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Accurate knowledge of the full, three-dimensional electric field vector is of

fundamental importance in understanding electrodynamics of a vast variety of

space plasmas. However, heliophysics research still lacks access to the reliable

parallel electric field measurements required to close many significant science

questions. This uncertainty represents a significant barrier to progress in the

field. The only way to close this major observational gap is a profound change in

electric field instrument design. A new electric field instrument called Grotifer is

now being designed to address the need for highly accurate three-dimensional

electric field measurements while enabling lower cost missions and

constellation missions in deep space. Grotifer (Giant rotifer) is a reference to

the rotifer, also known as the “wheel animalcule.” Similarly, Grotifer consists of

mounting detectors on two rotating plates, orthogonal to each other, on a non-

rotating central body. The two rotating plates provide continuous high-

accuracy three-dimensional measurements of both electric fields and

magnetic fields. The Grotifer design leverages more than 50 years of

expertise in delivering highly accurate spin plane electric field

measurements, while overcoming inaccuracies generated by spin axis

electric field measurements. Our current efforts focus on designing Grotifer

as a SmallSat (27U CubeSat). That said, Grotifer could also become part of the

payload on a much larger platform. In the future, one could imagine fleets of

Grotifers studying electrodynamics at many points, facilitating differentiation

between spatial and temporal dynamics. Plasma detectors could also be added

to the rotating plates to cover the full phase space better than is done on

spinning spacecraft, leading to more complete correlation studies of the fields

and plasmas.
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1 Motivation

Complete and accurate understanding of the

electrodynamics of space plasmas requires a complete and

accurate measurement of the three-dimensional electric and

magnetic fields, as well as the velocity distribution functions

of the charged particles that interact with those fields. While one

can often infer the presence and magnitude of poorly measured

components of the electromagnetic fields, such inference is

model-dependent and can obscure the true physics that are

active in a given region or phenomenon. In this paper, we

describe the current state of the art in three-dimensional

electric field measurements and make the case that current

designs and methods are inadequate to achieve the accuracies

required to solve the remaining fundamental questions of space

plasma electrodynamics. We then describe a new design for

electric field measurements, Grotifer, which easily addresses the

current issues, and represents a path forward towards resolving

these questions.

1.1 Current electric field instrument design
limits measurement accuracy

Electric field (E-field) measurements in the heliosphere are

usually made on spinning spacecraft equipped with two disparate

types of double probe antennas: 1) long wire booms in the spin

plane, and 2) ~10 times shorter rigid booms along the spin axis.

These designs, with current-biased antennas, were invented and

first flown on a sounding rocket 55 years ago (Mozer and

Bruston, 1967). Since then, this detector design has flown on

manymissions, either with or without a rigid pair of booms along

the spin axis, such as: S3-3 (Mozer et al., 1977), ISEE-1 (Mozer

et al., 1978), CRRES (Wygant et al., 1992), Polar (Harvey et al.,

1995), FAST (Ergun R. et al., 2001), the four Cluster spacecraft

(Gustafsson et al., 1997), the five THEMIS satellites (Bonnell

et al., 2009), the two Van Allen Probes (Wygant et al., 2013), and

the four MMS satellites (Ergun et al., 2016a; Lindqvist et al.,

2016).

On such systems, the potential difference (signal + noise) is

divided by the boom length to produce a resultant E-field.

Because the spacecraft-associated errors are larger nearer the

spacecraft, the spin plane components of the E-field are well

measured while the spin axis component is either not measured

or poorly measured. This asymmetry in measurement quality is

also due to the fact that measuring electric fields using spinning

antennas rather than rigid booms presents additional

advantages such as the possibility to use thin wire booms,

thereby minimizing the detrimental aspect of support

structures, and the possibility to remove DC offsets in the

electronics via spin fits. As a result, the accuracy of 2D

E-field measurements in the spin plane is routinely better

than the larger of ±1% or a fraction of a mV/m (Mozer

et al., 1978; Gustafsson et al., 2001; Mozer, 2016). On the

other hand, the short axial antennas see offsets 1 to 2 orders

of magnitude larger than the relevant field strengths (several to

tens of mV/m). A similar situation exists for magnetic field

(B-field) measurements, where stray B-fields from the

spacecraft (~10 nT or larger) create offsets and noise that are

larger nearer the spacecraft.

An example of the failure to make useful E-field

measurements along the spin axis is provided in Figure 1,

where 60 s of E-field components measured by the Polar

satellite are displayed. The top two panels (Figures 1A,B) give

the spin plane measurements of a 5 mV/mDC E-field, producing

a sinusoidal signal at the satellite spin rate. The bottom plot

(Figure 1C) presents the spin axis data: It should be a DC signal

having no power at the spin frequency, yet spin dependent

variations of the spacecraft potential are felt by the short on-

axis sensors as different elements of the spacecraft rotate in and

out of sunlight. Due to the non-rotating short antennas and

spacecraft generated electrical signals, there is no useful data in

this component of the measurement.

An example of the current state of the art is provided in

Figure 2 (Adapted from (Øieroset et al., 2016)). It displays the

estimated DC uncertainty in the parallel E-field measured by

MMS during a 9 s crossing of the magnetopause reconnection

region. The estimated error in the parallel E-field

measurement is a data product of MMS E-field data.

Figure 2 shows that the estimated DC uncertainty in the

parallel E-field (in green) is usually greater than its

measured value. This significant uncertainty in the parallel

E-field restricts the analysis of the associated electrodynamics

to the largest-amplitude events.

Because of these limitations, no existing instrument is

capable of measuring all three components of the DC and low

FIGURE 1
(A,B) Spin plane and (C) Spin axis E-field components
measured by Polar. While the signal in the spin plane corresponds
to a geophysical signal, the signal along the spin axis presents a
large error, leading to a large uncertainty in the 3D E-field
measurement.
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frequency E-field throughout the heliosphere with sufficient

accuracy to determine the smallest and most consequential

component: the E-field component parallel to the background

B-field.

1.2 The closure ofmany significant science
questions from various heliophysics
research areas is hampered by the lack of
accurate 3D E-Fields

Parallel E-fields exist in a multitude of plasma regimes in the

heliosphere. These regions include such important loci of plasma

acceleration and heating as reconnection sites (e.g., Egedal et al.,

2012; Argall et al., 2015; Fox et al., 2018; Phan et al., 2018; Wilder

et al., 2018), shocks (e.g., Goodrich and Scudder, 1984; Bale and

Mozer, 2007; Mozer and Sundkvist, 2013; Schwartz et al., 2021),

the auroral acceleration region (e.g., Mozer and Fahleson, 1970;

Knight, 1973; Mozer et al., 1977; Gorney et al., 1985; Hultqvist

and Lundin, 1987; Koskinen et al., 1996; Ergun R. E. et al., 2001;

Andersson, 2002; Williams et al., 2006; Vedin and Ronnmark,

2007), the magnetosphere (e.g., Stark et al., 2011; Kropotkin,

2018; Arnold et al., 2019), the solar wind and corona (e.g., Hesse

et al., 2005, Halekas et al., 2012, Mozer and Chen, 2013). Parallel

E-fields have been observed at Earth and at other planets,

including in the ionosphere of Mars (e.g., Dubinin et al.,

2008; Akbari et al., 2019), and in the Jovian magnetosphere

(e.g., Ergun et al., 2009; Underwood, 2017). They have been

measured in standing waves (e.g., Damiano et al., 2019), in

Alfvén waves and turbulence (e.g., Rankin et al., 1999; Ergun

et al., 2005; Bian et al., 2010; Chaston, 2021), and in time domain

structures (e.g, Mozer et al., 2015). Because parallel E-fields are

essential components of the electrodynamics in all these regions,

their measurement is required for understanding the acceleration

and heating of the plasma that occupies these regions and that

plays a significant role in the coupling of momentum and

transport of mass and energy between and within the

heliosphere, magnetosphere and ionosphere. This

demonstrates the urgent need to accurately measure the three-

dimensional (3D) E-field that is vital to a complete

understanding of plasma dynamics. Instances of science

questions that illustrate the need for a profound change in

E-field instrument design are provided in the following.

1.2.1 Shock studies—Terrestrial bow shock,
interplanetary shocks
1. Do quasi-DC fields or fluctuations dominate the

electrodynamics of energy conversion in shock acceleration,

reflection, and heating of electrons and ions?

2. Do the two sorts of processes produce significant quantitative

or qualitative differences in energy partition?

3. Under what conditions does each mechanism dominate?

Recent studies utilizing MMS have begun to address these

questions, but they have also suffered from significant

uncertainties in the cross-calibration of 3D E-fields (e.g.,

Mozer and Sundkvist, 2013; Mozer and Sundkvist, 2014;

Schwartz, 2014; Goodrich et al., 2018; Cohen et al., 2019;

Hanson et al., 2019; Schwartz et al., 2021).

1.2.2 Reconnection studies—Terrestrial
magnetopause
1. What is the partition of energy conversion between processes

that are perpendicular and parallel to the B-field?

2. What is the partition of acceleration, scattering, and heating

between quasi-DC fields and fluctuations?

FIGURE 2
MMS (A) perpendicular E-field, (B) parallel E-field (C) zoom-in. The estimated DC uncertainty in the parallel E-field (in green) is usually greater
than its measured value. Adapted from (Øieroset et al., 2016).
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Various MMS studies have shown how E-field uncertainties

obscure the science, or restrict detailed analysis to the largest-

amplitude events (Ergun et al., 2016b; Torbert et al., 2016;

Øieroset et al., 2016; Gao et al., 2021). Cluster’s 2D ecliptic

normal attitude allowed the inference of Electron Diffusion

Regions (EDR) at the magnetopause, but not direct measurement

of parallel vs. perpendicular electrodynamics. Similarly, the

THEMIS E-field instrument allowed investigation of Ion

Diffusion Region (IDR) scale electrodynamics (perpendicular

E-field), but not the 3D electrodynamics of the EDR (Mozer

et al., 2005; Mozer et al., 2008).

1.2.3 Auroral acceleration region
studies—Parallel potential drops and small-scale
perpendicular structures in the upward and
downward current regions
1. What is the partition of parallel acceleration into localized and

distributed structures (Debye-scale double layers vs.

ambipolar fields)?

2. What is the local development and dynamics of small-scale

perpendicular structure in parallel potential drops?

The need for particular spacecraft orientation has limited the

depth and breadth of studies on the occurrence and properties of the

quasi-DC parallel potential drops associated with auroral electron

and ion acceleration (Hull et al., 2003a; Hull et al., 2003b; Ergun

et al., 2004; Andersson and Ergun, 2006; Chaston et al., 2007). Large

parallel E-fields have been measured at higher altitudes on auroral

field lines (Mozer et al., 1977) but their extension to lower altitudes is

unknown. Theoretical and observational studies (e.g., Chaston and

Seki, 2010; Chaston et al., 2011) show that small-scale structures in

the perpendicular component of the E-field and the development of

a parallel E-field component and significant parallel potential drops

are intimately linked, further demonstrating the need for

simultaneous highly accurate 3D E-field measurements in the

auroral acceleration region.

2 Solution: Grotifer, the future of
electric field instruments

2.1 Proposed design

We propose a new E-field instrument design that addresses

the need for highly accurate 3D E-field measurements while

enabling lower cost missions and constellation missions in deep

space. That is why we aim to develop a new E-field instrument

that fits in a 27U (0.3 × 0.3 × 0.3 m3) CubeSat to provide accurate

3D E-field measurements in all environments of the heliosphere.

Grotifer (Giant rotifer) is a reference to the rotifer, also known

as the “wheel animalcule,” which has antenna-like cilia that appear

to rotate in all directions. Grotifer’s design consists of mounting

detectors on two rotating plates, oriented at 90° with respect to

each other, on a non-rotating central body. An illustration is

provided in Figure 3. Each rotating plate has two component

measurements of the E-field such that the Twin Orthogonal

Rotating Platforms (TORPs) provide four instantaneous

measurements of the E-field. That way, the three components

are well-measured by the rotating detectors and redundant E-field

measurements in the direction sampled by both TORPs can be

used to estimate the time-varying measurement uncertainty.

Grotifer’s main requirements are described below, together with

current design choices.

2.1.1 Minimum boom length
The accuracy of the double probe E-field measurement increases

with the boom length because the signal increases and the spacecraft

FIGURE 3
An illustration of the Twin Orthogonal Rotating Platforms
(TORPs) on a non-rotating central body. The TORPs are oriented at
90° degrees with respect to each other, and they are both
equipped with crossed double probes (only partially shown).

FIGURE 4
Definition of a single boom length, L, and spacecraft
diameter, D. The components of each boom (root stacer, wire
boom and sphere) are also defined.
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noise decreases with distance. In addition, the spacecraft noise at a

fixed distance from the spacecraft increases with spacecraft size. Thus,

a reasonable starting point for the characterization of E-field

measurement accuracy is the dimensionless ratio between the

single boom length, L, and the spacecraft diameter, D, i.e., L/D

(see Figure 4 for an illustration of these definitions). Even though

E-field measurement accuracy is ultimately determined by a variety

of factors, highly accurate E-field measurements are facilitated by the

instrument design when L/D is large, as is the case for spin plane wire

booms. On the other hand, when the ratio is small, as is the case for

axial rigid booms, spacecraft noise likely dominates inmost situations

of interest. For instance,L/D for the E-field component along the spin

axis of Polar is 2.5, while it is 27 in the spin plane (Figure 1). The

minimum length requirement for each Grotifer antenna is

determined by scaling the L/D of Grotifer to that of other

spacecraft that made successful spin plane E-field measurements.

We find that a single boom length of L = 6.75 m from the center of

the TORP to the sphere, compared to Grotifer’s 0.3 m diameter,

provides antennas that are long enough to favor high-quality E-field

measurements.

2.1.2 Boom design and deployment
The booms on the rotating platforms consist of 5 m stacers

with spheres connected to wires that extend through the stacers in

what is known as a wire boom plus root stacer design. The stacers

are cold-formed from spring-grade metal strip material to produce

a constant helix angle and free coil diameter. They are then stowed

in a canister with no helix. When released the coils progressively

stack on an attached tip piece to produce a slight taper. This

stacking provides significant inter-coil friction such that this

formed tube compares favorably in stiffness and strength to the

equivalent (solid) thin wall tube. An important characteristic of the

device is the observation that the boom forms one coil at a time,

such that a fully formed tubular element emerges from the

housing. A picture of a deployed stacer is provided in Figure 5.

Once the stowed stacer is released, it expands to its 5 m length

along with the sphere. After the stacer has fully deployed, and the

TORP is spun up to its initial spin rate, the wire boom is then played

out with a motor another 1.75 m for a total deployed single boom

length of 6.75 m. The wire booms are kept short enough that they

cannot entangle under any circumstance. The spheres become the

E-field sensor, held radially outward by the centrifugal force of the

rotating platform.

An antenna system made from a boom plus wire has two

important advantages over a boom alone: First, the antenna

length is greater than with a boom alone. Second, the extended

wire allows separation of the boom, at the spacecraft potential,

from the spherical sensor, which greatly decreases its sensitivity

to spacecraft noise.

2.1.3 Proposed boom mounting
The mounting of the boom systems on the rotating platforms

is illustrated in Figure 6. Each rotating platform has two levels on

which the boom systems are mounted, and each level holds two

antennas. The stacers are mounted inside the cylinders and their

wire spools and spheres are mounted at their ends. The rotating

plates are nested at launch and they swing out and latch to make

the angle between the plates equal to 90°. In Figure 6, the upper 2/

3 of the bus is mostly occupied by the stowed TORPs while the

lower third is reserved for bus avionics.

2.1.4 Angular momentum balance
Once the stacers are deployed on the rotors, the rotors are spun

up using the motors between each rotor and the spacecraft bus. The

torque required to spin up the rotors and maintain their spin rate

against friction produces a counter-torque on the spacecraft bus. If

uncompensated, the counter-torque would spin up the spacecraft

bus to unacceptably large spin rates and complicate operations

significantly. In order to counteract that spin up, theGrotifer buswill

carry two orthogonal air core torque coils. The spin period for the

TORPs is 5 s (12 RPM). The central body attitude control will

maintain pointing towards the Sun for the side of the satellite with

the primary solar array and with sufficient stability that the boom

wires do not oscillate through more than a few degrees. It will also

stabilize the platform against torques generated in the control of the

rotating booms. The design and control problems for Grotifer are

already under study: Mao et al. (2015) developed an initial model of

the Grotifer attitude determination and control system; and a NASA

Instrument Technology Development award supports the current

development and testing of prototype versions of the root-stacer/

wire-boom system and the TORP drive and control systems from a

start TRL of 3 to an anticipated end TRL of 5. All this past and

current work serves to mature our knowledge of the Grotifer design

as a direct prelude to a flight test model within the next 5 years.

2.2 Proposed applications

Some of the benefits of the Grotifer development are the

following:

1. Grotifer will measure the parallel E-field to an accuracy

comparable to that of the perpendicular E-field, enabling a

significant increase in science return (see also Section 1.2)

2. Fleets of Grotifers can study electrodynamics at many points,

facilitating differentiation between spatial and temporal

dynamics.

FIGURE 5
A deployed stacer.
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3. The current-biased, spherical, double probe E-field

measurement is proven to work at reconnection sites, in

the auroral acceleration region, at shocks, in the solar wind

(see Section 1.2 and references therein) and at low L-values in

the magnetosphere (e.g., Lejosne et al., 2022). Thus, Grotifer

can become an important component of future space missions

throughout the heliosphere.

4. TORPs easily allows accommodation of spinning and despun-

preferring instrumentation on the same spacecraft (e.g.,

remote sensing limb/nadir/zenith looking imagers and

charged particle detectors).

5. TORPs may also host plasma detectors so as to cover the full

phase space more completely and continuously than on

current spinning spacecraft. This would lead to more

complete correlation studies of the fields and plasmas.
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27U bus concept.
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