evolved carbon stars
through its ]5 fundamental band at 13.7 μm (Volk et al.,
2000). Polymerization of C2H2 leads to the formation of
diacetylene (C4H2) and triacetylene (C6H2) in proto-planetary
nebulae, cumulating in the possible formation of benzene.
Benzene molecules can group into multiple rings in the form

of aromatic islands, which can be linked to each other via
aliphatic bridges of variable lengths and orientations. A
possible structure of such mixed aromatic/aliphatic organic
nanoparticles (MAONs) was proposed by Kwok and Zhang
2011, Kwok and Zhang 2013. Since MAONs are amorphous
and have an extremely sturdy structure, they can survive journeys
through the interstellar medium after their ejection during the
planetary nebulae stage.

ENRICHMENT OF PLANETARY SYSTEMS

Planetary systems are formed from proto-stellar nebulae
condensed from interstellar clouds. The chemical composition
of the pre-solar nebula is therefore determined by the chemical
composition of star-forming regions, which are enriched by ejecta
from AGB stars and planetary nebulae. Supernovae, which occur
much more rarely in the Galaxy, are responsible for heavy
elements produced by rapid-process nucleosynthesis. A large
part of condensed objects in the early Solar System are made
of ice (H2O, CO) and minerals made of heavy elements (O, Si, Fe,
etc). The outer planets are results of condensation of gases and
ices, and the inner planets are products of aggregation of solid
particles in the primordial Solar Nebula.

Recent studies of meteorites, comets, asteroids, planetary
satellites, interplanetary dust particles, have led to unexpected
discoveries that complex organics are commonly present in the
Solar System. The presence of organics is not only extensive, but
also diverse. Almost every class of organic molecules (including

FIGURE 3 | Infrared Space Observatory spectrum of planetary nebula IRAS 21282 + 5050. The UIE bands (in units of µm) are marked in red. The insert box shows
the expanded spectrum in the 3 µm region obtained with the Keck Telescope, where both the aromatic and aliphatic C–H stretch emissions can be seen.
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carboxylic acids, sulfonic and phosphonic acids, amino acids,
aromatic hydrocarbons, heterocyclic compounds, aliphatic
hydrocarbons, amines and amides, alcohols, aldehydes,
ketones, and sugar related compounds) have been identified in
the soluble component of carbonaceous chondrites (Schmitt-
Kopplin et al., 2010; Remusat 2015).

Most interestingly, a large fraction (70–90%) of organic carbon
in carbonaceous chondrites is in the form of a complex, insoluble,
macromolecular material often referred to as insoluble organic
matter (IOM, Cronin et al., 1987). Laboratory analyses of IOM
reveal a chemical structure consisting of small islands of aromatic
rings connected by short aliphatic chains (Cody et al., 2001; Cody
et al., 2002). Evidence for the interstellar origin of IOM can be
found in its isotope anomalies (Busemann et al., 2006).

Aromatic, aliphatic, and thiophenic (sulfur-containing rings)
compounds have been found in Mars’ Gale crater, with kerogen-
like materials being their most likely precursor (Eigenbrode et al.,
2018). The origin of organic plumes from Enceladus can be traced
to complex macromolecular organics in subsurface oceans
(Postberg et al., 2018). The atmosphere of Saturn’s moon
Titan is filled with organic haze and it surface is covered by
lakes of liquid methane and ethane, as well dunes made of organic
particles (Lorenz et al., 2008).

The Rosetta mission to the comet 67P/Churyumov-
Gerasimenko has revealed an array of organic compounds on
the surface of the comet (Goesmann et al., 2015). The Stardust
mission to Comet 81P/Wide 2 has detected amino acid glycine
with a carbon isotopic ratio suggestive of extra-solar origin (Elsila
et al., 2009). Infrared spectra of cometary dust show the 3.3 µm
aromatic C–H stretch and 3.4 µm aliphatic C–H stretch, implying
the presence of both aromatic and aliphatic materials like IOM in
meteorites (Keller et al., 2006; Fray et al., 2016).

Complex organics are also found in interplanetary dust particles
(IDP) collected in the Earth’s stratosphere (Flynn et al., 2003). Since
IDPs originated from comets and asteroids, this gives us indirect
evidence of the presence of organics in comets and asteroids. The
anomalous H and N isotopic ratios of IDP organics suggest that
they are of pre-solar origin (Keller et al., 2004).

In the asteroid belt, the Dawnmission has detected the 3.4 µm
aliphatic C–H stretch over a 1000 km2 area near the Ernutet
Crater of the dwarf planet Ceres, therefore confirming the
presence of complex organics in the main belt asteroids (De
Sanctis et al., 2017). The red color and low albedo of D-type
asteroids have been attributed to kerogen-like macromolecular
organics covering their surfaces (Cruikshank and Kerridge 1992).

In the outer Solar System, theNewHorizonsmission found the
surface of Pluto to be covered with a range of colored regions,
which could be the result of complex organics embedded in water
ice on the surface or liquid organics in subsurface reservoirs
(Cruikshank et al., 2019). The low albedo found in trans-
Neptunian objects has also been suggested to be due to surface
complex organics (Giri et al., 2016).

The origin of Solar System organics is a subject of active debate.
They are either synthesized in situ from simple molecules, or they
are remnants of stellar ejecta that were embedded in the primordial
solar nebula. The Solar System is already known to have inherited
pre-solar grains of AGB star origin (Zinner 1998). Pre-solar grains

of diamonds (Lewis et al., 1987), silicon carbide (Bernatowicz et al.,
1987), corundum, and spinel (Nittler et al., 1997) have been
identified by isotopic studies of meteorites. It is therefore quite
conceivable that stellar organic grains were also embedded in the
pre-solar nebula and later deposited into Solar System objects.

SUMMARY

Planetary nebulae have a long history of research on their
morphology, structure, and evolution. They are also known to
be sources of chemical elements that carry the chemical evolution
of the Galaxy. However, it was not until the emergence of infrared
and millimeter-wave observations that we realize that they are
also major sources of molecules and solids in the Galaxy. The
products synthesized in the outflows from evolved stars provide
the primordial ingredients for the formation of next generation of
stars and planetary systems.

A more significant implication of these recent discoveries is
the possible organic enrichment of primordial planetary systems
by planetary nebulae. Planetary nebulae (together with novae,
Endo et al., 2021) are the only astronomical objects that the
synthesis of complex organic compounds is directly observed.
Although complex organics could have been synthesized in situ in
the Solar System, their presence in carbonaceous chondrites, the
most primitive of all Solar System objects, suggests that these
organics are most likely previously embedded in the nebula from
stellar ejecta materials. The delivery of these Solar System
organics onto the early Earth could have implications on the
origin of life on Earth.

Planetary nebulae therefore represent a crucial link in the lives
of stars. Formed during the last stages of stellar evolution,
planetary nebulae ejecta provide primordial ingredients for the
formation of the next generation of stars and planetary system.
The atomic elements, molecules, minerals, and organic solids are
major constituents of the planetary systems. Observations of
planetary nebulae show that abiotic organic synthesis can
occur extremely efficiently under very low nebular density
conditions and over very short (103 yr) time scales. This opens
the possibility that organic matter is common in the Universe,
and the chemical composition of the Universe is more complex
that we previously believed. Since planetary nebulae are a
common stage of evolution for most stars, the synthesis and
distribution of stellar organics may have significant implications
on the existence and distribution of life in our Galaxy.
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