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All artificial intelligence models today require preprocessed and cleaned data

to work properly. This crucial step depends on the quality of the data analysis

being done. The Space Weather community increased its use of AI in the past

few years, but a thorough data analysis addressing all the potential issues is

not always performed beforehand. Here is an analysis of a largely used dataset:

Level-2 Advanced Composition Explorer’s SWEPAM and MAG measurements

from 1998 to 2021 by the ACE Science Center. This work contains guidelines

and highlights issues in the ACE data that are likely to be found in other

space weather datasets: missing values, inconsistency in distributions, hidden

information in statistics, etc. Amongst all specificities of this data, the following

can seriously impact the use of algorithms:
Histograms are not uniform distributions at all, but sometime Gaussian or

Laplacian. Algorithms will be inconsistent in the learning samples as some rare

caseswill be underrepresented. Gaussian distributions could be overly brought

by Gaussian noise frommeasurements and the signal-to-noise ratio is difficult

to estimate.
Models will not be reproducible from year to year due to high changes in

histograms over time. This high dependence on the solar cycle suggests that

one should have at least 11 consecutive years of data to train the algorithm.
Rounding of ion temperatures values to different orders of magnitude

throughout the data, (probably due to a fixed number of bits on which

measurements are coded) will bias the model by wrongly over-representing

or under-representing some values.
There is an extensive number of missing values (e.g., 41.59% for ion

density) that cannot be implemented without pre-processing. Each possible

pre-processing is different and subjective depending on one’s underlying

objectives
A linear model will not be able to accurately model the data.

Our linear analysis (e.g., PCA), struggles to explain the data and their

relationships. However, non-linear relationships between data seem to exist.
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Data seem cyclic: we witness the apparition of the solar cycle and the

synodic rotation period of the Sun when looking at autocorrelations.
Some suggestions are given to address the issues described to enable

usage of the dataset despite these challenges.
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1 Introduction

The space weather community aims to understand and
quantify the associated threats, mitigate them, and in the best
cases, prevent them altogether. Recently, Daglis et al. (2020)
detailed a new scientific program of the Scientific Committee
on Solar-Terrestrial Physics (COSTEP) called PRESTO, for
Predictability of the variable Solar-Terrestrial coupling. Such
a study highlighted the remaining questions surrounding the
understanding of the Sun-Earth coupling. Among these open
questions, we can find:

• How do various solar wind conditions (e.g., IMF
components, speed, density, level of turbulence) and
different large-scale drivers control the coupling efficiency
and the energy/mass transfer from the solar wind to the
magnetosphere?
• How do solar wind conditions control the occurrence

frequency and location of different magnetospheric plasma
waves?

These questions emphasize the role of the solar
wind as it is indeed one of the key issues in the
predictability of the Earth space environment. Studies to
better understand both solar wind and the interplanetary
magnetic field using coordinated space- and ground-
based data along with models are of essential importance.
Recently, the emergence of machine learning algorithms in
space weather Camporeale et al. (2018), Camporeale (2019),
Camporeale (2020) appeared as one of the most promising
solutions to nowcast and forecast phenomena in space weather.
More and more papers using machine learning, and especially
deep learning, are published in the field of space weather
Reiss et al. (2021), Zewdie et al. (2021), Stumpo et al. (2021),
Reep and Barnes (2021).

Initiated in 2018, a Research Coordination Network (RCN)
supported by the National Science Foundation (NSF) named
“Towards Integration of Heliophysics Data, Modelling, and
Analysis Tools” (@HDMIEC) planned to make progress in
the understanding of physical mechanisms in the Sun and
on modelling and the data accessibility and analysis. In
this regard, workshops, and discussions around the topic

of Machine Learning in Space Weather were held and the
opinion of the community was gathered. Several outcomes
from the Q&A sessions are worth to be noticed from
Nita et al. (2020):

• Half of the attendees (46.7%) agreed that the heliophysics
community does not even have a fair understanding of
machine learning capabilities and limitations.
• There was a consensus that cooperation between ML and

heliophysics does not exist.
• ML methods are more successful regarding the Big

Data environment behind heliophysics than physics-
based methods. But there is no consensus around which
areas could ML methods outperform physics-based
ones.
• The overwhelming majority of attendees strongly agreed

(73.3%) that there is a need to combine physics-based and
ML models.
• Most of the attendees did not feel that theMLwas a “bubble”

ready to burst.

In this paper, we decided to discuss the use of solar wind
data in the context of artificial intelligence. Firstly, because the
solar wind is a central data as seen through PRESTO. Secondly,
because most of the space weather community is not so familiar
with AI and its good practices but seems ready to use it more in
the future Nita et al. (2020). Hence, we present here a complete
data analysis of the ACE solar wind and IMF measurements, an
essential and largely used data when forecasting on-Earth events,
even today (Myagkova et al. (2020), Wintoft et al. (2015), etc.).
While we will not expand on this in this paper, it is interesting
to notice that a lot of studies use the NASA’s OMNIWeb dataset
(see https://omniweb.gsfc.nasa.gov/html/ow_data.html) such as
Wihayati et al. (2021) or Gombosi et al. (2018) for instance.
High-Resolution OMNIWeb data are made of ACE, IMP 8,
Wind and Geotail satellites data gathered and time-shifted to
the Bow Shock Nose. Although they are really interesting data,
we did not want to add here any complexity through the
fact that this time-shifting was based on several asumptions
and needed an intercalibration between satellites. This data
preparation is largely documented on OMNIWeb (https://
omniweb.gsfc.nasa.gov/html/HROdocum.html).
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These kinds of analyses are “required to correct for scattering,
baselines changes, peak shifts, noises, missing values and several
other artefacts so that the “true” relevant underlying structure
can be highlighted and/or, if required, the property of interest
can be predicted correctly” Mishra et al. (2020). The chosen
data go from 1998 to 2021, including a large part of the 23rd
and the full 24th solar cycles (for a schematic view, see the
Supplementary Figure S1, showing the Solar radio flux index
at 10.7 cm, a good representation of the solar activity). The
objective of this paper is to extract all possible useful information
that can be found in solar wind data and highlight the issues
that could arise when applying machine learning algorithms and
techniques.

Before diving into the subject, it is worth noticing that
impressivework has been done by Smith et al. (2022) on a similar
topic. Their paper consists of an analysis of the quality and
continuity of the data that are available in Near-Real-Time from
the Advanced Composition Explorer and Deep Space Climate
Observatory (DSCOVR) spacecraft. Part five (Discussion
and Conclusion) of our work details how our two studies
differ.

2 A quick introduction to machine
learning concepts

In order to better understand the data analysis presented
here, we first need to quickly introduce some concepts in
Machine Learning. According to Oxford Dictionary, Machine
Learning is “the use and development of computer systems
that are able to learn and adapt without following explicit
instructions, by using algorithms and statistical models to
analyse and draw inferences from patterns in data”. The
products include models, forecasts, identification of patterns,
anomalies, or even relationships among data. Machine learning
is usually described through two categories of algorithms:
supervised learning and unsupervised learning (although it
exists a wealky-supervised algorithm that embraces both
ideas).

• Supervised learning LeCun et al. (2015) includes regression
algorithms and classification algorithms. The first aims at
discovering connections between input and output data
and is often employed to approximate functions or predict
future values of continuous functions. It comprises linear
regressions, decision trees, most of neural networks, and
ensemble methods, among others. The second aims at
mapping input data to classes and is therefore usually
employed to classify data (e.g., True/False problems). It
includes support vector machines (SVM), discriminant
analysis, naïve Bayes classifiers, and K-nearest neighbour,
among others. Such algorithms are called supervised because

they require to be fed examples of output data to
train.
• Unsupervised Learning Storrs et al. (2021) includes
clustering algorithms, which group data together. Clustering
algorithms map input data to a set of categories initially
identified by the system (e.g., Gaussian Mixture Model,
K-mean). They are referred to as unsupervised because
one does not know their output. A simple example is the
grouping of customer profiles, where the final quantity of
groups is unknown at first.

The procedure is often the same: access, scrap, analyse and
pre-process the data (format, missing values, etc.), choose and
compute the features that will be used for the model and train
the model thanks to a loss function taking or not the label into
account (subjective choice from the user).We then iterate the last
three steps to find the bestmodel. As introduced in this paper, the
key and most time-consuming parts are the data analysis and the
pre-processing, as we need to build a scalable and efficient ready-
to-use dataset to answer a given problem. The pre-process ends
with a split of our data into three groups:

• The train set: a dataset that will be used by our algorithm to
train itself.
• The validation set: a dataset used by the algorithm to test

itself. The accuracy of the model on this dataset allows the
user to see how good it is at predicting, how fast and how
well it is training and allows him to make some changes
accordingly.
• The test set: a dataset that will never be used by the

user and the model until the very last moment. The user
applies his trained and ready-to-use model to this dataset to
ultimately know the final accuracy of his model and to avoid
a human/user bias from hyperparameter tuning.

Finally, it is worth noticing that the train and validation
sets have to be “well-balanced”. This means that all possible
cases should appear in both datasets and, ideally, in the same
quantities. A model will easily get used to recurrent cases. If we
only have one or two samples of fast solar wind in our train set,
and thousands of slow solar wind samples, the model will not be
able to accurately predict fast-solar wind cases. One possibility to
address this issue is to perform what we call data augmentation,
but we will not expand it here Shorten and Khoshgoftaar (2019),
Chen et al. (2020).

3 Data description

The Advanced Composition Explorer (ACE) satellite is
located in the Lagrange point 1 (L1), a stable point in space,
between the Earth and the Sun, where the gravitational attraction
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from both bodies and the centrifugal force all balance each other.
Satellites at this location are at the front line to see phenomena
coming from the Sun.

ACE Solar Wind Data are Level-2 Real-Time Solar Wind
(RTSW) data. “Level 2” means that raw data from the
instruments have been processed by the instrument teams.
According to the Ace Science Center Level 2, it includes such
operations as calibration, organization into energy and time bins,
or application of ancillary data. The frequency of measurements
for instruments MAG (Magnetometer) and SWEPAM (Solar
Wind Electron Proton Alpha Monitor) are respectively 16-s
and 64-s, from 1998 to 2020. The data have been gathered
from the following link: srl. caltech.edu/ACE/ASC/level2/where
they are considered to be official and verified1. A lot of
research needing solar wind data also usesOMNIWeb 1-min and
5-min solar wind datasets mathematically time-shifted from the
Lagrange one point to the Earth’s bow shock nose King and
Papitashvili (2006). Choosing these manually propagated data as
input to nowcast or forecast near-Earth data Shprits et al. (2019),
McGranaghan et al. (2021), Bentley et al. (2018) is a good idea
to prevent a machine-learning-made propagation which can be
subject to unidentified errors. However, as the point of this paper
is to highlight the dangers of using in situ data, it was more
relevant to take in situ solar wind values.

We focus on the data from two main instruments of the ACE
satellite:

• SWEPAM McComas et al. (1998), for Solar Wind Electron,
Proton and Alpha Monitor measures rates of electron and
ion flows with two distinct electrostatic analyzers with fan-
shaped fields of view that use the spacecraft’s rotation to
observe in all directions. The first one observes electrons in
the 1 eV–1.35 keV energy range and the second one ions
in the 0.26–36 keV energy range. For this instrument, we
only focus on ion data, spanning 23 years from 1998 to 2020
with a 64-s resolution. This corresponds to 11, 299, 710
measurements.
• MAG, for Magnetic Field Monitor, consists of a

set of twin sensors (triaxial fluxgate magnetometers,
Stone et al. (1998)) measuring the three components of the
interplanetary magnetic field at L1. For this instrument, we
have 25 years of 16-s data from 1997 to 2021. We removed
the years 1997 and 2021 to have the same time range as
the SWEPAM instrument. In the end, we have 45, 365,
393 data points for this instrument. For the first part of
our analysis, we decided to subsample the dataset every
64 s. With both years removed, we obtain 11, 341, 349
measurements. However, the corresponding times of each

1 A special thanks to Andrew Davis from the ACE Science Center for his
answers and advice on the use of data.

sample do not correspond to SWEPAM’s ones, and another
post-process (presented further) had to be done to compare
data between the two instruments.

Here are the analyzed in situ measurements and their unit:

• IMF X, Y and Z-component, GSE coordinates [nT]
• Solar wind proton density [cm−3]
• Solar wind proton speed [km.s−1]
• Solar wind ion temperature [K]

For the interplanetarymagnetic field, X, Y and Z-component
are in the GSE (Geocentric Solar Ecliptic) coordinates instead of
the GSM. By definition Russell (1971) the X-axis points from the
Earth towards the Sun, the Y-axis is chosen to be in the ecliptic
plane opposing the planetary motion, and the Z-axis is parallel
to the ecliptic pole. This system has been chosen instead of GSM
because the aberration of the solar wind due to the orbitalmotion
of Earth around the Sun representing a 30 km/s vector oriented
in the minus Y direction axis is easier to remove Russell (1971).
According to Russell (1971), GSE coordinates have been widely
used to display satellite trajectories, interplanetarymagnetic field
observations, and solar wind velocity data.

4 Data analysis

In this part, we present the full analysis along with related
conclusions.

• In the first part, statistical distributions of the data are
plotted and explained, and every variable will be looked at
independently of others. In all the datasets, there are some
missing values that perturb the statistics computations. We
removed all of them in this first part.
• The second part is an example of how to handle the

aforementioned missing and extreme values.
• The third part will study the classical linear relationships

between the different variables. Aside from being important
to better understand our data, it is worth reminding
that too many intercorrelated input features may give
redundant information to anAI algorithm and then lower its
performance. The topic of interdependencies in solar wind
data has already been looked at in the literature (e.g., in
Bentley et al. (2018)) but will be done here in the light of
neural networks and deep learning.

4.1 Linear analysis of the IMF, and
Plasma’s parameters

Before studying neural networks, it is important to begin
with a simple linear analysis. Theses analysis allow to reveal
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TABLE 1 Mean, median, 0.005th and 99.995th percentile from ACEMAG and SWEPAMdata.

Variables Mean Median 0.005th percentile 99.995th percentile % Of missing data

Bx (GSE) [nT] 6.93× 10–2 8.4× 10–2 −36.6 25.5 0.128
By (GSE) [nT] 2.98× 10–2 −9.00× 10–3 −30.7 38.7 0.128
Bz (GSE) [nT] 9.34× 10–3 2.20× 10–2 −43.5 32.3 0.128
Bt (GSE) [nT] 5.76 5.04 0.32 54.5 0.128
Proton density [p/cc] 5.88 4.54 0.1 80.0 41.59
Proton speed [km/s] 4.30× 102 4.08× 102 2.38× 102 1.03× 103 6.80
Ion temperature [K] 9.20× 104 7.05× 104 2.84× 103 1.00× 106 20.10

some important information and features about data with simple
computations which will help you save a lot of time during the
deep learning study.

Observing various parameters of the Solar Wind and the
interplanetary field gives us a good insight into their nature. The
first step is to look at their histogram and statistical parameters
such as mean, median, maximum or the standard deviation,
globally, yearly and potentially in a shorter time period. Both
solar wind and the IMF are influenced by the solar activity which
evolves on 11-year cycles. Recall that all the statistics in this part
are computed on non-missing values only.

It is essential to understand how values can fluctuate, evolve,
or change in time when we are dealing with time series. The
following Table 1 highlights two interesting things: the great
number of missing values in SWEPAM data, and the large
distance between the 99.995th percentiles andmean values for Bt
and the Ion Temperature. Such spread values seem dangerous to
implement in a deep-learning algorithm without a pre-process.

Figure 1A shows the yearly standard deviation of the three
components of the IMF. It is a direct witness to the obvious the
dependencies of some of our parameters over the solar cycle
because it follows the global trend of the solar activity index F10.7
throughout the year. All possible figures to detect dependence of
distribution parameters over time have been plotted. Only some
of them are shwon in this paper.

Figure 1B is another example of how values can change
over time and shows that the evolution of the yearly average
temperature and speed of the solar wind already suggests a
dependence between the two. In other words, different periods
in our dataset imply different distributions depending on the
solar activity. Although it may seem obvious for a space weather
expert, it is information of prime importance for the data scientist
dealing with these datasets. Such observations suggest that the
solar activity in the name of F10.7 has to be part of the inputs as
we will have to know where we are in the solar cycle. Moreover,
this highlights the need to have at least one full solar cycle in our
training set to span all possible cases.

4.1.1 Histograms
Distributions are essential for the data scientist to

assess the information contained in a dataset. For instance,

FIGURE 1
(A) Standard deviations per year of the three-components of the
interplanetary magnetic field (Bx, By, Bz) in GSE coordinates
compared to the mean per year of the solar radio flux at 10.7 cm
from NASA’s OMNIWeb (omniweb.gsfc.nasa.gov/)—1998 to
2020. Values are not normalized here. (B) Mean of Proton
Density, Temperature, Speed and Solar Radio Index F10.7 per
year, from 1998 to 2020. All values are normalized (center 0 and
standard deviation 1) to plot them on the same scale.

under-represented values will have a more important high error
on average than most-represented values. Although a limited
number of plots are shown here, all histograms have been plotted
and analyzed.

4.1.1.1 SWEPAM
Most of SWEPAM variables distributions (i.e., plasma

parameters) were close to lognormal distributions Burlaga and
Lazarus (2000). Hence, for clarity purposes and to enhance our
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FIGURE 2
(A) Distribution of ion speed (km.s−1) between 01 January 2002 and 22 October 2009 and between 23 October 2014 and 09 September 2019
corresponding to declining phases of the solar activity. (B) Distribution of ion speed for opposite periods (km.s−1), corresponding to ascending
phases of the solar activity. The maximum of the distribution (i.e., the most probable value) and median are also plotted on the two figures. The
white dotted lines are an approximation of the shape of the distribution during the ascending phase (2b), while the yellow dotted line represent
the potential contribution of the coronal-hole-origin plasma with a peak at 600 km s−1 (pointed by the black arrow).

understanding, we also plot the distribution of the logarithm
applied to these varaibles.

Ion velocity is the only plasma parameter that differs from a
lognormal distribution. The most probable value is 364 km s−1,
lower than its median value 408 km s−1. Most conclusions
from Veselovsky et al. (2010) still hold when adding all the
data until 2021. Although solar wind speed can reach values
such as 1,000 km s−1, 94.2% of all values are contained in the
300 km s−1 to 700 km s−1 window. Moreover, 500 km s−1 seems
to be a breaking point, suggesting that two different distributions
could overlap with a local maximum of around 600 km s−1.
According to Burlaga and Lazarus (2000), this could be due to
corotating interactions regions where fast solar wind catches
up slow solar wind, when corotating streams from coronal
holes are numerous. As these phenomena appear more during
declining solar activity, we plotted distribution for 2002–2009,
2015–2020 (two cumulated declining phases of solar activity)
and distribution on the remaining dates (ascending phases). If
needed as a comparison, the full distribution can be observed in
the Supplementary Figure S2.

Figures 2A, B confirm a 600 km s−1 peak during the
declining phases of the solar activity, as suggested by Burlaga and
Lazarus (2000)with data from1995 to 1998 (here confirmedwith
new data from 1998 to 2020). If we approximate the distribution
of speed as lognormal, it then appears that the two declining
phases of the solar activity are adding a Gaussian distribution of
speed centered around 580–600 km s−1. This is confirmed when
looking at Figure 8 in Xu and Borovsky (2015). They classified
solar wind into four plasmas: coronal-hole-origin plasma,
streamer-belt-origin plasma, sector-reversal-region plasma, and
ejecta. We see in Figure 2A the coronal-hole-origin plasma
(black arrow). Let’s keep in mind that a lot of work is being done

to have the solar wind classified (e.g., Camporeale et al. (2017)).
This information is of prime importance if we want to use the
solar wind to forecast other parameters.

Proton density follows a lognormal distribution with the
most probable value being 2.94 cm−3 (Figures 3A, B). As seen
Figure 1B, this value is highly influenced by the solar cycle. The
peak of the density distribution is moving through our 23-years
period, roughly following the solar cycle (represented here by
F10.7 averaged each year).

Unlike Burlaga and Lazarus (2000), we do not observe
any double peak in our ion density distributions, and our
most probable value is far from their 8.0 cm−3 value (our is
approximately 2.94 cm−3). One can imagine this to be related to
the global decline in solar activity since solar cycle 22 (solar cycles
can be seen in the Supplementary Figure S1) but we do not have
a proper explanation.This suggests, again, that we should not use
less than 11 years of data to train our algorithm (ideally at least
three cycles).

Temperature is well approximated by a lognormal
distribution, and the most probable value is around 30,000 K.
The two distributions have a similar shape to the ones in Figure 3
(if needed, this can be seen in the Supplementary Figure S4 for
normal and logarithmic histograms). However, our computation
of the most probable value shows an offset to the right instead
of representing the peak of the distribution. This is one of the
major issues that we will have with SWEPAM data in general,
mentioned in Veselovsky et al. (2010): rounding of numbers is
performed to different orders, with different significant digits.
To highlight this issue, we plotted another histogram of the
ion temperature with a higher number of bins (1,000,000) and
zoomed on corresponding zones (Figure 4). As an example,
when the temperature reaches 10,000K, the measures start to
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FIGURE 3
(A) Distribution of ion density (cm−3). Red line highlights the maximum of the curve or most probable value (equals to 2.939 cm−3) and the blue
line highlights the median value (equals to 4.542 cm−3). (B) Distribution of logarithmic (base 10) values of the proton density.

FIGURE 4
Same histogram of ion temperature than S.4 using 1,000,000 bins. Figure is zoomed on two specific zones, highlighting the changes in order of
magnitude when rounding the measures.

be rounded every 1 K (instead of every 0.1 K for values below
10,000 K).The same goes when reaching 100,000K, themeasures
start to be rounded every 10 K. The distribution when taking the
logarithm values of the ion temperature is an even better view
of the “jumps” in scale. Although these changes are anecdotic in
most astrophysical applications, they are far from negligible in
the AI context. Such changes in scalemultiply the amount of data
having identical values (as seen in Figure 4, where themaximum
is shifted to the right). Yet, a deep-learning algorithm will
wrongly interpret these values as being more probable and will
give them more importance during the training although they
are not supposed to be so (maximum probability of temperature
should stay around 30,000 K). As a consequence, the algorithm

will only focus on the most-probable value and the others will
not be able to lead to coherent and correct results.

4.1.1.2 MAG
Histograms of the X, Y, and Z-components of the IMF seem

close to Gaussian distributions. The norm of the IMF magnetic
field vector seems close to a lognormal distribution. All plots can
be found in the Supplementary Figures S5−S8). Some observed
characteristics:

• X and Y-components could be interpreted as two
superposed Gaussian, with two different most probable
results each. X and Y components seem to have opposite
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values and are linked by the orientation of the IMF
when coming from the Sun (i.e., magnetic field lines
are either oriented towards or away from the Sun). In
addition, plotting the median of all values each year
for these components suggest also suggests a strong
relationship between the two, that should be considered
before implementing them as input. The yearly median of
both distributions seems to evolve in opposite directions
over time and this is in line with the investigation shown in
part 4.3. (report to part 4.3. for a better understanding but
this can still be checked Supplementary Figure S3).
• TheZ-component of the IMF is strangely following a perfect

Gaussian curve with a center close to 0. Without any
additional information from the space weather scientific
community, one might assimilate the Z-component to a
white-noise signal i.e., consider Bz as random. However,
it is known (see for example Kivelson et al. (1995)) that
the Bz-component orientation is responsible for magnetic
reconnection at the front of the magnetosphere. When
pointing southward, the IMF can connect to the Earth’s
northward magnetic field, allowing plasma to enter the
dayside magnetosphere. When using ACE data to nowcast
or forecast possible impacts of solar phenomena on in-space
and on-ground systems, it is not possible to exclude the Bz-
component. In general, analyzing data to answer a specific
need using Machine Learning cannot be properly done
without including the physical systems and phenomena
responsible for the observations. The physics lying behind
the data has to be addressed and understood to avoid absurd
solutions and errors.
• Finally, the total IMF—B— distribution seems very close to

a Laplacian distribution.

As a conclusion on histograms:

• Data shown here cannot be put in the algorithm as such.
Distributions are everything but uniform and will lead to
unequal training over samples. A possible consequence is
having an algorithm incapable of dealing with rare cases
(tails of the Gaussian and Laplacian curves).
• Gaussian noise is inherent to instruments. It might be very

difficult (but useful) to evaluate the signal-to-noise ratio.
A possible consequence on the training loss curve is to
observe a steep drop followed by a flat trend, meaning that
the algorithm quickly trained on the information it has and
then started training on noise.
• Relation (linear or not) between data cannot be overlooked

(we investigate them in part 4.3.).
• Particular attention is required on data values, as shown by

the changes in the order ofmagnitude in the ion temperature
(which, furthermore, could not be seen without manually
increasing the number of bins).

4.1.2 Autocorrelations
The autocorrelation function (ACF) gives the data analyst

indications on how future values are influenced by past values
in time series. It helps identify randomness or periodic patterns,
seasonality, and trends. When plotting ACF on the different
features here, no autocorrelation is noticed, except for two trends.

• IMF norm, X and Y-components reveal a 27-day periodicity,
corresponding either to the Carrington synodic rotation
period of the Sun or the Bartels Rotation Number. Solar
rotation varies with latitude, with a maximum of 38 days at
the poles and less than 25 days at the equator. In this context,
the synodic period is 27.2753 days Wilcox (1972), and the
Bartels Rotation Number is chosen to be exactly 27 days
Bartels (1934) (the number of apparent rotations of the Sun
as viewed from Earth and from L1 in our case).
• IMF norm also reveals the 11-year solar activity cycle.
• Density, temperature, and speed reveal the same two

periodicities.

Graphs do not bring enough information andwill just appear
in the Supplementary Figures S9−S12 for the reader’s curiosity.
It is important to notice that the lack of a clear autocorrelation is
good news to apply machine learning technics. Time series data
tend to be autocorrelated by having consecutive data with quite
similar values.The riskwhen trying to forecast the next value is to
end up using a persistence model, where the algorithm just picks
the last value as being the best approximation for the next one.
This is avoided when we have almost no autocorrelation, which
is our case here.

4.2 Missing and extreme values

Missing and extreme values is a real struggle when working
on AI algorithms but are more than usual in the Space Weather
field. Table 1 also presents the percentages of missing data in
our dataset and Figure 5 represents through a black and white
image the missing values in our dataset. On the left side of
Figure 5 are theMAGmeasurements and on the right side are the
SWEPAM measurements. At a glance, we can see that the time
tags formissing values in the interplanetarymagnetic field are the
same, meaning that the instrument measures the components of
the IMF altogether and that one missing value on a component
means missing values on all components.

What we noticed from MAG does not hold for SWEPAM.
Although most of the missing data happen at the same moment,
they are still not distributed in the exact same way. However, it
seems like when speed is missing, all of them are. This type of
visualization is easy to create, and very useful to make a first
opinion on howmissing values are organized (in which variables,
around which year, etc.).
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FIGURE 5
Visualization of missing values (i.e., NaN—Not a Number) in the dataset. Each black and white column here represent all values of one variable
(see x-axis). Each line of pixels within these columns represent the presence (horizontal white lines) or absence (horizontal black lines) of values
for a given datetime ( y-axis). All dataset is shown from first to last datetime, every 64 s. These maps help quickly visualize when in time are the
missing values and which parameter is the most affected.

FIGURE 6
Percentage of data that are missing in the SWEPAM measurements (i.e., proton speed, proton density, and proton temperature) per year, from
1998 to 2020.

Finally, there are much more missing data in the SWEPAM
dataset than in the MAG one, and almost half of the proton
density data is missing: a very high amount that cannot be
ignored when dealing with AI. Such high percentages require
that we take a closer look as done in Figure 6 (and, later, in
Table 2).

Data here are Level-2 data, meaning that a group of experts
analyzed them and kept reliable measures. Starting from
2009/2010, the amount of missing data is greatly increasing.

This information seen in Figure 6 is confirmed when looking at
the data status update of the ACE Science Center on 23 October
2012:

“The SWEPAM observations, in particular the proton
density and to a lesser extent the temperature, became increasing
sparse starting in 2010 as the primary channel electronmultiplier
(CEM) detectors have aged. […] In response, the ACE science
team has developed and implemented, starting 23 Oct 2012,
an innovative mission operations concept that more frequently
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repoints the ACE spacecraft’s spin axis further away from the
Sun.” (Skoug et al. (2012)).

This information is of high value for Machine Learning
scientists. As we saw, when working with an AI algorithm,
we split the data into a train, a validation, and a test dataset.
What is usually done in AI applied to Space Weather (and
even broader when dealing with time series) is to pick a
whole period (e.g., an entire year) as the validation or test
set McGranaghan et al. (2021). A random choice would be
dangerous as we might end up with a year with 81% of missing
values (e.g., 2010).

The next question to answer is how these missing values will
be processed. First, let’s check the gaps of consecutive missing
data and their size.

Table 2 shows the variety of gaps in our data. The biggest
gap in the SWEPAM instrument is made of 75,182 consecutive
missing data, approximately 55.6 consecutive days in the proton
density. The density also has 752 gaps longer than a day. The
longest gap in the speed is 5.2-day long, and the longest gap in the
temperature is almost 15-day long.They have respectively 41 and
416 gaps more than 24 h long. Once again, we confirm the issue
already seen for the density and temperature measurements:
more than a lot of missing data, there are a lot of consecutive
missing data.

Concerning the interplanetary magnetic field, this table also
goes in the same direction as Figure 5. It confirms that the
missing data are at the same time for all components of the
magnetic field: only four gaps longer than a day and the longest
gap is approximately 40-h long. Several processes exist to deal
with missing data. Here are some examples:

• Removing all the rows containing missing data. The main
advantage of this method is the robustness of the resulting
model. However, using this method usually also removes
some non-missing data. Here, the total loss of rows will
be based on the ion density’s data, as it has 41.51% of
missing data. It will result in a loss of almost four million
proton speed data and 2.4 million proton temperature data
points.
• Imputing missing values (especially for time series) with

mean, median, last seen value, or through linear, spline
or other interpolations. Such methods are quite easy to
implement but might result in unplausible results. In
the following (Figures 10, 11), we applied the spline
interpolation (as seen in some literature concerning AI in
Space Weather - e.g., Gruet (2018)) on a few hours’ gaps
in our SWEPAM’s ion temperature data around November
2020.

Figure 7B represents Figure 7A with gaps filled with spline
interpolation. As expected, a spline interpolation cannot be used
when a gap is too large, it fills the dataset with values at different

10
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FIGURE 7
(A) SWEPAM’s Ion Temperature from the 16th of July to the 10th of September 2009. This period has been chosen to evaluate the efficiency of
using spline interpolation when we have large gaps in the data. (B) SWEPAM’s Ion Temperature from the 16th of July to the 10th of September
2009. Gaps seen in Figure 7A are now filled using a spline interpolation. On the right is a zoom on a particular period to highlight the large
divergence caused by the interpolation.

orders of magnitudes. The risk lies in the divergences such as the
one between 13 August and 20 August 2009, giving very high
values compared to the initial curve that now seems flat. Such
extreme values will highly disturb algorithms, especially neural
networks and can restrain them from learning. Evenmore, neural
networks will tend to give high importance to these values, that
were not even in our dataset at first.

However, it is efficient with smaller gaps in (around 10
to 15 missing values according to Andriambahoaka (2008)).
The gaps seen in Figure 8A between 28 August and 30
August 1998, are good examples on how efficient the spline
interpolation can be for small gaps. Figure 8B shows the result
when interpolating with spline.

It is essential to keep in mind this dependence on gaps’ sizes
when trying to impute values to missing data. The best way
to deal with it is to have a detailed analysis of missing data
(as we saw in Table 2, or in Figures 5, 6), and use the best
available method by first isolating characteristic gaps and
testing methods on them independently.

• Finally, it is worth noticing that in astrophysics, gaps in
the data could be filled by using other instruments and
satellites that are measuring the same variables. In our case,
satellites such as DSCOVR, also located in L1, represent viable
solutions.However, inter-calibration between instruments will
then have to be double-checked and can become critical if not
considered.

As a conclusion on missing values:

• Missing data cannot be left aside and have to be looked at
and processed, especially when dealing with time series.
• An analysis of the missing data should at least include

percentages per variable, amount of missing data in time,
size and number of gaps, few plots along with the data. It
is advised to also consult the data suppliers and experts to
better understand the analysis.
• While a large number of processes exist (e.g., removing

rows or interpolating), they are not equivalent, and their use
should depend on the aforementioned dataset analysis.
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FIGURE 8
(A) SWEPAM’s Ion Temperature from 28 August to 30 August
1998. This period has been chosen to evaluate the efficiency of
using spline interpolation when we have small (here
minutes-long) gaps in the data. We zoomed on two of them for
easier observation. (B) SWEPAM’s Ion Temperature from the 28th
of August to the 30th of August 1998. Gaps seen in Figure 8A
are now filled using a spline interpolation. We zoomed on the
same two periods for easier observation.

4.3 Interdependencies between variables

After analyzing every data independently, we now focus on
comparing them together through three assessments:

• Two-dimensional statistical distributions
• Correlation matrices
• Principal Component Analysis

4.3.1 Two-dimensional statistical distributions
We analyzed the two-dimensional statistical distributions of

values for the logarithm of the solar wind’s speed, temperature,
and velocity. We are using the logarithm as an answer to the
lognormal distributions observed in part 4.1.1.1. Here are the
figures for speed and temperature (Figure 9A) and for speed
and density (Figure 9B). The distribution for temperature and
density did not highlight anything interesting.

These 2D statistical distributions highlighted well-known
results:

• Proton temperature increases with solar wind speed and
a linear correlation appears between the two (Figure 9A).
In 1986, this linear correlation has been approximated by

FIGURE 9
(A) 2-D statistical distribution for logarithmic (base 10) values of
solar wind speed and logarithmic (base 10) values of solar wind
temperature. The two curves (respct. red and black) are the
empirical equations from Lopez and Freeman (1986)
(respectively for a solar wind speed smaller and greater than
500 km s−1). (B) 2-D statistical distribution for logarithmic (base
10) values of solar wind speed and logarithmic (base 10) values
of solar wind density. (C) 2-D statistical distribution for the X and
Y-components of the IMF [nT] from MAG data.

Lopez and Freeman (1986) with a difference for speeds
above and below 500 km s−1. We verified the accuracy of
their following equations in the graph:

T = (0.77± 0.021)V− (265± 12.5) forV > 500km.s−1 (1)

T0.5 = (0.031± 0.002)V− (4.39± 0.08) forV < 500km.s−1 (2)

The first one appears in black in Figure 9A while the second
appears in red. It is interesting to notice that a model built in
1986 seems quite valid on these data from 1998 to December
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FIGURE 10
Matrices of correlation (A) coefficients for the IMF absolute value and its three components (from ACE’s MAG instrument) and the three
parameters (speed, density and temperature) of the solar wind (from ACE’S SWEPAM instrument) and the corresponding p-values (B). p-values
range from 0 to 1, where closed-to-zero values 0 mean the corresponding correlation coefficient is significant (or that there is a low probability
of observing the null hypothesis, meaning the correlation coefficients are not random).

FIGURE 11
Percentage of explained variance for each principal component
from the principal component analysis (in red bins) of the 7
parameters (|B|, X, Y and Z-components of the IMF, solar wind
speed, density and temperature) and the cumulative percentage
value in blue.

2020. During CMEs however, temperature is usually lower
Richardson and Cane (1995).
• Density and speed are well correlated. Fast solar wind

is usually less dense, and slow solar wind varies a lot

Geiss et al. (1995). Recall that fast solar wind can catch up
slow solar wind and compress it creating what is called
corotating interaction regions Jian et al. (2006). This is a
known result but the corresponding figure is shown here
(Figure 9B)

Concerning MAG, the two-dimensional statistical
distribution for the X and Y-components of the IMF has two
maxima and shows the approximate 45° angle between the
IMF vector and the radial Sun-Earth direction. This angle
is the direct consequence of the characteristic Parker’s spiral
(first theoretically predicted by Chapman) flow of the solar
wind Parker, 1963; Kivelson et al. (1995). These two maxima
can be found in Figure 9C. Two-dimensional plots including
the Bz were not adding new information and are not shown
here.

4.3.2 Linear correlation matrices
Until now,we subsampledMAGdata to obtain one data point

every 64 s. Now, to compare MAG and SWEPAM together, it
is important to have the same timestamp for every data. The
choice made was to keep SWEPAM data and its corresponding
timestamps and, for every data point of SWEPAM, take the
closest MAG 16sec-data point in time and change its timestamp
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to the SWEPAM’s one2. The result is a dataset of 11, 282,
160 data points, from the 04th of February 1998 to the 22nd
of December 2020. After removing all rows where data were
missing, we end up with 6,559,840 samples from which we
can compute the correlations and the corresponding p-values
matrices (Figure 10).

As expected, the correlations between the proton’s speed and
temperature, and between density and temperature (although
smaller) appear. Two small negative correlations (between
proton’s speed and density and between X and Y-components of
the IMF) also appear. Oddly enough, there is a high p-value for
the correlation coefficient between speed and the Z-component
of the IMF, but the correlation is inexistent (Figure 10). Finally,
let’s recall that the correlation coefficient is none other than
the cosine of the angle between the two centered vectors and
that the cosine function is not linear. Hence, a 0.685 (our
higher correlation coefficient here) corresponds to a 46.76° angle
between the two vectors. In other words, no significant enough
correlation has been obtained here. From an AI point of view,
and without nonlinear pre-processing, this means that we want
to keep all the parameters as theymight contain different relevant
information. But would it be possible to combine parameters
together to reduce the total amount of parameters needed? The
principal component analysis will answer this question.

4.3.3 Principal component analysis (PCA)
What is the idea behind the PCA?As an example, let’s assume

that we have a dataset made of p different variables and let’s
suppose that each observation is close to a specific n-dimension
hyperplane in ℝp(n ≤ p). The idea of the PCA is to find this
possible “best plane” (the plane such that the sumof the distances
of the points to that plane is the smallest). PCA then gives us
this new coordinate system (or affine space of dimension n)
and data are projected in it. Note that the distances between
observations in this new systembest reflect the distances between
observations in the starting space ℝp. PCA answers the problem
of finding the n-dimensional linear space which best represents
the observations in the sense that the orthogonal projection on
this space moves them as little as possible. In AI, it is widely
used when preprocessing the data either to reduce the number of
features needed or to target the most relevant features in a given
dataset.

Following in Figure 11 is the PCA applied to our dataset
(IMF |B|, X, Y and Z-components, proton density, temperature,
and speed). In the output of the PCA are the principal
components, which are the vectors of the new coordinate
system. The first component is such that it contains the greatest

2 Special thanks to Pierre Porchet and his generous help in preparing this
massive dataset (processing 45 million data points for MAG and 11 million
for SWEPAM - respectively 6.3 and 2.6 Gigabytes of data).

variance of some scalar projection of the data points on it.
For further understanding, a handmade example (for which
data have nothing to do with ours) can be seen in the
Supplementary Figure S13.

Hence, from Figure 11, it appears that the PCA does not
find any good coordinate system in which to project the data
points, justifying the use of more complex models for data
analysis and data processing (e.g., non-linear models, Hinton’s
t-distributed stochastic neighbour embedding—Van der Maaten
and Hinton (2008)). This can be seen in the quasi-linear
augmentation of the cumulative percentage of variance
explained. An ideal case would have been to have a major (90%)
percentage of the variance explained by the first three principal
components but almost all components here explain the same
amount of variance.

As a conclusion on dependencies between variables:

• There is a dependency between speed and temperature that
will need further observations.
• There is a non-linear relationship between the X and the Y-

components of the IMF. Hence, they cannot be considered
independently.
• Most of the graphs did not show any linear dependency (this

will be checked further with correlationmatrices) and hence
might imply the use of non-linear models. This has been
confirmed by the correlation matrix and the PCA.

5 How to use the data for AI

Once we observed and analyzed the data, we need to
preprocess it, which usually means:

• Choosing the final set of input features and labels. The
selection of variables to pass as input into the model is
essential. The model must be informed of the possible
relationships between inputs and outputs. Some information
might not be sufficient for the model to understand
these relationships and it is then highly recommended to
discuss the underlying objectives with experts from the
field. In astrophysics problematics, the physical relationships
between variables have to be used to construct the set
of features McGranaghan et al. (2021). However, too many
features carrying the same information might also impact
the performance of themodel. It is better to avoid redundant
information Khalid et al. (2014). Intercorrelations and PCA
are quite useful to remove some unwanted features.
Moreover, the final samples will be built as a vector
containing all the input features and the label (labelled
data appear in supervised learning algorithms only) and,
in the case of time series, one has to choose the temporal
resolution for it (usually the resolution of the labels).
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Features with a lower resolution will have missing values
and features with a higher resolution will be transformed
(e.g., mean, max, standard deviation, etc.). Indeed, the
set of features can include transformed variables (e.g., the
square of the density). Of course, it might also contain
passed values of variables (e.g, the magnetic field B, and
the same magnetic field B 1 hour ago, or 1 day ago). In
this case, autocorrelations are useful to identify redundant
information in time. Overall, choosing the input features
will depend on our objectives (whether it is forecasting
or classifying for example) and our knowledge of the
underlying physical phenomena (depending on our aims,
the algorithm might find better solutions with the density
squared or with the past 3 h of magnetic field).
• Handling the missing values. Null values are quite a

challenge as they are abundant in the space weather field.
Removing entire rows of data will result in significant
information loss, and we just saw that interpolation depends
on the sizes of gaps in the data. In our context, a good
response might be to find another satellite or data source
when talking with experts (e.g., DSCOVR) and fill the gaps
using interpolation with these new data points. If we do
not have other data sources, a compromise should be found
between removing and interpolating.
• Standardizing or normalizing the data. We will not detail

here the differences between these two, but rescaling
the data is required for the model to compare inputs
together. It avoids placing too much emphasis on variables
with large values (e.g., speed would be considered more
important than density). The field of astrophysics also faces
observations with high variance and a large number of
outliers (defined as extreme values far from the initial
distribution, often thought to be generated by a different
mechanism–Hawkins (1980)). Outliers are particularly
problematic when located in the labels of the dataset. The
extent to which a label-outlier disrupts the training will be
discussed in a subsequent paper. One way to remove these
outliers is to remove entire samples where labels are behind
certain quantiles in their probability distribution. For
instance, McGranaghan et al. (2021) removed all samples
where the labels’ values were out of the 99.995th percentiles.
However, in space weather we are often concerned about
the extreme values since they pose the most risk. A user
must be able to differentiate between real anomalies and
extreme values that are accouting for extreme phenomenon
and treat them differently. The algorithm cannot distinguish
them by itself. Another possibility would be to do anomaly
detection (another field of Machine Learning) but, again,
it is impossible to assess the efficiency of the algorithm
without an expert able to differentiate anomalies and
relevant exteme values. Finally, a user could adapt the
loss function to account for physical phenomenon. Loss

functions are functions allowing the algorithm to learn,
they are cost function Wang et al. (2022) such as the Mean
Squared Error function. The difficulty in adapting a loss
function is that one must very well understand the physics
behind the phenomena, but trying to understand these
phenomena is often the very point of using AI in the first
place.

6 Discussion and Conclusion

In the field of Space Weather, the use of AI is progressively
gaining importance. First mentions of machine learning
techniques or neural networks at the European Space Weather
Week appeared around 2011 and dedicated “Machine learning
and statistical inference techniques” sessions only appeared in
2016. In this context, proper understanding and pre-processing
of the data is central. Here, we decided to focus on ACE satellite
data as it has been widely used by the community and considered
a good indicator to forecast the near-Earth phenomena. Its
location (L1) and measurements (IMF, solar wind parameters
and particle fluxes) made it the perfect candidate for our study.
Obviously, the methods presented here have to be adjusted
depending on the dataset and one’s objectives. Concerning our
dataset, the conclusions are the following:

• Some parameter distributions are well approximated by
Gaussian distributions while others are closer to lognormal
laws. As said in Veselovsky et al. (2010) lognormal laws
can testify of “multiple multiplicative transformations of
local characteristics at intermitting random intensifications
and attenuations of waves, compression and rarefaction of
irregularities in turbulent processes of transporting mass,
energy, and momentum on the Sun and in the heliosphere”.
Overall, histograms are not uniform distributions at all. If
we use data as such, algorithms will perform well on more
frequent samples and poorly on rare cases. For example,
if the purpose is to forecast events related to very fast
and dangerous solar winds, our algorithm will struggle
to obtain anything interesting. Moreover, it is important
to keep in mind the possible noise in our measurements.
The signal-to-noise ratio seems difficult to estimate here
and the interesting information may be hidden in noisy
data.
• Histograms are not steady and change from year to year,

maybe due to dependence to the solar cycle. This means
that a model built on a single (or limited number of) year(s)
might not be reproducible and usable in the future. At best,
one should know the origin of such changes. In any case,
the training set has to be well-balanced and has to include
several different years of data (e.g., both ascending and
descending phases of the solar cycle).
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• We must pay special attention to rounded measurements
when there are changes in the order of magnitude within the
data, as seenwith the ion temperature data.The consequence
could be an over-attention of the algorithm on higher values
as they would appear more frequent. Two possible solutions
here: either round all the data to the highest order of
magnitude, or artificially re-distribute values following the
closestGaussian distribution (when looking at the logarithm
of proton temperature).
• The number of missing values in our dataset is significant

and has to be addressed (e.g., 41.59% of proton density data
missing). For the analysis, we removed the corresponding
samples, but it is not a solution for the training when
the number of missing values is very high. The best
solution here would be to use DSCOVR data. Either way,
when filling missing data, sizes of gaps have to be looked
at to choose a corresponding interpolation method for
instance.
• Even if we noticed the well-known linear relationship

between speed and temperature of the solar wind, a linear
model might not be enough to accurately model the data.
It seems that non-linear relationships between data exist
(e.g., X-component and Y-component of the interplanetary
magnetic field). PCA, correlation matrix and 2-D statistical
distributions suggest that all parameters should be kept and
that non-linear models should be preferred.
• Overall, some cycles appear in the dataset. Proton speed

seems highly dependent on the solar cycle and the
synodic rotation period of the Sun appears in most of
the autocorrelations. We advise having several solar cycles
included in the training set to avoid biases. Solar cycle could
also be part of our input features through the solar radio flux
at 10.7 cm or the sunspots number.

As mentioned in the introduction, Smith et al. (2022) study
is very complementary to ours.The differences lie in themethods
and data chosen.

• First, Smith et al. (2022) take into account both ACE and
DSCOVR data while we only focused on level-2 ACE data.
• They compare together Near-Real-Time (NRT) raw data to

the same data post-processed by the scientific community.
On our side, we do not assess the quality and relevance of
raw data as we considered level-2 data as the entry point of
any AI study in this field. Smith et al. (2022) indeed show
that the NRT values are subject to short-term variability and
anomalous values, confirming our choice.
• Concerning missing values, Smith et al. (2022) again

compare NRT and scientific data. They draw some
conclusions about the amount data gaps, but we go slightly
beyond inTable 2 and through the testing of fillingmethods.
However, their analysis on windowed data validity (part

3.2.2.) is very interesting. Indeed, some AI algorithms need
windows of consecutive data (e.g., Temporal Convolutional
Network) to learn properly. Here, as shown in their study:
“if 2 hours (120 min) of continuous input are required
then […] approximately 1% of plasma data are available.”
Missing values is then an even bigger problem and it
is required to choose a method to deal with missing
values.
• Finally, concerning autocorrelations, the difference lies in

the use of data. Smith et al. (2022) do autocorrelations on
NRT data and only on 1 h-long windows of consecutive data
without missing values. On our side, we do autocorrelations
on level-2 ACE data and we take all the data as input and
omit the computation for missing values.

Data analysis goes hand in hand with the field’s expertise.
Some of the solutions suggested here will not be ideal depending
on one’s objectives and the conclusions one might have when
looking only at the statistics could also be wrong. As an
example, even if Gaussian distributions are often associated
with random processes, we know that the mechanisms lying
behind the values of the IMF and solar wind are everything but
random. We also know that very fast and powerful CMEs can
saturate instruments and create missing values, hence changing
how we would consider replacing them. Knowing how AI
algorithms work can give us clues on what to focus on when
analyzing a dataset and where a problem might arise. However,
it is the understanding of these data and a space weather
expertise together that will allow us to favor one solution over
another.
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