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Across the surface of Mars, evidence of past lacustrine and evaporitic
environments has been found within basins and craters, where often layered
sedimentary deposits and hydrated minerals are observed. However, the intensity,
duration, and precise phases of aqueous processes during their deposition remain
unresolved mostly for our inability to model subsurface structures. Although
several geological processes and locations on Earth have been previously
proposed as examples to describe these deposits on Mars, we lack a strong
visualization of what water activity might have looked like during evaporitic stages
within basins and craters. Here we propose to investigate the shallow subsurface
of the Makgadikgadi salt pans of Botswana as a potential analog for understanding
groundwater upwelling on Mars. The pans are found within the Makgadikgadi
Basin, a depression located at the southwestern end of a northeast-southwest set
of graben linked with the East African Rift. The Makgadikgadi Pans are evaporitic
environment rich in hydrated minerals and groundwater activity. The purpose of
this work is to identify buried faults and areas of relative water saturation within the
lacustrine sediment of the Makgadikgadi Basin by means of electrical resistivity
surveys. This work represents the first electrical resistivity survey of the basin floor
which provides a precursory investigation of the relationship between
groundwater, faults, basement depth, and the lacustrine sediments. We present
four electrical survey lines fromdifferent locations in the panswhich reveal distinct
sedimentary units. Several faults are inferred from the vertical displacement of
these units and accompanying low resistivity where displacement is observed.
These results provide a framework for visualizing the sedimentary sequences of
infilled basins and craters on Mars, which can broaden the ongoing discussion of
hydrogeological processes that were active in the planet’s past. We propose
Meridiani Planum, as well as Oyama and Becquerel crater of Arabia Terra as
locations to establish this framework. Since such processes are still ongoing in the
Makgadikgadi Basin, imaging the subsurface of the pans helps explain the
formation of layered and salty deposits on the surface of Mars, how they may
have interacted with flowing water, and whether they might have hosted life.
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1 Introduction

The presence of sedimentary rocks and past aqueous
depositional environments on Mars have been substantiated by
both orbital and surface instrumentation (e.g., Lucchitta et al.,
1994; Squyres et al., 2004; Fueten et al., 2005; Haskin et al., 2005;
Pondrelli et al., 2008; Carr and Head, 2010; Le Deit et al., 2013; Le
Deit et al., 2016; Salese et al., 2019; Salese et al., 2020; Mangold et al.,
2021; Changela et al., 2022). One of the past Martian environments
where water is thought to have played a fundamental role is known
as a playa. A playa is characterized by a depressed basin where cycles
of flowing water and evaporation are observed. The evaporation
leads to the formation of hydrated sulfates (e.g., gypsum, halite,
epsomite, and kieserite), chlorides, and hydrated silica (i.e., opal),
which together with clays (e.g., kaolinite, smectite, and illite)
constitute the characteristic mineralogical assemblage found
within playas (Crowley, 1993; Drake, 1995; Viviano et al., 2014;
Wang et al., 2016). The water input in playas can be provided mainly
by two sources: surface runoff or groundwater flows (McKenna and
Sala, 2018). Playa environments predominantly fed by groundwater
are often rich in evaporite crusts (Nield et al., 2016).

There are currently two radar instruments in Martian orbit, the
Mars Advanced Radar for Subsurface and Ionospheric Sounding
(MARSIS) on Mars Express (Jordan et al., 2009) and the Shallow
Radar (SHARAD) on the Mars Reconnaissance Orbiter (MRO) (Seu
et al., 2007; Zurek and Smrekar, 2007), both capable of detecting
groundwater onMars. Although neither instrument has been able to
confirm shallow groundwater on Mars, this non-detection, possibly
caused by the high conductivity of the Martian crust, is not
necessarily ruling out the presence of such a body of water
(Farrell et al., 2009; Nunes et al., 2010; Abotalib and Heggy,
2019). A deep aquifer (depth >1.5 km) was inferred in the polar
region usingMARSIS (Orosei et al., 2018), which opened up theories
catering to the presence of deep groundwater elsewhere on Mars.
Although the presence and specific characteristics of any deep
aquifer is still an ongoing debate (Sori and Bramson, 2019;
Bierson et al., 2021), the possibility of their existence is intriguing
due to the protection from solar radiation such depths would
provide for microbial life. Regardless, in spite of unequivocal
evidence for extant groundwater on Mars are sparse, there are
abundant geological clues that point toward a warmer and wetter
planet with a complex hydrogeological history (e.g., Carr and Head,
2010; Di Achille and Hynek, 2010; Orofino et al., 2018; Salese et al.,
2019; Dickeson and Davis, 2020; Dickeson and Davis, 2020; Fawdon
et al., 2022; Michalski et al., 2022; Schmidt et al., 2022).

Several areas on Mars have been interpreted as playa
environments based mainly on the occurrence of sulfates/
chlorides (e.g., Wang et al., 2016) and/or morphological evidence
for aqueous activity (e.g., Franchi et al., 2014; Pondrelli et al., 2015).
Some of the areas where the playa environment has been identified,
including Meridiani Planum (Grotzinger et al., 2005; Andrews-
Hanna et al., 2010) and Arabia Terra (Franchi et al., 2014;
Pondrelli et al., 2015; Pozzobon et al., 2019), occur within a
regional paleo-hydrological system characterized by groundwater

upwelling (see global model in Andrews-Hanna et al., 2007).
Polygonal (desiccation) cracks and occurrence of chlorides in
association with smectite in playa-like settings across Mars are
other indirect evidencefor the existence of large ephemeral lakes
that led to the deposition of lacustrine and interbedded evaporitic
deposits within topographical lows and basins (e.g., El Maarry et al.,
2013; Nachon et al., 2014; Rapin et al., 2016; Stein et al., 2018;
Caravaca et al., 2021; Caravaca et al., 2022).

The interpretation of the aforementioned Martian regions as
playa environments is not without controversies, especially when
direct observation for the global groundwater system is missing.
Hence, the study of terrestrial playa environments such as the
Makgadikgadi of Botswana becomes crucial. The Makgadikgadi
Basin in northcentral Botswana, Africa (Figure 1A) is the relict
of a mega-lake system, known as Lake Paleo-Makgadikgadi (Grey
and Cooke, 1977; Thomas and Shaw, 1991; Burrough et al., 2009;
Podgorski et al., 2013; Riedel et al., 2014; Schmidt et al., 2017;
Franchi et al., 2022) and it has been considered as a potential
analogue of some of the Equatorial Layered Deposits (ELDs)
formed within Martian evaporitic environments (Franchi et al.,
2020). This lacustrine system formed in the Early Pleistocene by
the uplift of the Chobe Fault as part of the South-Western migration
of the East Africa Rift (EAR) (e.g., Moore et al., 2012). Since the
Pleistocene, the evolution of the Makgadikgadi Basin has been
driven by faults and tectonic events linked to the EAR system
(e.g., Schmidt et al., 2023). These tectonic events shaped the river
watersheds and regulated the sources of surface water inflow into the
basin (Moore et al., 2012; Riedel et al., 2014). The basin has
undergone at least four highstand phases during the last 40 ka
and a prolonged dry period initiated ca. 17 ka and culminated in
the present-day conditions of playa lake (Burrough et al., 2009;
Franchi et al., 2022). The Makgadikgadi Basin consists of a system of
playa lakes (hereafter referred to as Makgadikgadi Pans) including
the Ntwetwe Pan in the west and the Sua Pan in the east (Figure 1B).
Today, the Makgadikgadi Pans receive seasonal surface water from
ephemeral rivers flowing from the east and north-east, and
seasonally by the Boteti River in the south-west. Nevertheless,
previous authors have postulated that the role of groundwater
upwelling in the pan lowlands must be a crucial morphological
factor and contributes to the overall water balance of the
Makgadikgadi (McFarlane and Long, 2015; Franchi et al., 2020).
Franchi et al. (2020) also demonstrated that the presence of layered
mounds within the interior of the pans could be related to
groundwater fluctuations and changes in water saturation within
the capillary fringe, resulting in preferential erosion. Nevertheless, it
is still disputed precisely how the groundwater upwelling is affecting
the evolution of the pans (e.g., Richards et al., 2021).

Here electrical resistivity methods are applied for imaging fault
lines previously identified with airborne geophysics and buried
under lacustrine sediments to generate 2D Electrical Resistivity
Tomography (ERT). This method allows the detection of changes
in relative electrical resistance within void space produced by any
faults and associated fractures in the overlaying water saturated
sediment (Kolawole et al., 2018; Ojo et al., 2022).
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The aim of this work is to shed light on the relationship between
faults and groundwater flow in an otherwise arid, evaporitic
environment by means of ERT. This data provides insights on
the depth and saturation of sediments in an evaporative setting,
which is bound to teach us more about the processes of formation
and erosion of playa deposits on Mars, their relationships with
groundwater upwelling and, eventually, if they were formed in a
wetter and habitable Mars.

2 Geological setting

2.1 Makgadikgadi Basin

2.1.1 Bedrock geology
The Makgadikgadi Pans lie within a fault-bounded basin that

consists of crystalline basement and the volcano-sedimentary units
of the Karoo Supergroup (Eckardt et al., 2016; Schmidt et al., 2023).
The Karoo Supergroup units in the area include basal Late
Carboniferous glacial deposits of the Dwyka Group (Dukwi
Formation in Botswana; Dietrich et al., 2019) unconformably
overlain by the Carboniferous to Early Permian Ecca Group, by
the Upper Permian to Lower Triassic Beaufort Group (Tlhabala
Formation in Botswana; see review in Bordy, 2020) and by the
Middle Triassic to the Middle Jurassic continental sandstones and
mudstones of the Lebung Group (see Franchi et al., 2021 for a
review). Along the northern and southern edges of the
Makgadikgadi Basin, the bedrock geology is characterized by
Early Jurassic (ca. 185 Ma) basalts of the Stormberg Lava
Group. The Karoo Supergroup units are crossed by an ESE-
WNW trending doleritic Okavango Dike Swarm, which is part of

the Karoo Large Igneous Province and have been dated at ca. 187 Ma
(Elburg and Goldberg, 2000).

The Makgadikgadi Basin is filled by post-Karoo sediments
grouped under the Kalahari Group (Thomas and Shaw, 1991;
Haddon and McCarthy, 2005). These Kalahari Group units are
constituted by a sedimentary succession whereby basal
conglomerates and gravels are commonly overlain by clay beds
and sandstones capped by unconsolidated sands (Haddon and
McCarthy, 2005). The thickness of this unit of unconsolidated
sands can vary from 50 to 300 m in the Makgadikgadi Basin
(Thomas and Shaw, 1991; Nash et al., 1994; Haddon and
McCarthy, 2005; Ringrose et al., 2009). The sedimentary units
within the Kalahari Group found within the pans are referred to
as the Makgadikgadi Group in this work, following the
nomenclature of available drill core data.

2.1.2 Evolution of the Makgadikgadi Basin
The Makgadikgadi Basin, that currently consists of a system of

playa lakes, is situated in the central Kalahari Basin of Botswana
(Figure 1) (Moore et al., 2012). This basin developed within the
Makgadikgadi-Okavango-Zambezi Basin (MOZB), the South-
Western branch of the EAR (e.g., Modisi et al., 2000; Kinabo et al.,
2007; Ringrose et al., 2009; Riedel et al., 2014). There is still controversy
concerning the age of the first mega-lake formed in the central Kalahari
Basin; Burrough et al. (2009) proposed an OSL (Optical Stimulated
Luminescence) age of 288 ± 25 ka for the oldest strandline
(i.e., shoreline) of the Lake Paleo-Makgadikgadi. Most probably, the
formation of the paleo Lake Deception, a precursor of the Lake Paleo-
Makgadikgadi, begun in the Early Pleistocene (ca. 2.5 Ma) with the
diversion of the paleo river Chambeshi in northern Botswana after the
activation of the Chobe Fault (Moore et al., 2012). After the initial

FIGURE 1
The Makgadikgadi Pans (Botswana). (A) Regional map of Southern Africa. Major faults are labeled with bold black lines, the majority of which are
associated with the East African Rift (EAR). The Makgadikgadi Pans represent the southernmost termination of the EAR. Modified from Schmidt et al.
(2023). (B) Landsat 8 images of the pans from October 2021 (-20.8°, 25.5°). Red circles indicate ERT survey line locations (Lines A, B, C, D).
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impoundment of the basin the tectonic events through the Middle and
Late Pleistocene led to a gradual contraction of the paleo lake to i) 945 m
a.s.l., in the Early to Middle Pleistocene, after the uplift of the Congo-
Zambezi watershed; and ii) 912 m a.s.l., after the diversion of the Upper
Zambezi in the Bulozi graben (Moore et al., 2012, 0.5–5.0 m vertical
error demonstrated byMukul et al., 2017). The propagation of the EAR
culminated in the Late Pleistocene, ca. 100 ka, in the activation of the
Thamalakane Fault in the north west of Botswana, leading to the
formation of the Okavango Delta, and causing a progressive desiccation
of the Lake Paleo-Makgadikgadi (Moore et al., 2012). Between 46 ka
and the Last Glacial Maximum the Makgadikgadi Basin was cyclically
fed by the palaeo-Boteti and palaeo-Nata rivers and, lastly, by the Okwa
River reaching the level of ca. 936 m a.s.l for the last time (e.g., Riedel
et al., 2014). The evolution of the basin in the Holocene was recently
unraveled by means of ostracod fauna correlation, revealing an overall
desiccation trend startingwith the highstand at ca. 17 ka BP, followed, at
around 1.4 a, by a relative increase in the lake water level (Franchi et al.,
2022). The complete desiccation of theMakgadikgadi Basin occurred in
the last 1.4 ka and led to the formation of the present dayMakgadikgadi
Pans (Figure 1B) (Franchi et al., 2022).

2.1.3 Makgadikgadi Pans hydrology
The Makgadikgadi Pans receive seasonal surface water from

ephemeral rivers flowing from the east and northeast, and seasonally
by the Boteti River in the southwest (Figure 1B) (e.g., Franchi et al.,
2020). The basin receives relatively low mean annual rainfall
(~300 mm yr-1) with precipitation limited to the summer season
(Burrough et al., 2009). Both Ntwetwe and Sua pans are cyclically
inundated during the short, wet season between November and
March (e.g., McCulloch et al., 2008). These fluctuations over the wet
and dry seasons contribute to the formation of brines and
consequent deposition of evaporite minerals and clays on the pan
floor (Eckardt et al., 2008; Ringrose et al., 2009). Wind erosion and
calcretisation are the dominant process during the dry, winter
season (Nash et al., 1994; Riedel et al., 2014).

Several authors suggested that to justify the water budget in
the basin and the existence of some peculiar morphologies
(i.e., layered mounds) the existence of groundwater upwelling
must be factored in (e.g., MacFarlane and Long, 2015; Franchi
et al., 2020). MacFarlane and Long. (2015) suggested that layered
mounds within the Ntwetwe Pan are spring mounds produced by
groundwater discharge along the gradient of the shoreline. Areas
of this shoreline have been suggested to be a fault scarp (Eckardt
et al., 2016; Schmidt et al., 2023 IN PRESS). Groundwater
movement into the pans has been modeled previously and
demonstrated to be largely attributed three large aquifers, the
Lebung, Ecca, and Ghanzi, which share regional flow patterns
directed into the pans (Lekula et al., 2018). However, the
implications of groundwater movement on the evaporation
rates and surface moisture are still poorly understood in the
pans (Nield et al., 2016).

2.2 Martian environments

2.2.1 Playa lakes on mars
A variety of locations on Mars have been identified as likely

representing lacustrine environments (Cadieux and Kah, 2015;

Day and Catling, 2020; Lucchitta et al., 1994, Lucchitta, 2010;
Schmidt et al., 2022). The majority of these environments
are thought to have been sustained in the Late Noachian
(>3.7 Ga), with many occurring in the Hesperian (3–3.7 Ga)
and some possibly as late as the Amazonian (<3 Ga)
(Michalski et al., 2022). These eventually developed into
evaporitic environments as consequence of a global drying
process (Allen and Oehler, 2008; Al-Samir et al., 2017; Allen
and Oehler, 2008; Andrews-Hanna et al., 2010; Franchi et al.,
2014; Pondrelli et al., 2015; 2019; Schmidt et al., 2018; Pozzobon
et al., 2019; Rossi et al., 2008). These evaporitic deposits formed
during the Hesperian and possibly the Early Amazonian (Flahaut
et al., 2017; Leask and Ehlmann, 2022) following periods of
oscillating water tables (Andrews-Hanna et al., 2007; 2010;
Schmidt et al., 2021; 2022). The evaporitic environments on
Mars are often located within basins and craters which are
filled with several hundred meters of sediment, often covering
the entire crater floor (Franchi et al., 2014; Pondrelli et al., 2019;
Schmidt et al., 2021). The existence of conical mounds on the top
surface of these sedimentary sequences has been broadly
documented (e.g., Allen and Oehler, 2008; Franchi et al., 2014;
Pondrelli et al., 2015; 2019; Rossi et al., 2008). The formation of
these mounds has been proposed to be the result of spring activity
along faults (Allen and Oehler, 2008), hydrothermal activity
(Pondrelli et al., 2015), or differences in water saturation
which creates a preferential erosion phenomenon (Franchi
et al., 2020). Furthermore, subsurface fluid pressure has been

FIGURE 2
Several locations within Arabia Terra (Mars) that share various
similarities to the Makgadikgadi Pans (Botswana). (A) HRSC colorized
mosaic of Oyama crater (23.5°, -20.1°) with the central wrinkle ridge
and regions of clays (Loizeau et al., 2012; Loizeau et al., 2015;
Tanaka et al., 2014). (B) HRSC colorized mosaic of Meridiani Planum
(-0.8°, 0.9°) with areas of hydrated minerals indicated (Flahaut et al.,
2015). (C) HRSC colorized mosaic of Becquerel crater (-8.0°, 21.5°)
with areas of hydrated minerals indicated (Schmidt et al., 2022).
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demonstrated to have been a reoccurring force acting on the
sediments within Gale crater (De Toffoli et al., 2020), a crater
which has been previously proposed to be a lacustrine
environment (Grotzinger et al., 2005; Achilles, et al., 2020)
which later developed into an evaporitic setting (Hurowitz
et al., 2017; Kah et al., 2018).

Arabia Terra has abundant sedimentary deposits, often
associated with clays and hydrated sulfates (e.g., Loizeau et al.,
2012; Loizeau et al., 2015; Schmidt et al., 2022), which are
thought to be representative of evaporitic environments (e.g.,
Wang et al., 2016). We propose that the Makgadikgadi Pans are
analogous to several specific locations within the region (Figure 2).
Oyama crater (Figure 2A) is unique due to a large N-S striking fault
that cuts across it. On the hangingwall surface of the fault, in the
center of Oyama, clay mineral signatures were identified (Loizeau
et al., 2012; Loizeau et al., 2015). Becquerel crater (Figure 2C) was
proposed to have had a protracted water level due in part to
discharged water from buried faults, and also has clay and
hydrated sulfate mineral signatures (Schmidt et al., 2022).
Southwest from Arabia Terra (Figure 2B), Meridiani Planum was
proposed to have been the site of extensive fluid expulsion (Andrew-
Hanna et al., 2010). This is the region where the Opportunity rover
found hydrated minerals (Christensen et al., 2004) and where
abundant hydrated sulfates and clay signatures were identified
(Flahaut et al., 2015).

3 Materials and methods

3.1 Field work

Field work took place in October 2021 as part of Europlanet
transnational access program. In preparation for the field work,
specific areas of interest were selected within the Makgadikgadi Pans
using a combination of aeromagnetic and topographic data.
Topographic data were combined with a colorized mapping of slope
directions and curvature to pinpoint fault scarps following the method
described in Schmidt et al. (2023). Within the GIS environment Surfer®
v22 (Golden Software, LLC), we processed aeromagnetic data to create a
total magnetic intensity map to locate buried structures (Figure 3)
(Schmidt et al., 2023). Four locations were selected for conducting
the ERT survey (Figure 1B, Figure 4). These areas were selected also
based on accessibility, feasibility, and spatial relationship to the inferred
faults. The ERT survey lines (Figure 1B, Figure 4, Figure 5)were arranged
perpendicular to the fault scarps identified by Eckardt et al. (2016);
Schmidt et al. (2023), as well asmagnetic structures identified in Figure 3,
to ensure that the returned 2D ERT would potentially cross the faults.

Shallow subsurface geoelectrical imaging was carried out using the
ERT technique to study the heterogeneity of the subsurface based on the
resistance of the material to the induced electrical current artificially
injected on the ground (Sudha et al., 2009). One 840 m (Line C) and
three 1,200 m long survey lines (Lines A, B, and D) were successfully

FIGURE 3
(A) Total magnetic intensity map derived from aeromagnetic data. The Makgadikgadi Pans are outlines in white. (B) Close-up of the magnetic
intensity showing linear buried strucutres in the are of the northern Ntwetwe Pan. (C) Accompanying Landsat 8 image. Dashed boxmarks the location of
Figure 7.
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laid using an IRIS Syscal Pro imaging resistivity meter available at
Botswana International University of Science and Technology (BIUST)
(Figure 5; Figure 6; Figure 8). The IRIS Syscal Pro is a 48 channel
resistivity meter programmed to acquire data on the dipole-dipole array
configuration to produce high resolution 2-D sections of the subsurface.
Each survey required the initial laying of 480 m of electric cable and
48 electrodes (spaced at 10 m intervals) to retrieve the initial dataset of
the survey line. The control unit at the center of the 480 m spread was
powered by a 12 V battery. After the data collection along the initial
480 m, the survey proceeded following a roll-along technique whereby
thefirst 120 mof line were disassembled and connected at the end of the
initial 480 m line (Loke, 2001). This process was repeated six times for
each line until the total length of 1,200 m was reached. The only
exception was for Line C, where surface conditions did not allow
continuing passed 840 m (Figure 7). This processes yielded an average
exploration depth of 100–120 m. Each electrode had to be carefully
catalogued with a differential GPS to ensure the reconstruction of a
detailed topographic model for the 2D ERT profiles.

3.2 Data processing and remote sensing

3.2.1 Survey line processing
To achieve a 2-D resistivity model of the subsurface, the data were

preliminary processed using PROSYS II software to eliminate bad
data points and constrain the apparent resistivity values. The resulting
apparent resistivity data were then inverted using the RES2DINV (ver.
3.59; Loke, 2001) which uses a least-squares smoothness constrained
approach to produce a 2D resistivity model with lateral vertical

FIGURE 4
Topographic data of the Makgadikgadi Basin for regional context
and fault identification. White lines mark fault locations. Dashed
sections indicate inferred position of faults underneath pan sediment.
Red circles mark the location of the four ERT survey lines.
Modified from Schmidt et al. (2023).

FIGURE 5
Ground views of the cable and electrodes along Line A (A) and Line D (B, C). C) Water in the background.
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contoured variation (deGroot-Hedlin and Constable, 1990; Loke and
Barker, 1996). The 2-Dmodels from the inversion software were then
used to interpret the subsurface conditions.

Drill core data from exploration companies (Falconbridge
Explorations Botswana Proprietary Limited, 1978; De Beers
Prospection Botswana Proprietary Limited, 1996) was used to
constrain the depth to bedrock below and near the study area.
This was then compared and evaluated against estimates of
“Kalahari Sand Thickness” provided by Kolawole et al. (2017)
for further validation. A depth to bedrock (i.e., source of the
magnetic anomalies) map of the study area was also used as a
reference, but due to interference with the Okavango Dike Swarm,

its values were considered valid only in specific areas. The depth to
bedrock values are calculated using the Source Parameter Imaging
(SPI) transformation of the magnetic data (Ojo et al., 2022).

3.2.2 Remote sensing data
Several datasets including satellite images, radar topography, and

aeromagnetic data were integrated into the GIS software GlobalMapper
v15.2 (Blue Marble Geographics, 2011) using an equirectangular
projection. Ten Landsat 8 images (with a resolution of 30.0 m/px)
acquired in October 2021 (spanning the period in which field work was
conducted) were used as the basis for the regional context map
(Figure 1B). Elevation data from the Shuttle Radar Topography

FIGURE 6
ERT survey lines (A), (B). (A) Landsat-8 image from September 2021marking the location of ERT survey lines A and Bwithin the Ntwetwe Pan. Pooled
water can be observed in the southeast corner. A relict delta can be observed just southwest of the survey lines (Franchi et al., 2020). (B) Profile of ERT
survey line A and interpretation showing the likely lithostratigraphic units in the subsurface. (C) Profile of ERT survey line B and stratigraphic interpretation.
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Mission (SRTM) (Kobrick, 2006) forms the Digital Elevation Model
(DEM; with a resolution of 28.7 m/px) which is presented in a
“thermal” color ramp following Crameri et al. (2020) (Figure 4).

The images used to investigate the Martian analog sites included
data from the High Resolution Imaging Science Experiment
(HiRISE, with a resolution of 0.30 m/px) (McEwen et al., 2007)
instrument onboard MRO and the High Resolution Stereo Camera
(HRSC, with a resolution of 50.0 m/px) (Neukm and Jaumann, 2004;
Jaumann et al., 2007) onboard Mars Express. HiRISE images were
processed with the software ISIS 3 (Integrated Software for Imagers
and Spectrometers), developed by the USGS (Adoram-Kershner
et al., 2020).

Within the GIS environment Surfer® v22 (Golden Software, LLC),
we processed aeromagnetic data to create a totalmagnetic intensitymap
to further assist in fault identification and ERT survey line placement. A
set of NNE-SSW trending magnetic highs were found to be parallel to
existing surficial fault scarps, which enabled us to infer the presence of
faults that had no obvious surface expression.

4 Results

The faults under investigation are located in the central part of
the Ntwetwe Pan and along the western shoreline of the Sua Pan at

FIGURE 7
(A) Location of ERT survey line C passing across the edge of the shoreline of the Ntwetwe Pan. (B) Total magnetic intensity derived from
aeromagnetic data. Profile X—X′ shows the depth to bedrock derived from the aeromagnetic data directly where ERT survey line C was placed. Line C is
perpendicular to a large northeast-southwest trending structure. The southeast-northwest trending structures are dikes from theOkavango Dike Swarm.
(C) Surface topography with line C location marked by red line. Note the large difference between the topographic surface change in elevation and
the bedrock topography change. (D) ERT profile of line C and stratigraphic interpretation. Line C shows the shoreline transition between the pan exterior
(NW) and pan interior (SE).
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an elevation between ca. 908 and 920 m (Figure 3).
Lithostratigraphic units identified from the ERT subsurface
imaging tended to match with the fault scarp heights previously
calculated, as well as the depth to bedrock estimates (Eckardt et al.,
2016; Kolawole et al., 2017). These units are referred to as
Makgadikgadi Group (referring to sediment infill of the pans)
and Karoo Group (referring to bedrock), which include sand,
clay, alluvium, sandstone, shale, silcrete, and calcrete (Figure 6;
Figure 7; Figure 8).

ERT survey lines A and B are collinear running roughly NE-SW
at the center of the Ntwetwe Pan where a major regional fault was
inferred to be located (Figure 4, Figure 6A). The distance between
lines A and B is wide (approximately 2.8 km) due to caution in the
possible existence of two parallel faults (Figure 4). The ground had a
rigid and friable salt crust (1–3 cm thick) lying above water-
saturated loose sand and clay. These lines revealed a relatively
high resistivity top surface (approximately 10–30 m thick),
followed by a low resistivity unit (approximately 40–60 m thick),

FIGURE 8
(A) Profile of survey line (D). Line D is located at the boundary of the west shoreline of the Sua Pan (dashed black line). Dark material in the Landsat
8 imagery is silcrete (also see Figures 5B, C). (B) Example of the silcrete terrain that dominates the western shoreline of the Sua Pan and surroundings of
line (D). (C) ERT model of line D and stratigraphic interpretation.
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and further followed by a deeper more resistive unit. This more
resistive deep section is the upper surface of a unit whose thickness
could not be determined. Two gaps (40 m wide in line A and 80 m
wide in line B) were observed in this deep unit and are both located
in the positions of the inferred faults. Sections directly above these
two gaps have a slightly lower resistivity than the surrounding
material.

The faults inferred in the areas of lines A and B were investigated
further by imaging where the faults pass from the interior of
the Ntwetwe Pan, crossing the Northern shoreline to the exterior
of the pan (Figure 3, Figure 7). At this location, the inferred fault trace
aligns with a linear magnetic anomaly. The ERT survey line C was
placed perpendicular to this linear magnetic anomaly, passing from
the edge of the shoreline and across the anomaly (Figure 7A,
Figure 6B). The topographic change is less than five m
(Figure 7C), whereas the depth to bedrock change across the
anomaly is approximately 140 m (Figure 7B). This structure was
deemed significant and represents either the same fault (or faults)
from lines A and B, a secondary parallel fault, or possibly an infilled
fracture related to the fault investigated in lines A and B.

Line C was collected along the main track (a small dirt road which
crosses the Ntwetwe Pan in an E-W direction) due to unpredictable
conditions driving off-road on the pan sediment in the area
(i.e., extremely water saturated top surface). This line was forcibly
placed along a particularly hard section characterized by sub-cropping
calcretes. Despite this difficulty, 840 m of data were retrieved imaging
the transition from the pan floor to the magnetic structure
(Figure 7D). This line revealed a more complex subsurface
lithiostratigraphy characterized by the high resistivity pan exterior
and the low resistivity pan interior. This change is abrupt and is
considered to mark the location of a normal fault. A lower resistivity
area on the footwall side might indicate a fracture zone.

ERT survey line D was placed perpendicular to the north-
south shoreline of the western side of the Sua Pan, which appears
to be fault controlled (Schmidt et al., 2023) (Figure 4, Figure 8).
Line D is 2.5 km north from Kubu Island, a large ˃60,000 m2

Archean granite, which was emplaced during the
Mesoproterozoic (Majaule et al., 2001). The surface
composition of the immediate surroundings of line D is
predominately silcrete. The eastern portion of the survey line
D ran across a mix of silcrete and loose sediment. In the western
400 m of the line, the surface composition graded into calcrete
(similar to that of line C). The lithostratigraphy revealed in line D
is characterized by the high resistivity pan exterior and the low
resistivity pan interior, and like line C, is an abrupt change
considered to mark the location of a normal fault. A lower
resistivity area on the footwall side might indicate a fracture
zone, and small isolated pockets of high resistivity on the
hanging wall side are considered to be silcrete.

5 Discussion

5.1 Faults and water in the Makgadikgadi
Pans

ERT survey lines A and B were taken across one of the main
northeast-southwest striking faults crossing the Ntwetwe Pan

(Figure 6). These survey lines show overall low resistivity values
(<1.0 Ω·m) in the very topmost sediments. However, in line A
this is only several cm thick and is present only above the
inferred fault, whereas in line B it is thicker (1–6 m). This is
the saturated sediment of the soft surface of the playa. Both lines
A and B show a higher resistivity unit immediately below this
(1.0–5.0 Ω·m) in the shallow subsurface that extends from
several centimeters to 30 m of thickness in line B. The
slightly higher resistivity values may be due to sparse calcrete
just below the surface, or a recent deposition that is more sand
rich. The thick 40–60 m thick unit which follows has resistivity
values of <1.0 Ω·m and is considered to be water saturated
sediment. This succession is interpreted to be a mix of
sediment, possibly interbedded sand, clays, and alluvium. The
lower higher resistivity unit (1.5–6.0 Ω·m) is considered to be the
upper surface of the Karoo Supergroup, possibily the sandstones
of the Lebung Group (discussion on depth to bedrock
interpretation below). The bedrock in line A shows a 40 m
wide gap at ca. 450 m from the beginning of the line and a
similar 80 m wide gap in line B at ca. 510 m from the beginning
of the line. Directly above these two gaps are slightly lower
resistivity values and shows tangible evidence for the faults
inferred in the airborne geophysics dataset.

The depth to the Karoo Supergroup (i.e., bedrock) presented is
one of the few data existing on the real thickness of the
Makgadigadi Pans sediment infill. The deepest unit found at an
elevation 850 m is interpreted to be the Karoo Supergroup
bedrock. Two drill cores (105/17/X015 and 105/17/X016, 10 km
apart) located 25 km south of lines A and B, despite being taken
from the exterior of the pan, can be used to further constrain the
interpretation (De Beers Prospection Botswana Proprietary
Limited, 1996). The drill cores have a 1–2 m top section of
silcretes and calcretes, followed by a 6–26 m section of
sandstones, which together are labeled the Makgadikgadi
Group. In drill core 105/17/X015, the Karoo Supergroup
immediately follows, alternating between clayey sandstones and
siltstones labeled the Mosolotsane Formation (60 m thick), shales
labeled the Thabala Formation (40 m thick), and carbonaceous
mudstones labeled the Tlapana Formation (80 m thick). At a depth
of approximately 209 m a unit of metasediments begins which was
interpreted to be older than Karoo. However, drill core 105/17/
X016 records only the Tlapana Formation (60 m thick)
immediately below the Makgadikgadi Group. None of the four
ERT survey lines contained vertical stratigraphic sequences like
this which likely means that the unit labeled Makgadikgadi Group
in the survey lines (Figure 6, Figure 7, Figure 8) represents the
minimum sediment thickness in the center of the pans. Kolawole
et al. (2017) proposed that the sediment infill decreased west to east
from 150 m thick at the Northwestern side of the Ntwetwe Pan to
30 m thick at the eastern side of the Sua Pan. Specifically, the area
of lines A and B was estimated to have an infill thickness of
90–120 m. This estimate matches well with our interpretation of
placing the Karoo Supergroup at the bottom of the profiles of lines
A and B. Lines C and D image the shoreline and thus it is expected
that the Karoo Supergroup would be shallower, as indicated from
the drill cores which put the Karoo Supergroup depths at 14–26 m.

The inferred fault from lines A and B was crossed with ERT
survey line C where the displacement coincides with the break of the
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morphological slope at the surface (approximately 5 m), i.e., the
transition between pan surface and shoreline (Figures 7A, C). In fact,
at the edge of the shoreline, the depth to bedrock drops 140 m
(Figure 7B) and at least 90 m in the ERT survey (Figure 7D). This
step matches with the vertical displacement of many of the
Makgadikgadi Basin faults measured by Eckardt et al. (2016) and
is thus considered to be a normal fault. A wedge of low resistivity
(0.0–2.0Ω·m) just below the surficial calcrete, possibily indicates
ingression of pan saline water in the drier shoreline sediments on the
hanging wall side (Figure 7D). The high resistivity values of
the Karoo Supergroup here (30.0–200 Ω·m) are strikingly apart
from the low <1.0Ω·m values of the sediment infill (i.e.
Makgadikgadi Group).

Data from ERT survey line D shows a 20–100 m wide low
resistivity area which extends from the surface to at least 100 m
in depth. This is possibly a fracture zone associated with a
previously proposed fault which coincides with the western
shoreline of the Sua Pan (Schmidt et al., 2023). This fault is
further attested to by the approximately 50 m vertical offset in
the Karoo revealed in the ERT survey. Widespread silcrete directly
above this fault might be in part influenced by a shallow aquifer
(Lee and Gilkes, 2005) which could utilize faults and fractures
zones for fluid movement.

Since we do not see the surface expression of the faults within the
pans, it means anytime they have been reactivated, their surface
expression is immediately destroyed by flash flooding or buried by
new sediment. This could be by repeated and continual seasonal
resurfacing. Alternatively, fault activity in these specific areas could
be older than the lake and they have been buried by the sediments
during the Pleistocene and any significant reactivation
(i.e., movement from earthquakes) has not produced a strong
surface expression.

5.2 Evaporitic environments and water
circulation in the mars equatorial region

The relationship between groundwater upwelling and playa
deposits on Earth has the potential to constrain several aspects of
evaporitic environments on Mars, including water source, mineral
alteration, and the formation of the spring mounds of the ELDs
within the Arabia Terra region (Andrews-Hanna et al., 2010;
Franchi et al., 2015; Pondrelli et al., 2015; Pondrelli et al., 2019;
Pozzobon et al., 2019) and the adjacent Meridiani Planum
(Figure 2).

Although this work is not aimed to draw specific comparisons
between playa minerals on Earth and Mars, the existence of
certain minerals can imply that upwelling groundwater was an
active process during their formation. For example, since silcrete
contains a significant amount of hydrated silica (Thiry, 1991),
opaline deposits identified on the floor of Becquerel crater
(Schmidt et al., 2022) could be interpreted as analogues of the
duricrust (i.e., silcrete) associated with ERT survey line D at the
western shoreline of the Sua Pan (Figures 5B,C, Figure 8B). The
clay assembleges adjacent to the large fault in Oyama crater
(Loizeau et al., 2012) and in Meridiani Planum (Flahaut et al.,
2015) might have been formed in upwelling events (Andrews-
Hanna et al., 2007; Andrews-Hanna et al., 2010). Vast assemblages

of clays and water-altered minerals are also present in the
Makgadikgadi Pans (Shaw et al., 1990; Eckardt et al., 2008;
Ringrose et al., 2009). This means that apart from any given
pathway for the discharged water, these locations (the pans,
Arabia Terra, and Meridiani Planum) are chemically linked.

Buried faults may have contributed to a large percentage of
late water activity in Martian history (Pozzobon et al., 2019;
Changela et al., 2022; Schmidt et al., 2022). Becquerel crater
was proposed to have been influenced by fluid expulsion from
buried impact faults and associated fracture zones (Caine et al.,
1996; Koeberl et al., 1996; Schmidt et al., 2022) (Figure 2C).
Conical layered mounds are a predominant feature in sedimentary
deposits in Arabia Terra (e.g. Franchi et al., 2014; Pondrelli et al.,
2015; Pozzobon et al., 2019; Annex and Lewis, 2020; Schmidt
et al., 2021). These mounds (e.g. Figure 9B) have also been
proposed to follow the orientation of buried faults, and could
have been formed as spring mounds fed by such faults or at least
that there collinear habit is dependent on the presence of faults
(Allen and Oehler, 2008; Pozzobon et al., 2019). Clustered or
linearly oriented mounds such as these are found in Crommelin,
Firsoff, and in particular, Vernal (Schmidt et al., 2021). Nearly
identical mounds on the northwestern shoreline of the Ntwetwe
Pan (Figure 9A) have been similarly proposed to have been
formed by groundwater activity (McFarlane and Long, 2015;
Franchi et al., 2020). Becquerel and Danielson craters have
observable faulting, albeit in the sedimentary rocks themselves,
not the crater floors (Schmidt et al., 2021; Schmidt et al., 2022).
Oyama has an obvious wrinkle ridge (deep thrust faults, Mueller
and Golombek 2004; Ruj and Kawai 2021) visible from the surface
adjacent to layered deposits and hydrated minerals (Loizeau et al.,
2012; Loizeau et al., 2015; Schmidt et al., 2021) (Figure 2A). The
Meridiani Planum groundwater work of Andrews-Hanna et al.
(2007) may indeed be influenced by tectonic faults, ring faults,
and/or radial faults (Ormo et al., 2004; Essefi et al., 2014).
Furthermore, recent work in Valles Marineris (Gurgurewicz
et al., 2022) shows that regional faults have allowed for the
fluid migration in deep places like Hebes Chasma. Although
Valles Marineris is a much different area, the proof of concept
is still present in Arabia Terra and southern edge at Meridiani
Planum. It is reasonable to anticipate that Arabia Terra, a highly
cratered terrain (Tanaka et al., 2014), would have many faults.
Impacts produce radial fault systems, and given that the terrain is
also one of the oldest Noachian terrains (Tanaka et al., 2014),
there might be relict regional faults possibly formed when Mars
was more tectonically active.

Sedimentary sequences within basins and craters in Arabia
Terra could exceed several hundred meters, however it is not
known for certain the depth of the sedimentary infill in many
locations (Franchi et al., 2014; Schmidt et al., 2021). However,
Garvin equations and ELD thickness estimates show that buried
sediment thickness could exceed 1000 m, whereas here in the pans
we propose a thickness of closer to 100 m (Franchi et al., 2014;
Pondrelli et al., 2019; Schmidt et al., 2021). Our ERT survey has
shown that it is possible that water can be trapped within sediment
below a more impermeable unit, which could turn out to be
something common within the ELDs. These sedimentary
sequences appear to exhibit cyclicity and have been interpreted
as a reflection of the alternation of wet and dry conditions,
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possibly due to fluctuation of the water table (Schmidt et al., 2021;
2022) or obliquity changes (Annex and Lewis, 2020). Thus, there
is great potential for the presence of climate change markers
hidden within the buried sediment. Markers such as the
unconformity in Hebes Chasma (Schmidt et al., 2018) and the
marker horizon in Gale Crater (Weitz et al., 2022) may also be
present in Arabia Terra, but buried. Such markers could be
categorized and linked in order to constrain further the climate
change of Mars. Preliminary results from the Radar Imager for
Mars Subsurface Experiment (RIMFAX) of the Perseverance
rover, despite revealing only 15 m below the surface, shows
layering and distinct units on the floor of Jezero crater
(Hamran et al., 2022). More intriguing, the 100 m penetration
of the Zhurong’s Rover Penetrating Radar (RoPeR) shows fining
sequences within distinct layered units (Li et al., 2022). This
alludes to multiple depositional events and changing energy
(i.e. water intensity). Although, these instruments do not
involve electrical resistivity, they demonstrate that the value of
revealing the subsurface of lacustrine deposits is unquestionable.
For these reasons we stress the importance of subsurface imaging
instrumentation on future Mars missions, particularly in the
proposed sites Oyama, Becquerel, and Meridiani Planum,
where the role that faults have had on aqueous environments
can be appreciated.

6 Conclusion

We have demonstrated that in an overall arid, windswept
environment, groundwater might utilize ancient faults in
the bedrock which contribute to the total water entering the
basin. Hence, groundwater movement through faults that
intersect sediment filled basins and craters on Mars might have
had a significant influence on the surface morphology and surface
mineralogy identifiable from both orbital and rover datasets.

This work has wide implications for determining how putative
water table elevations could have interacted within sediment filled
craters on Mars by resolving areas of low resistivity and identifying
faults that water could have used as pathways, which is not possible
with the current instrumentation present on Mars. Results can also
allow us to better infer what the underlying lithology of layered
deposits within craters might look like. Furthermore, it
demonstrates the scientific importance of future missions to
employ subsurface imaging techniques on Mars. The
Makgadikgadi Pans show the sedimentary complexity of these
environments, not only in subsurface lithostratigraphy, but the
types of duricrusts that are likely to be encountered in these
playa basins on Mars.

Subsurface imaging will be fundamental in future missions to
locating areas of high water saturation on Mars and identifying

FIGURE 9
A visual comparison of small conical layered mounds in the Ntwetwe Pan (Botswana) and Arabia Terra (Mars). (A) Mounds in the Ntwetwe Pan
(-20.62, -25.00). (B) Mounds in Sera crater Arabia Terra (8.71, -1.08). Sera crater displays layered mounds that are geomorphologically similar to the
mounds observed in the Makgadikgadi Pans.
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buried structures. Missions utilizing drones, as demonstrated by the
Ingenuity Mars Helicopter, equipped with a magnetometer would
also be extremely beneficial to the location of buried faults (Balaram
et al., 2021), as our results in the Makgadikgadi Pans demonstrate.
Future field work might include the use of a specific Mars simulant
to test the dependability and efficiency of the ERT on Mars (surface
terrains more similar to survey lines C and D which were quite dry
compared to the interior of the pans). Additionally, the acquisition
of deeper penetrating ERT surveys in other areas of the pans where
faults are inferred to be (Eckardt et al., 2016; Schmidt et al., 2023), as
well as calculating the volume of both annual rainfall and
river drainage into the pans and determining the approximate
amount of water contained in the pans. In this way, a rough
estimate of the amount of groundwater discharged into the pans
can be obtained.
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